CN112289985B - 一种C@MgAl2O4复合包覆改性的硅基负极材料及其制备方法 - Google Patents

一种C@MgAl2O4复合包覆改性的硅基负极材料及其制备方法 Download PDF

Info

Publication number
CN112289985B
CN112289985B CN202011004449.7A CN202011004449A CN112289985B CN 112289985 B CN112289985 B CN 112289985B CN 202011004449 A CN202011004449 A CN 202011004449A CN 112289985 B CN112289985 B CN 112289985B
Authority
CN
China
Prior art keywords
negative electrode
electrode material
silicon
based negative
mgal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011004449.7A
Other languages
English (en)
Other versions
CN112289985A (zh
Inventor
梁栋栋
石永倩
陈晨
王叶
林少雄
蔡桂凡
毕超奇
王健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Gotion High Tech Power Energy Co Ltd
Original Assignee
Hefei Guoxuan High Tech Power Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Guoxuan High Tech Power Energy Co Ltd filed Critical Hefei Guoxuan High Tech Power Energy Co Ltd
Priority to CN202011004449.7A priority Critical patent/CN112289985B/zh
Publication of CN112289985A publication Critical patent/CN112289985A/zh
Application granted granted Critical
Publication of CN112289985B publication Critical patent/CN112289985B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了一种C@MgAl2O4复合包覆改性的硅基负极材料及其制备方法,涉及电化学储能技术领域,该材料包括硅基负极材料和依次包覆在硅基负极材料表面的MgAl2O4包覆层和碳包覆层;制备过程如下:配制Al(NO3)3·9H2O和Mg(NO3)2·6H2O水溶液,混合,加入交联单体、交联剂、引发剂,升温反应,制得凝胶;对硅基负极材料进行球磨处理,得到浆料,向其中加入凝胶,真空搅拌分散,喷雾干燥,得硅基负极材料前驱体;将硅基负极材料前驱体在空气氛中进行高温煅烧,得到MgAl2O4包覆改性的硅基负极材料,再将其在含乙炔的混合气氛中进行煅烧,即得。本发明制备的C@MgAl2O4复合包覆改性的硅基负极材料结构稳定,在充放电过程中体积膨胀小,提高了材料的首次库伦效率和循环稳定性能。

Description

一种C@MgAl2O4复合包覆改性的硅基负极材料及其制备方法
技术领域
本发明涉及电化学储能技术领域,尤其涉及一种C@MgAl2O4复合包覆改性的硅基负极材料及其制备方法。
背景技术
随着电动汽车、储能电站及便携式电子设备等的快速发展,高比能锂离子电池受到越来越多的关注。因正极材料的可逆比容量提升空间较小,所以目前提升负极材料的可逆比容量是提高锂离子电池能量密度的关键。然而,目前商业化锂离子电池负极材料主要为石墨类碳负极材料,其理论比容量仅为372mAh/g(LiC6),严重限制了锂离子电池的进一步发展。硅基材料是在负极材料中理论比容量较高的研究体系,其形成的合金为LixSi(x=0~4.4),理论比容量高达为4200mAh/g,因其低嵌锂电位、低原子质量、高能量密度和在Li-Si合金中的高Li摩尔分数,被认为是碳负极材料的理想替代性产品。但是硅负极由于其在嵌脱锂循环过程中具有严重的体积膨胀和收缩,造成材料结构的破坏和机械粉碎,从而导致电极表现出较差的循环性能。SiO的导电性较差,性质接近绝缘体,导致其电化学反应的动力学性能较差,而SiO材料中包含的SiO2在首次嵌锂反应中转变成Li4SiO4、Li2Si2O5等物相,消耗较多的锂离子,致使首次充放电效率较低。主流的商业化的氧化亚硅复合负极材料一般都进行了碳包覆,这一方面改善了材料的导电性,同时也避免了氧化亚硅材料直接和电解液接触,改善了材料的循环性能。然而,硅基负极材料大规模应用仍然面临众多考验,进一步改善材料的循环性能,提高材料的首次库伦效率,并降低生产成本,广大科研工作者和厂商仍然任重而道远。
发明内容
基于背景技术存在的技术问题,本发明提出了一种C@MgAl2O4复合包覆改性的硅基负极材料及其制备方法,该负极材料结构稳定,在充放电过程中体积膨胀小,提高了硅基负极材料的首次库伦效率和循环稳定性能。
本发明提出的一种C@MgAl2O4复合包覆改性的硅基负极材料,包括硅基负极材料和依次包覆在硅基负极材料表面的MgAl2O4包覆层和碳包覆层。
优选地,所述C@MgAl2O4复合改性的硅基负极材料中,MgAl2O4包覆层的质量百分含量为0.5~5%,碳包覆层的质量百分含量为0.5~5%。
优选地,所述硅基负极材料为商业纯氧化亚硅负极材料或纳米硅负极材料。
本发明还提出了上述C@MgAl2O4复合包覆改性的硅基负极材料的制备方法,包括以下步骤:
S1、配制Al(NO3)3·9H2O和Mg(NO3)2·6H2O的水溶液,混合,向其中加入交联单体、交联剂、引发剂,升温反应,制得凝胶;
S2、对硅基负极材料进行球磨处理,得到浆料,向其中加入凝胶,真空搅拌分散,喷雾干燥,得硅基负极材料前驱体;
S3、将硅基负极材料前驱体在空气氛中进行高温煅烧,得到MgAl2O4包覆改性的硅基负极材料;
S4、以乙炔作为碳源,将MgAl2O4包覆改性的硅基负极材料在含乙炔的混合气氛中进行煅烧,即得C@MgAl2O4复合包覆改性的硅基负极材料。
优选地,S1中,交联单体为丙烯酰胺,交联剂为N,N′-亚甲基双丙烯酰胺,引发剂为过硫酸铵;优选地,升温至60~100℃,反应3~6h。
优选地,S2中,喷雾干燥温度为120~200℃。
优选地,S3中,煅烧温度为700~900℃,升温速度为3~10℃/min,煅烧时间为2~5h。
优选地,S4中,混合气氛为氮气乙炔混合气氛,其中,乙炔的体积百分含量为40~50%。
优选地,S4中,煅烧温度为750~950℃,升温速度为3~10℃/min,煅烧时间为1~3h。
与现有技术相比,本发明的有益效果体现在以下几个方面:
1.本发明先在硅基负极材料上包覆一层MgAl2O4,是通过聚合物网络凝胶法经煅烧制备得到的,所得包覆材料化学稳定性好,且其具有多孔结构,与硅的匹配性能好,可有效缓解Si和SiO在脱嵌锂过程中的体积膨胀问题;然后再进行碳包覆能有效提高其导电性。
2.本发明制备的C@MgAl2O4复合包覆改性的硅基负极材料结构稳定,在充放电过程中体积膨胀小,提高了材料的首次库伦效率和循环稳定性能。
3.本发明制备方法简单可行、成本低、环境友好,易于实现工业化生产。
附图说明
图1为本发明实施例1中硅基负极材料制备的扣电的首次充放电曲线图;其中,曲线a为SiOx@MgAl2O4@C硅基负极材料,曲线b为未包覆改性的SiOx硅基负极材料。
具体实施方式
下面,通过具体实施例对本发明的技术方案进行详细说明。
实施例1
一种C@MgAl2O4复合改性的硅基负极材料的制备:
(1)以Al(NO3)3·9H2O和Mg(NO3)2·6H2O为原料,制备水溶液,其中, Al(NO3)3·9H2O和Mg(NO3)2·6H2O的摩尔比为2:1(其中Al(NO3)3·9H2O和Mg(NO3)2·6H2O的质量分别为10.7586g和3.6768g),向水溶液中分别加入4g丙烯酰胺单体、4g交联剂N,N′—亚甲基双丙烯酰胺、1g引发剂过硫酸铵,在80℃下聚合5h后获得凝胶。
(2)取100g商业SiOx粉末置于球磨罐中球磨得到浆料,后加入凝胶进行真空搅拌分散,经喷雾干燥得到硅基负极材料前驱体,干燥温度为180℃;
(3)将喷雾干燥后的混合物置于管式炉内进行高温煅烧,煅烧气氛为空气,煅烧温度为800℃,升温速度为5℃/min,煅烧时间为3h,得到2%MgAl2O4改性的硅基负极材料;然后继续在管式炉内进行C包覆,管式炉为氮气乙炔混合气氛,包覆温度为800℃,升温速度为5℃/min,混合气体的流速为200L/h,包覆时间为2h,其中混合气氛中乙炔体积占比为50%,包覆后自然冷却至室温,得到C@MgAl2O4复合包覆改性的硅基负极材料(SiOx@MgAl2O4@C)。
对实施例1获得的SiOx@MgAl2O4@C硅基负极材料进行电化学性能进行测试,图1为实施例1的SiOx@MgAl2O4@C硅基负极材料和未经包覆处理的商业 SiOx在0.05C倍率(1C=1300mA/g),电压区间为0.05-1.5V条件下的首次充放电曲线。其中,商业SiOx首次放电比容量为1649.43mAh/g,充电比容量为703.58 mAh/g,首次库伦效率仅为42.66%。而SiOx@MgAl2O4@C材料的首次放电比容量为2020.42mAh/g,充电比容量为1495.62mAh/g,首次库伦效率74.03%,表现出较高的首效和首次充电比容量,这对于提高全电池的容量和首效具有很大的意义。同时,SiOx@MgAl2O4@C材料的放电平台明显低于商业SiOx的放电,表现出较小的极化。因此,相比未处理的商业SiOx材料,SiOx@MgAl2O4@C材料表现出较高的比容量和首效,且材料极化小,具有较好的电化学性能。
实施例2
一种C@MgAl2O4复合改性的硅基负极材料的制备:
(1)以Al(NO3)3·9H2O和Mg(NO3)2·6H2O为原料,制备水溶液,其中, Al(NO3)3·9H2O和Mg(NO3)2·6H2O的摩尔比为2:1(其中Al(NO3)3·9H2O和 Mg(NO3)2·6H2O的质量分别为10.7586g和3.6768g),向水溶液中分别加入4g丙烯酰胺单体、4g交联剂N,N′—亚甲基双丙烯酰胺、1g引发剂过硫酸铵,在60℃下聚合6h后获得凝胶。
(2)取40g商业SiOx粉末置于球磨罐中球磨得到浆料,后加入凝胶进行真空搅拌分散,经喷雾干燥得到硅基负极材料前驱体,干燥温度为130℃;
(3)将喷雾干燥后的混合物置于管式炉内进行高温煅烧,煅烧气氛为空气,煅烧温度为700℃,升温速度为3℃/min,煅烧时间为5h,得到5%MgAl2O4改性的硅基负极材料;然后继续在管式炉内进行C包覆,管式炉为氮气乙炔混合气氛,包覆温度为850℃,升温速度为5℃/min,混合气体的流速为200L/h,包覆时间为2.5h,其中混合气氛中乙炔体积占比为40%,包覆后自然冷却至室温,得到C@MgAl2O4复合包覆改性的硅基负极材料(SiOx@MgAl2O4@C)。
实施例3
一种C@MgAl2O4复合改性的硅基负极材料的制备:
(1)以Al(NO3)3·9H2O和Mg(NO3)2·6H2O为原料,制备水溶液,其中,Al(NO3)3·9H2O和Mg(NO3)2·6H2O的摩尔比为2:1(其中Al(NO3)3·9H2O和 Mg(NO3)2·6H2O的质量分别为10.7586g和3.6768g),向水溶液中分别加入4g丙烯酰胺单体、4g交联剂N,N′—亚甲基双丙烯酰胺、1g引发剂过硫酸铵,在100℃下聚合3h后获得凝胶。
(2)取400g商业SiOx粉末置于球磨罐中球磨得到浆料,后加入凝胶进行真空搅拌分散,经喷雾干燥得到硅基负极材料前驱体,干燥温度为200℃;
(3)将喷雾干燥后的混合物置于管式炉内进行高温煅烧,煅烧气氛为空气,煅烧温度为900℃,升温速度为10℃/min,煅烧时间为2h,得到0.5%MgAl2O4改性的硅基负极材料;然后继续在管式炉内进行C包覆,管式炉为氮气乙炔混合气氛,包覆温度为950℃,升温速度为10℃/min,混合气体的流速为200L/h,包覆时间为1h,其中混合气氛中乙炔体积占比为45%,包覆后自然冷却至室温,得到C@MgAl2O4复合包覆改性的硅基负极材料(SiOx@MgAl2O4@C)。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (5)

1.一种C@MgAl2O4复合包覆改性的硅基负极材料的制备方法,其特征在于,包括硅基负极材料和依次包覆在硅基负极材料表面的MgAl2O4包覆层和碳包覆层;
具体包括以下步骤:
S1、配制Al(NO3)3·9H2O和Mg(NO3)2·6H2O的水溶液,混合,向其中加入交联单体、交联剂、引发剂,升温反应,制得凝胶;所述交联单体为丙烯酰胺,交联剂为N,N′-亚甲基双丙烯酰胺,引发剂为过硫酸铵;所述升温反应温度为60~100℃,反应时间为3~6h;
S2、对硅基负极材料进行球磨处理,得到浆料,向其中加入凝胶,真空搅拌分散,喷雾干燥,得硅基负极材料前驱体;所述喷雾干燥温度为120~200℃;
S3、将硅基负极材料前驱体在空气氛中进行高温煅烧,得到MgAl2O4包覆改性的硅基负极材料;所述煅烧温度为700~900℃,升温速度为3~10℃/min,煅烧时间为2~5h;
S4、以乙炔作为碳源,将MgAl2O4包覆改性的硅基负极材料在含乙炔的混合气氛中进行煅烧,即得C@MgAl2O4复合包覆改性的硅基负极材料。
2.根据权利要求1所述的C@MgAl2O4复合包覆改性的硅基负极材料的制备方法,其特征在于,所述C@MgAl2O4复合改性的硅基负极材料中,MgAl2O4包覆层的质量百分含量为0.5~5%,碳包覆层的质量百分含量为0.5~5%。
3.根据权利要求1所述的C@MgAl2O4复合包覆改性的硅基负极材料的制备方法,其特征在于,所述硅基负极材料为商业纯氧化亚硅负极材料或纳米硅负极材料。
4.根据权利要求1所述的C@MgAl2O4复合包覆改性的硅基负极材料的制备方法,其特征在于,S4中,混合气氛为氮气乙炔混合气氛,其中,乙炔的体积百分含量为40~50%。
5.根据权利要求1所述的C@MgAl2O4复合包覆改性的硅基负极材料的制备方法,其特征在于,S4中,煅烧温度为750~950℃,升温速度为3~10℃/min,煅烧时间为1~3h。
CN202011004449.7A 2020-09-22 2020-09-22 一种C@MgAl2O4复合包覆改性的硅基负极材料及其制备方法 Active CN112289985B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011004449.7A CN112289985B (zh) 2020-09-22 2020-09-22 一种C@MgAl2O4复合包覆改性的硅基负极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011004449.7A CN112289985B (zh) 2020-09-22 2020-09-22 一种C@MgAl2O4复合包覆改性的硅基负极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112289985A CN112289985A (zh) 2021-01-29
CN112289985B true CN112289985B (zh) 2022-06-07

Family

ID=74422861

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011004449.7A Active CN112289985B (zh) 2020-09-22 2020-09-22 一种C@MgAl2O4复合包覆改性的硅基负极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112289985B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114171728A (zh) * 2021-11-30 2022-03-11 陕西科技大学 一种三维多孔硅碳复合材料、制备方法及其应用
CN116864653A (zh) * 2023-08-15 2023-10-10 广东凯金新能源科技股份有限公司 预镁硅氧负极材料及其制备方法、及二次电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102893430A (zh) * 2010-08-03 2013-01-23 日立麦克赛尔能源株式会社 非水二次电池用负极及非水二次电池
WO2017096525A1 (zh) * 2015-12-08 2017-06-15 北京当升材料科技股份有限公司 锂离子电池正极材料、其制备方法、锂离子电池正极以及锂离子电池

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100447090C (zh) * 2006-12-04 2008-12-31 山东大学 固体氧化物燃料电池阴极材料纳米粉体的制备方法
CN101085466A (zh) * 2007-06-26 2007-12-12 合肥工业大学 一种超细钨铜复合粉体的制备方法
KR101007504B1 (ko) * 2009-11-11 2011-01-12 조재원 리튬이차전지용 양극 활물질 및 그 제조방법
KR101288973B1 (ko) * 2011-05-04 2013-07-24 삼성전자주식회사 전극활물질, 그 제조방법 및 이를 채용한 전극 및 리튬전지
KR20130050161A (ko) * 2011-11-07 2013-05-15 삼성에스디아이 주식회사 전극활물질, 그 제조방법 및 이를 채용한 전극 및 리튬전지
US20130295454A1 (en) * 2012-04-12 2013-11-07 Actacell Energy Systems, Inc. Low crystallinity silicon composite anode material for lithium ion battery
KR101573423B1 (ko) * 2013-06-21 2015-12-02 국립대학법인 울산과학기술대학교 산학협력단 다공성 실리콘계 음극 활물질, 이의 제조 방법, 이를 포함하는 리튬 이차 전지
KR20170000903A (ko) * 2015-06-24 2017-01-04 삼성에스디아이 주식회사 리튬 이차 전지
CN106356507B (zh) * 2015-07-13 2021-05-04 三星电子株式会社 用于锂电池的复合正极活性材料、其制备方法、用于锂电池的正极和锂电池
KR102473531B1 (ko) * 2015-09-24 2022-12-05 삼성전자주식회사 복합 전극활물질, 이를 채용한 전극과 리튬전지, 및 복합 전극활물질 제조방법
CN108832093B (zh) * 2018-06-12 2020-06-26 桑德新能源技术开发有限公司 一种复合正极材料、制备方法及锂离子电池
CN110797516B (zh) * 2019-10-23 2022-02-18 合肥国轩高科动力能源有限公司 一种C包覆SiO-SnSiO4-Si超粒子材料及其制备方法和应用
CN110752361B (zh) * 2019-10-30 2020-12-01 成都新柯力化工科技有限公司 一种锂电池改性硅基负极材料的制备方法
CN111499815A (zh) * 2020-05-20 2020-08-07 绍兴市鸣威新材料科技有限公司 一种SiO2-GO交联聚丙烯基高强度水凝胶及其制法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102893430A (zh) * 2010-08-03 2013-01-23 日立麦克赛尔能源株式会社 非水二次电池用负极及非水二次电池
WO2017096525A1 (zh) * 2015-12-08 2017-06-15 北京当升材料科技股份有限公司 锂离子电池正极材料、其制备方法、锂离子电池正极以及锂离子电池

Also Published As

Publication number Publication date
CN112289985A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
CN106876686B (zh) 一种对锂离子电池用正极活性材料进行表面修饰的方法
CN112164779B (zh) 一种碳包覆硅基负极材料及其制备方法
CN106450265B (zh) 一种原位氮掺杂碳包覆钛酸锂复合电极材料及其制备方法
CN109560278B (zh) 一种锂离子电池负极材料氧化亚硅-碳-石墨的制备方法
CN110148730B (zh) 一种硅基负极材料及其制备方法和应用
CN112421048A (zh) 一种低成本制备石墨包覆纳米硅锂电池负极材料的方法
CN111463419B (zh) 一种硅基@钛铌氧化物核壳结构的负极材料及其制备方法
CN108615854B (zh) 一种硅基锂离子电池负极活性材料及其制备和应用
WO2022002057A1 (zh) 硅氧复合负极材料、负极和锂离子电池及其制备方法
CN112289985B (zh) 一种C@MgAl2O4复合包覆改性的硅基负极材料及其制备方法
CN115954443B (zh) 一种锂离子电池碳包覆硅铜合金负极材料的制备方法
CN108417810B (zh) 一种三维网络结构聚苯胺/石墨烯/硅复合材料制备方法
CN109473665A (zh) 一种纳米硅基材料及其制备方法和应用
CN109273700A (zh) 一种硅基复合材料及其制备方法和应用
CN115020685A (zh) 一种磷酸锰铁锂正极材料及其制备方法和应用
CN108695505B (zh) 一种锂离子电池复合负极材料及其制备方法
CN106058232A (zh) 一种硅氧烯材料、硅基氧化物的制备方法及负极材料
CN114079045B (zh) 以多孔聚合物微球为模板原位合成的多孔硅/碳复合材料及制备方法和锂离子电池
CN112510187A (zh) 一种静电自组装球状三氧化钼/MXene复合材料及其制备方法和应用
CN110474037B (zh) 一种多孔硅碳复合负极材料的制备方法
CN112436131A (zh) 一种熔融盐辅助镁热还原制备硅碳复合材料的方法
CN115312736B (zh) 一种Si@TiN-沥青复合负极材料的制备方法
CN110797516A (zh) 一种C包覆SiO-SnSiO4-Si超粒子材料及其制备方法和应用
CN114105145B (zh) 碳外包覆三维多孔硅负极材料及其制备方法和应用
CN114105149B (zh) 一种碳包覆氮磷双掺杂氧化亚硅复合材料及其制备方法和在锂离子电池中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant