CN112359278A - 一种工程机械齿轮用钢的制备法及其锻件的制备方法 - Google Patents

一种工程机械齿轮用钢的制备法及其锻件的制备方法 Download PDF

Info

Publication number
CN112359278A
CN112359278A CN202011119381.7A CN202011119381A CN112359278A CN 112359278 A CN112359278 A CN 112359278A CN 202011119381 A CN202011119381 A CN 202011119381A CN 112359278 A CN112359278 A CN 112359278A
Authority
CN
China
Prior art keywords
steel
equal
gear
slag
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011119381.7A
Other languages
English (en)
Other versions
CN112359278B (zh
Inventor
邓向阳
沈艳
林俊
万文华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zenith Steel Group Co Ltd
Changzhou Zenith Special Steel Co Ltd
Original Assignee
Zenith Steel Group Co Ltd
Changzhou Zenith Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zenith Steel Group Co Ltd, Changzhou Zenith Special Steel Co Ltd filed Critical Zenith Steel Group Co Ltd
Priority to CN202011119381.7A priority Critical patent/CN112359278B/zh
Publication of CN112359278A publication Critical patent/CN112359278A/zh
Priority to PCT/CN2021/109988 priority patent/WO2022083218A1/zh
Priority to JP2023513990A priority patent/JP7479566B2/ja
Application granted granted Critical
Publication of CN112359278B publication Critical patent/CN112359278B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Articles (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开了一种工程机械齿轮用钢的制法和其锻件的制法,结合转炉冶炼、LF炉精炼、RH真空处理、连铸及轧制等工序的调整与优化,控制钢中C 0.38~0.43%、Si0.17~0.37%、Mn0.60~0.80%、Cr1.10~1.20%、Al0.020~0.040%、P≤0.025%、S 0.020~0.035%、Mo 0.15~0.25%、Cu≤0.20%、N 60~150ppm、Nb 0.015~0.035%,提高了钢水纯净度,均匀了材料成分及组织,最后使得材料的综合性能得到了极大提高。

Description

一种工程机械齿轮用钢的制备法及其锻件的制备方法
技术领域
本发明属于冶金领域,涉及一种工程机械齿轮用钢的制备法及其锻件的制备方法。
背景技术
齿轮是一种轮缘上有齿,能连续啮合传递运动和动力的机械元件。东汉初年,中国就已经有齿轮出现,晋代发明的水转连磨就是利用齿轮的作用将水轮的动力传递到石磨,而西方国家在公元前三世纪就有关于齿轮的论述。总的来说,人类社会对齿轮的研究和利用早已有之,工业革命以后,随着工业发展对齿轮利用的扩大,齿轮制造行业迅速发展。我国改革开放以来,随着政策限制的减少和市场经济制度的建立,中国现代齿轮行业得到了长久发展。齿轮在机械传动中有着重要的作用,在农工业机械领域都有着广泛的应用。目前中国齿轮产品基本分为三类:车辆齿轮、工业通用齿轮和工业专用齿轮。其中车辆齿轮根据不同车辆又可以分为汽车齿轮、摩托车齿轮、农用车齿轮、农机齿轮和工程机械齿轮。
目前随着我国工业化进程的加快,汽车行业和农业、工程机械对齿轮行业的发展提出来更高的要求,对齿轮产品的承载性、可靠性等多方面的要求也在相应提高。齿轮沿着“六高”趋势发展:齿轮本身具有的高承载力、高齿面硬度、高精度、高速度、高可靠性、高传动效率,这是齿轮作为传动机械原件本身所必须具备的性能,同时也是不断努力提高的方向;同时在工业现代化要求下,需要提高生产效率。
为提高齿轮材料的强度与淬透性,需要添加足够的Cr、Mn、Mo等合金强化元素,合金元素的增加会导致材料淬火处理时出现裂纹,因此对材料热处理工艺提出了严格的要求,同时为了提高生产效率,需要在较高温度下对齿轮进行渗碳处理,而高温渗碳会导致材料晶粒粗大,因此如何保证材料的强度与淬透性,且在热处理时不出现淬火开裂,同时提高齿轮的渗碳效率,成为行业的一大难点。
发明内容
本发明的目的是提供工程机械齿轮用钢的生产工艺及其锻件齿轮毛坯的热处理工艺,采用该工艺可以防止齿轮毛坯淬火出现开裂,同时获得高的强度与淬透性,此外可以在高温下进行齿轮的渗碳处理,提高了其生产效率。
本发明的目的是通过以下技术方案来实现的:
一种工程机械齿轮用钢的制备法及其锻件的制备方法,该齿轮用钢按重量百分比其成分为:所述齿轮用钢按重量百分比其成分为:C 0.38~0.43%、Si0.17~0.37%、Mn0.60~0.80%、Cr1.10~1.20%、Al0.020~0.040%、P≤0.025%、S 0.020~0.035%、Mo0.15~0.25%、Cu≤0.20%、N 60~150ppm、Nb 0.015~0.035%,余量是Fe和不可避免的杂质。
为了保证性能更加稳定,优选的,该工程机械齿轮用钢按重量百分比其成分为:C0.39~0.42%、Si 0.20~0.30%、Mn 0.72~0.80%、Cr 1.12~1.20%、Al 0.025~0.035%、P≤0.020%、S 0.020~0.030%、Mo 0.18~0.21%、Cu≤0.15%、Nb 0.020~0.030%、N 80~140ppm,余量是Fe和不可避免的杂质。
所述制备方法包括转炉冶炼、LF炉精炼、RH真空处理、连铸和轧制工序,具体步骤为:
(1)转炉冶炼
钢铁料采用1.05~1.15吨/吨钢的铁水,0.10~0.13吨/吨钢的废钢,控制转炉终点放钢:C≥0.18%、P≤0.015%;采用挡渣锥与滑板双档渣出钢,禁止下氧化渣;出钢过程加入铝块进行钢水前期预脱氧,同时加入石灰进行造渣。
(2)LF炉精炼
①造渣脱氧:LF精炼炉通电后立即补加萤石进行化渣,通电10±2分钟后根据炉渣情况补加合成渣进行造渣,达到脱氧脱硫的目的(脱硫至S 0.022~0.028%,脱氧至氧含量≤12PPm),精炼过程使用铝粒0.40~0.70千克/吨钢,碳化硅1.25~1.70千克/吨钢进行钢水的扩散脱氧工作及炉渣的维护工作,并控制LF炉终渣二元碱度2.5~3.5,终点硫含量0.025~0.032%;
②元素调整:取初样后,先根据钢水铝含量补喂铝线来调整钢水中铝含量,控制成品铝含量0.020%~0.030%,然后在LF精炼中后期(精炼开始15min后)将合金元素Mn、Cr、Mo调整至所述齿轮用钢中Mn、Cr、Mo的含量,最后在LF精炼末期(精炼取第二个样后,一般精炼35分钟后)调整Nb含量至0.020-0.025%,S含量至0.025-0.032%,防止RH真空处理后再补喂硫铁线。
(3)RH真空处理
要求极限真空度(真空度≤67MPa)保持时间15~20分钟,RH底吹气体采用氮气,RH破空后钢水软吹氩气20~35分钟。
(4)连铸
控制连浇炉数7~8炉;控制钢水过热度,开浇炉≤35℃、连浇炉≤30℃;采用低拉速浇注,控制拉速0.80~0.85m/min;为防止柱状晶发达,连铸二冷采用弱冷,控制比水0.16±0.01L/Kg。为打碎铸坯枝晶,加强电磁搅拌力度,其中结晶器电磁搅拌强度控制至使得打碎枝晶的同时获得细小的等轴晶粒(优选电流300±10A,频率2±0.2Hz,末端电磁搅拌电流200±10A,频率6±0.2Hz);同时为解决铸坯偏析、中心缩孔及疏松等问题,从而提高铸坯致密度,采用轻压下技术。铸坯出坯后快速收集进缓冷坑缓冷,要求铸坯进缓冷坑温度≥550℃,缓冷48小时后出坑。
(5)轧制
轧制过程采用高温扩散加热工艺,具体参数为:控制均热段加热温度1220~1260℃,时间50-65分钟,轧后得到圆钢轧材(常用规格Φ90、130、150),然后圆钢进坑加盖缓冷,要求缓冷入坑温度≥500℃,缓冷出坑温度≤100℃。
进一步的,步骤(1)转炉出钢过程加入铝块1.7±0.3千克/吨钢进行钢水前期脱氧,造渣材料使用石灰6.7±0.3千克/吨钢。
进一步的,步骤(2)LF精炼炉通电后立即补加萤石1.7±0.3千克/吨钢帮助化渣,通电10±2分钟后根据炉渣情况补加合成渣1.7~3.4千克/吨钢进行造渣。
进一步的,步骤(4)结晶器电磁搅拌强度选用:电流300±10A,频率2±0.2Hz;末端电磁搅拌电流200±10A,频率6±0.2Hz。
本发明所述的利用上述工程机械齿轮用钢制造齿轮毛坯锻件的方法,包括锻造、热处理,步骤如下:
(1)圆钢切下料后采用感应加热方式,加热温度1150±20℃,然后锻造成齿轮毛坯;
(2)齿轮毛坯进行热处理,其中淬火时采用分段加热方式,第一段加热温度:550~600℃,保温30min,第二段加热:850±10℃,保温1h,冷却介质:油冷;回火温度580±10℃,保温时间80±10min,冷却介质:油冷,淬火分段加热方式可以防止出现淬火裂纹。
本发明的有益效果是:考虑到工程机械齿轮规格较大,对末端淬透性提出了较高要求,而淬透性及材料强度的提高在淬火时又容易出现开裂,为了解决这一矛盾,同时防止齿轮渗碳处理时出现粗晶组织,并提高渗碳效率本发明做了如下工作:
①、对成分进行优化设计,尽可能低的控制P含量,提高C含量,采用的渗氮处理,同时控制Cr、Mo、Mn、N等元素含量,从而提高材料的淬透性和强度,并避免淬火开裂;通过加Nb,阻止齿轮在高温渗碳过程出现晶粒粗大等异常情况,从而可以实现高温渗碳(940℃),极大的缩短了用户的渗碳时间,提高了效率,节约了能源。
②、转炉冶炼加强终点C的控制,防止下渣,并使用足够的Al块对钢水进行预脱氧,提高钢水纯净度。
③、精炼过程加强脱氧,并对炉渣碱度进行控制,同时对Al和S元素进行优化调整。
④、连铸过程,加大结晶器及末端电磁搅拌强度,减少柱状晶,减轻中心偏析,从而提高铸坯低倍质量,为得到致密的轧后组织奠定基础。
⑤、轧制过程采用高温扩散加热工艺,提高材料组织的均匀一致性。
⑥、考虑到该钢种的高淬透性,同时含有S等易脆元素,因此淬火加热时采用分段加热的模式,防止材料急速升温至高温产生裂纹。
通过上述努力,在保证足够强度的同时,有效防止了材料淬火裂纹,同时通过添加Nb元素提高了渗碳效率。
具体实施方式
实施例
一种工程机械齿轮用钢及其锻件的制法,以42CrMoS4的生产为例说明:
采用“120t转炉冶炼-LF炉精炼-RH真空脱气处理-连铸机拉浇-连轧机组轧制-锻造-热处理”的工艺路线来进行生产,其生产控制方法如下:
转炉冶炼工艺
钢铁料采用131~135吨铁水及13~15吨清洁废钢。转炉终点放钢:C≥0.20%、P≤0.013%,采用滑板与挡渣锥双挡出钢,出钢过程加入铝块200千克/炉进行钢水前期脱氧,造渣材料石灰800千克/炉。
LF炉精炼工艺
LF精炼炉通电后补加萤石200千克进行化渣,通电10分钟后根据炉渣情况补加合成渣200~400千克进行造渣,精炼过程使用铝粒50~80千克,碳化硅150~200千克进行钢水的扩散脱氧工作,控制LF终渣碱度2.8~3.4。
取初样后,根据钢水铝含量补喂铝线来调整钢水中铝含量,控制成品铝0.020%~0.030%,LF精炼中后期对合金元素Mn、Cr、Mo进行调整,LF精炼末期对Nb及S元素进行调整,控制出LF硫含量0.025~0.030%,RH真空处理后没有补喂硫铁线。
(3)RH真空处理
极限真空度保持时间15~20分钟,RH底吹气体采用氮气,RH破空后钢水软吹25~35分钟。
(4)连铸
控制钢水过热度,开浇炉≤35℃、连浇炉≤30℃;浇注拉速0.81~0.83m/min;二冷比水0.16L/Kg;结晶器电磁搅拌强度选用:电流300±10A,频率2±0.2Hz;末端电磁搅拌电流200±10A,频率6±0.2Hz;连铸投用轻压下装置。铸坯走过渡冷床出钢后快速收集后进坑缓冷,铸坯进缓冷坑温度580~600℃,缓冷48~50小时后出坑。
(5)轧制
铸坯加热时均热段加热温度1220~1260℃,轧后得到90mm规格圆钢,然后轧材进坑加盖缓冷,进缓冷坑温度≥500℃,缓冷出坑温度60~100℃。
(6)锻造
Φ90mm规格圆钢下料后采用感应加热方式,加热温度1150℃,然后锻造成齿轮毛坯。
(7)热处理
其中淬火时采用分段加热方式,第一段加热:550~600℃,保温30min,第二段加热:850±10℃,保温1h,冷却介质:油冷;回火温度580±10℃,保温时间80±10min,冷却介质:油冷。
按照上述工艺冶炼5炉钢,并对应轧制成五个批次Φ90mm规格圆钢,五个批次分别对应实施例1、实施例2、实施例3、实施例4及实施例5制得的样品。
对比例1
对比例1与实施例相比,主要区别在于:降低Mo元素含量:Mo从0.18~0.21%降低至0.15~0.18%,其它操作同实施例。
对比例2
对比例2与实施例相比,主要区别在于:不加入Nb元素,其它操作同实施例。
对比例3
对比例3与实施例相比,主要区别在于:降低Cr元素含量:Cr从1.12~1.20%降低至1.00~1.08%,其它操作同实施例。
对比例4
对比例4与实施例相比,主要区别在于:降低C元素含量:C从0.39~0.42%降低至0.19~0.22%,其它操作同实施例。
对比例5
对比例5与实施例相比,主要区别在于:控制LF精炼炉终渣碱度3.5~4.5,其它操作同实施例。
对比例6
对比例6与实施例相比,主要区别在于:连铸工艺参数不同,将结晶器电磁搅拌电流降低至200A,末端搅拌电流降低为120A,其它操作同实施例。
对比例7
对比例7与实施例相比,主要区别在于:热处理工艺不同,取消淬火时的分段加热工艺,直接加热至850℃,其它操作同实施例。
(1)化学成份如下表1(wt%):
表1
项目 C Si Mn Cr P S Al Mo Cu Nb N(ppm)
实施例1 0.41 0.24 0.76 1.15 0.013 0.023 0.028 0.19 0.016 0.023 98
实施例2 0.40 0.25 0.77 1.16 0.012 0.024 0.027 0.20 0.017 0.024 88
实施例3 0.41 0.25 0.75 1.15 0.011 0.022 0.029 0.19 0.018 0.022 96
实施例4 0.40 0.23 0.78 1.17 0.013 0.025 0.031 0.20 0.019 0.023 105
实施例5 0.41 0.26 0.77 1.16 0.010 0.023 0.028 0.20 0.020 0.025 92
对比例1 0.41 0.24 0.76 1.15 0.014 0.025 0.025 0.16 0.022 0.022 88
对比例2 0.41 026 0.76 1.13 0.015 0.024 0.028 0.18 0.029 0 89
对比例3 0.40 0.22 0.74 1.02 0.015 0.025 0.033 0.19 0.024 0.024 85
对比例4 0.20 0.23 0.72 1.14 0.013 0.027 0.029 0.18 0.023 0.023 94
对比例5 0.40 0.24 0.73 1.14 0.016 0.026 0.035 0.20 0.025 0.025 83
对比例6 0.40 0.25 0.72 1.15 0.014 0.028 0.027 0.19 0.024 0.022 98
对比例7 0.41 0.23 0.75 1.12 0.012 0.027 0.028 0.19 0.021 0.021 101
(2)末端淬透性如下表2(轧制后的圆钢Φ90mm):
表2
Figure BDA0002731450930000061
Figure BDA0002731450930000071
(3)热处理后力学性能及渗碳需要时间如下表3:
表3(轧制后的圆钢Φ90mm)
Figure BDA0002731450930000072
结果表明:通过对化学成分的优化设计,尤其是C、Mo、Cr元素含量的适当提高,同时通过添加高温细晶元素Nb,并通过精炼、连铸、轧制、热处理等工艺参数的合理优化,材料的强度指标、淬透性指标得到了显著提高,并有效防止了淬火过程出现了开裂,开裂率从20%降低至0.5%,同时用户齿轮渗碳时间缩短一半,生产效率得到了显著提高。
本发明中所用原料、设备,若无特别说明,均为本领域的常用原料、设备;本发明中所用方法,若无特别说明,均为本领域的常规方法。以上所述仅为本发明的较好实施方式,并不用以限制本发明,凡是依据本发明的技术实质对以上实施例作的修改,均包含在本发明的保护范围之内。

Claims (6)

1.一种工程机械齿轮用钢的制备法及其锻件的制备方法,其特征在于,所述齿轮用钢按重量百分比其成分为:C 0.38~0.43%、Si0.17~0.37%、Mn0.60~0.80%、Cr1.10~1.20%、Al0.020~0.040%、P≤0.025%、S 0.020~0.035%、Mo 0.15~0.25%、Cu≤0.20%、N 60~150ppm、Nb 0.015~0.035%,余量是Fe和不可避免的杂质;
所述制备方法包括转炉冶炼、LF炉精炼、RH真空处理、连铸和轧制工序,具体步骤为:
(1)转炉冶炼
钢铁料采用1.05~1.15吨/吨钢的铁水,0.10~0.13吨/吨钢的废钢,控制转炉终点放钢:C≥0.18%、P≤0.015%;采用挡渣锥与滑板双档渣出钢,禁止下氧化渣;出钢过程加入铝块进行钢水前期预脱氧,同时加入石灰进行造渣;
(2)LF炉精炼
①造渣脱氧:LF精炼炉通电后立即补加萤石进行化渣,通电10±2分钟后根据炉渣情况补加合成渣进行造渣,达到脱硫至S 0.022~0.028%,脱氧至氧含量≤12PPm,精炼过程使用铝粒0.40~0.70千克/吨钢,碳化硅1.25~1.70千克/吨钢进行钢水的扩散脱氧工作,并控制LF炉终渣二元碱度2.5~3.5,终点硫含量0.025~0.032%;
②元素调整:取初样后,先根据钢水铝含量补喂铝线来调整钢水中铝含量,控制成品铝含量0.020%~0.030%,然后在LF精炼中后期将合金元素Mn、Cr、Mo调整至所述齿轮用钢中Mn、Cr、Mo的含量,最后在LF精炼末期调整Nb含量至0.020-0.025%,S含量至0.025-0.032%;
(3)RH真空处理
控制真空度≤67MPa,并保持15~20分钟,RH底吹气体采用氮气,RH破空后钢水软吹氩气20~35分钟;
(4)连铸
控制连浇炉数7~8炉;控制钢水过热度:开浇炉≤35℃、连浇炉≤30℃;采用连铸拉速0.80~0.85m/min浇注,连铸二冷采用弱冷并控制连铸二冷比水量0.16±0.01L/Kg,加强电磁搅拌力度使得打碎枝晶的同时获得细小的等轴晶粒,采用轻压下技术,铸坯出坯后快速收集进缓冷坑缓冷,要求铸坯进缓冷坑温度≥550℃,缓冷48小时后出坑;
(5)轧制
轧制过程采用高温扩散加热工艺,具体参数为:控制均热段加热温度1220~1260℃,时间50-65分钟,轧后得到圆钢轧材,然后轧材进坑加盖缓冷,要求缓冷入坑温度≥500℃,缓冷出坑温度≤100℃。
2.根据权利要求1所述的工程机械齿轮用钢的制备法及其锻件的制备方法,其特征在于:所述齿轮钢按重量百分比其成分为:C 0.39~0.42%、Si 0.20~0.30%、Mn 0.72~0.80%、Cr 1.12~1.20%、Al 0.025~0.035%、P≤0.020%、S 0.020~0.030%、Mo 0.18~0.21%、Cu≤0.15%、Nb 0.020~0.030%、N 80~140ppm,余量是Fe和不可避免的杂质。
3.根据权利要求1所述的工程机械齿轮用钢制造锻件的方法,其特征在于:步骤(1)转炉出钢过程加入铝块1.7±0.3千克/吨钢进行钢水前期脱氧,造渣材料使用石灰6.7±0.3千克/吨钢。
4.根据权利要求1所述的工程机械齿轮用钢制造锻件的方法,其特征在于:步骤(2)LF精炼炉通电后立即补加萤石1.7±0.3千克/吨钢帮助化渣,通电10±2分钟后根据炉渣情况补加合成渣1.7~3.4千克/吨钢进行造渣。
5.根据权利要求1所述的工程机械齿轮用钢制造锻件的方法,其特征在于:步骤(4)结晶器电磁搅拌强度选用:电流300±10A,频率2±0.2Hz;末端电磁搅拌电流200±10A,频率6±0.2Hz。
6.一种工程机械齿轮用钢制造锻件的方法,其特征在于:所述工程机械齿轮用钢由如权利要求1至5中任一项所述的工程机械齿轮用钢的制备法及其锻件的制备方法制得,包括如下步骤:
(1)圆钢锯切下料后,采用感应加热方式,加热温度1150±20℃,然后锻造成齿轮毛坯;
(2)齿轮毛坯进行热处理,其中淬火时采用分段加热方式,第一段加热温度:550~600℃,保温30±2min,第二段加热:850±10℃,保温80±10min,冷却介质为油冷;回火温度580±10℃,保温时间80±10min,冷却介质:油冷。
CN202011119381.7A 2020-10-19 2020-10-19 一种工程机械齿轮用钢的制备法及其锻件的制备方法 Active CN112359278B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202011119381.7A CN112359278B (zh) 2020-10-19 2020-10-19 一种工程机械齿轮用钢的制备法及其锻件的制备方法
PCT/CN2021/109988 WO2022083218A1 (zh) 2020-10-19 2021-08-02 一种工程机械齿轮用钢的制备法及其锻件的制备方法
JP2023513990A JP7479566B2 (ja) 2020-10-19 2021-08-02 建設機械歯車用鋼の製造方法及びその鍛造品の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011119381.7A CN112359278B (zh) 2020-10-19 2020-10-19 一种工程机械齿轮用钢的制备法及其锻件的制备方法

Publications (2)

Publication Number Publication Date
CN112359278A true CN112359278A (zh) 2021-02-12
CN112359278B CN112359278B (zh) 2021-08-24

Family

ID=74507419

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011119381.7A Active CN112359278B (zh) 2020-10-19 2020-10-19 一种工程机械齿轮用钢的制备法及其锻件的制备方法

Country Status (3)

Country Link
JP (1) JP7479566B2 (zh)
CN (1) CN112359278B (zh)
WO (1) WO2022083218A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113774282A (zh) * 2021-09-09 2021-12-10 中信重工机械股份有限公司 一种矿用磨机铸钢大齿轮材料及其制备工艺
CN116145041A (zh) * 2023-03-28 2023-05-23 河钢股份有限公司 一种低硬度低弯曲度42CrMo合金钢及其生产方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114574750B (zh) * 2022-02-18 2022-08-02 中天钢铁集团有限公司 窄淬透性齿轮钢硼含量的控制方法
CN114990437B (zh) * 2022-05-25 2023-07-04 张家港荣盛特钢有限公司 冷镦钢盘条及其生产方法
CN114959499B (zh) * 2022-06-28 2023-07-07 河南济源钢铁(集团)有限公司 高弯曲疲劳寿命发动机曲轴用钢及其生产方法
CN115110003B (zh) * 2022-06-30 2024-03-12 中国铁建重工集团股份有限公司 一种掘进机主轴承用钢及其生产方法
CN114855062B (zh) * 2022-07-05 2022-11-04 北京科技大学 20CrMnTiH齿轮钢及其制备方法
CN115323268B (zh) * 2022-07-20 2023-09-22 江阴兴澄特种钢铁有限公司 一种高强度高韧性可用于感应淬火的齿轮钢及其制造方法
CN115233098B (zh) * 2022-07-20 2023-08-22 中天钢铁集团有限公司 一种高洁净度滚珠丝杠用中碳合金结构钢的制备方法
CN115491592B (zh) * 2022-08-31 2024-03-22 石钢京诚装备技术有限公司 一种20MnCr5齿轮钢及其轧制方法
CN116254451A (zh) * 2022-12-09 2023-06-13 上海电气上重铸锻有限公司 一种乏燃料干式贮存容器用钢锭的制造方法及锻件
CN118147548B (zh) * 2024-05-11 2024-07-16 江苏永钢集团有限公司 一种高晶格刚度风电齿轮钢及应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003328078A (ja) * 2002-05-10 2003-11-19 Komatsu Ltd 高硬度高靭性鋼およびその鋼材を使用した装軌部品、耐土砂摩耗部品、締結ボルト、高靭性歯車、高靭性高耐面圧歯車、耐摩耗鋼板
EP1923477A1 (en) * 2005-08-22 2008-05-21 Nippon Steel Corporation Highly strong, thick electric resistance-welded steel pipe excellent in quenching property, hot forming processability and fatigue strength, and method for manufacture thereof
JP2009120936A (ja) * 2007-10-24 2009-06-04 Jfe Steel Corp 冷間加工品の製造方法
CN107177804A (zh) * 2017-04-07 2017-09-19 江阴兴澄特种钢铁有限公司 一种高强韧易切削调质圆钢及其制造方法
CN107236893A (zh) * 2017-05-11 2017-10-10 唐山钢铁集团有限责任公司 控制高熔点夹杂物的高钛焊丝钢生产方法
CN109477187A (zh) * 2016-07-27 2019-03-15 新日铁住金株式会社 机械结构用钢
JP2019052376A (ja) * 2016-09-09 2019-04-04 Jfeスチール株式会社 歯車部品およびその製造方法
US20190284654A1 (en) * 2016-11-15 2019-09-19 Jiang Yin Xing Cheng Special Steel Works Co., Ltd High-hardenability, medium-carbon, low-alloy round steel for fasteners and the manufacturing method thereof
CN110343954A (zh) * 2019-07-10 2019-10-18 宝钢特钢韶关有限公司 一种汽车发动机连杆用钢及其制造方法
CN111074150A (zh) * 2019-12-18 2020-04-28 山东钢铁股份有限公司 一种高强度高淬透性耐腐蚀钻头用钢及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171554A (ja) * 1982-03-31 1983-10-08 Daido Steel Co Ltd 機械構造用部品
JP4536327B2 (ja) * 2003-02-17 2010-09-01 大同特殊鋼株式会社 短時間での浸炭性に優れたNb含有肌焼鋼
JP4912385B2 (ja) 2003-03-04 2012-04-11 株式会社小松製作所 転動部材の製造方法
CN100473746C (zh) * 2006-06-28 2009-04-01 宝山钢铁股份有限公司 高强度汽车用齿轮钢
CN101967610B (zh) * 2009-07-28 2012-07-04 宝山钢铁股份有限公司 一种高碳高硅马氏体不锈钢小方坯及其制造方法
KR101374991B1 (ko) * 2010-11-02 2014-03-14 신닛테츠스미킨 카부시키카이샤 기계 구조용 강의 절삭 방법
JP6043080B2 (ja) 2012-03-30 2016-12-14 株式会社神戸製鋼所 耐剥離性と歯切加工性に優れた高周波熱処理用歯車用鋼、および歯車とその製造方法
CN103757553B (zh) * 2013-12-28 2017-03-08 宝鼎科技股份有限公司 一种40NiCrMo7优化材料轴齿轮锻件及制造方法
CN117888030A (zh) 2016-05-31 2024-04-16 杰富意钢铁株式会社 表面硬化钢及其制造方法以及齿轮部件的制造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003328078A (ja) * 2002-05-10 2003-11-19 Komatsu Ltd 高硬度高靭性鋼およびその鋼材を使用した装軌部品、耐土砂摩耗部品、締結ボルト、高靭性歯車、高靭性高耐面圧歯車、耐摩耗鋼板
EP1923477A1 (en) * 2005-08-22 2008-05-21 Nippon Steel Corporation Highly strong, thick electric resistance-welded steel pipe excellent in quenching property, hot forming processability and fatigue strength, and method for manufacture thereof
JP2009120936A (ja) * 2007-10-24 2009-06-04 Jfe Steel Corp 冷間加工品の製造方法
CN109477187A (zh) * 2016-07-27 2019-03-15 新日铁住金株式会社 机械结构用钢
JP2019052376A (ja) * 2016-09-09 2019-04-04 Jfeスチール株式会社 歯車部品およびその製造方法
US20190284654A1 (en) * 2016-11-15 2019-09-19 Jiang Yin Xing Cheng Special Steel Works Co., Ltd High-hardenability, medium-carbon, low-alloy round steel for fasteners and the manufacturing method thereof
CN107177804A (zh) * 2017-04-07 2017-09-19 江阴兴澄特种钢铁有限公司 一种高强韧易切削调质圆钢及其制造方法
CN107236893A (zh) * 2017-05-11 2017-10-10 唐山钢铁集团有限责任公司 控制高熔点夹杂物的高钛焊丝钢生产方法
CN110343954A (zh) * 2019-07-10 2019-10-18 宝钢特钢韶关有限公司 一种汽车发动机连杆用钢及其制造方法
CN111074150A (zh) * 2019-12-18 2020-04-28 山东钢铁股份有限公司 一种高强度高淬透性耐腐蚀钻头用钢及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113774282A (zh) * 2021-09-09 2021-12-10 中信重工机械股份有限公司 一种矿用磨机铸钢大齿轮材料及其制备工艺
CN113774282B (zh) * 2021-09-09 2022-05-10 中信重工机械股份有限公司 一种矿用磨机铸钢大齿轮材料及其制备工艺
CN116145041A (zh) * 2023-03-28 2023-05-23 河钢股份有限公司 一种低硬度低弯曲度42CrMo合金钢及其生产方法

Also Published As

Publication number Publication date
WO2022083218A1 (zh) 2022-04-28
JP7479566B2 (ja) 2024-05-08
CN112359278B (zh) 2021-08-24
JP2023539661A (ja) 2023-09-15

Similar Documents

Publication Publication Date Title
CN112359278B (zh) 一种工程机械齿轮用钢的制备法及其锻件的制备方法
CN110791708B (zh) 一种汽车零部件用非调质钢及其生产工艺
CN102517521B (zh) 一种MnCr渗碳齿轮钢及其制造方法
CN111394639B (zh) 一种高耐磨齿轮钢的制造方法
CN107604250A (zh) 一种重型卡车变速器齿轮用21MnCrMoS钢及其制造方法
CN112359264B (zh) 一种高强度高韧性风电螺栓用钢的生产方法
CN114134430B (zh) 一种工程机械耐磨部件用高淬透性35SiMnCrMoB钢及其制造方法
CN107746911A (zh) 一种锻造余热淬火钢的生产方法
CN114015936B (zh) 一种高氮齿轮钢及其制备方法
KR20200003176A (ko) 자동차 휠허브용 베어링강 및 그의 제조방법
CN116287941B (zh) 一种高强度风电螺栓用钢的生产方法
CN108342645B (zh) 一种过共析磨球用钢及其制备方法
CN113957321A (zh) 一种传动轴用非调质钢及其锻件的制备方法
CN114875295A (zh) 一种风电螺栓用钢的生产方法
CN114032463A (zh) 一种高强韧贝氏体非调质钢及其制造方法
CN111286678B (zh) 一种汽车凸轮轴用高硫非调质钢及其生产工艺
CN113106334A (zh) 一种rv减速器摆线轮用钢及其制备方法
CN111218614B (zh) 一种易切削连杆用钢及其制造方法
CN115449703B (zh) 一种适用于冷锻加工的等温退火齿轮钢棒材及其制造方法
CN114411047B (zh) 一种汽车转向***用合金结构钢的生产工艺
CN113846263B (zh) 一种无δ铁素体的高韧性耐热钢及制备方法
CN115537649B (zh) 一种高温渗碳轴齿用钢及其制造方法
CN116083791A (zh) 一种汽车半轴用非调质钢的生产方法
CN118007017A (zh) 一种变速器齿轮用钢的生产方法
CN116043111A (zh) 一种风电用齿轮钢及其生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant