CN112169791B - 一种片层状三相复合光催化材料的制备方法 - Google Patents

一种片层状三相复合光催化材料的制备方法 Download PDF

Info

Publication number
CN112169791B
CN112169791B CN202011139417.8A CN202011139417A CN112169791B CN 112169791 B CN112169791 B CN 112169791B CN 202011139417 A CN202011139417 A CN 202011139417A CN 112169791 B CN112169791 B CN 112169791B
Authority
CN
China
Prior art keywords
solution
graphene
photocatalytic material
ptnps
ptcl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011139417.8A
Other languages
English (en)
Other versions
CN112169791A (zh
Inventor
何仰清
杨谦
马蓓
姚秉华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN202011139417.8A priority Critical patent/CN112169791B/zh
Publication of CN112169791A publication Critical patent/CN112169791A/zh
Application granted granted Critical
Publication of CN112169791B publication Critical patent/CN112169791B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/069Hybrid organic-inorganic polymers, e.g. silica derivatized with organic groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • B01J35/33
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

本发明公开了一种片层状三相复合光催化材料的制备方法,具体按照以下步骤实施:步骤1:石墨烯分散液和K2PtCl6溶液混合均匀;步骤2:然后逐滴加入与K2PtCl6溶液相同体积的NaBH4溶液反应后制得石墨烯/纳米铂复合材料;步骤3:取木质素磺酸钠加入蒸馏水中,在冰水浴中搅拌10min,得到木质素磺酸钠溶液;将步骤2制得的石墨烯/纳米铂复合材料分散于木质素磺酸钠溶液后,分别加入吡咯和FeCl3溶液制备石墨烯/纳米铂/聚吡咯三相复合光催化材料。采用该方法制备的层状三相复合光催化材料具有高的可见光捕获能力、电子和空穴分离、传输效果好、在可将光照射条件下具有较高的光催化降解性能。

Description

一种片层状三相复合光催化材料的制备方法
技术领域
本发明属于光催化材料领域,具体涉及一种片层状三相复合光催化材料的制备方法。
背景技术
在过去的几个世纪里,环境污染及其控制是人类面临的重大挑战之一,每年纺织工业中排放的大量含有有机染料的废水。这些大分子具有潜在的致癌性、毒性、和顽固的不可生物降解性,由于其有害的生态效应和对人类健康的巨大风险,有机污染物的高效清除方法是急需解决的重大科学问题。石墨烯由于其独特的二维蜂窝状的结构、化学稳定性、同时对于载流子还具有高迁移率等优点,基于石墨烯(GO)的复合材料日渐成为可见光光催化领域研究的热点。但是,石墨烯之间范德华力很强,容易发生团聚,严重限制了石墨烯的光催化性能及其应用。纳米金属颗粒(MNP)由于其独特的物理、化学和电子性能而广泛应用于各种复合材料的构建。人们已经将MNP与GO复合,用于改善石墨烯的光催化性能。但目前所得的复合光催化材料对可见光捕获能力和电子传输效率低、对有机污染物降解性能差等缺点。
发明内容
本发明所要解决的技术问题是提供一种制备工艺简单、对可将光响应性能高,且具有高光催化能力的片层状复合光催化材的制备方法。
本发明采用的技术方案是:一种片层状三相复合光催化材的制备方法,具体操作步骤如下:
步骤1:取通过超声剥离制备的2.5g/L石墨烯分散液和预先经过超声处理30min的5mM的K2PtCl6溶液混合均匀;
步骤2:然后逐滴加入与K2PtCl6溶液相同体积的200mM NaBH4溶液反应后制得石墨烯/纳米铂复合材料;
步骤3:取木质素磺酸钠加入蒸馏水中,在冰水浴中搅拌10min,得到木质素磺酸钠溶液;将步骤2制得的石墨烯/纳米铂复合材料分散于木质素磺酸钠溶液后,分别逐滴加入吡咯和0.2892M的FeCl3溶液;在冰水浴条件下边搅拌边反应后过滤、洗涤和干燥后得石墨烯/纳米铂/聚吡咯三相复合光催化材料。
本发明的特点还在于,
步骤1石墨烯分散液和K2PtCl6溶液的体积比为1:2~6。
步骤3木质素磺酸钠与蒸馏水的比例为1g:100mL。
步骤3吡咯和FeCl3溶液的体积比为0.6mL~1.0mL:50mL;FeCl3溶液与步骤1石墨烯分散液的体积比为10:1。
步骤3反应的条件为:在冰水浴中边搅拌边反应时间不少于7h。
步骤3冰水浴温度范围是0-5℃。
本发明一种片层状三相复合光催化材料的制备方法具有如下优点:
1.以石墨烯为基材,利用纳米铂的表面等离子共振效应和聚吡咯优异的导电和对可见光的捕获性能,成功地得到了三相复合光催化材料GO/PtNPs/PPy。
2.制备过程对设备要求低、且反应条件温和,合成工艺简单易于实现。
3.采用该方法制备的层状三相复合光催化材料具有高的可见光捕获能力、电子和空穴分离、传输效果好、光催化降解性能高。
4.为制备其它基于石墨烯的多相光催化材料提供了可靠的层状三相复合光催化材料参考依据。
附图说明
图1为本发明中石墨烯、纳米铂、聚吡咯三种单体和复合材料GO/PtNPs/PPy的紫外可见漫反射图;
图2为本发明中石墨烯、纳米铂、聚吡咯三种单体和复合材料GO/PtNPs/PPy的红外光谱图;
图3为本发明中制备的光催化材料GO/PtNPs/PPy的能谱图(EDX);
图4(a)为本发明对比例1中制备的GO/PtNPs/PPy光催化材料的SEM图;
图4(b)为本发明对比例2中制备的GO/PtNPs/PPy光催化材料的SEM图;
图4(c)为本发明对比例3中制备的GO/PtNPs/PPy光催化材料的SEM图;
图4(d)为本发明实施例1中制备的GO/PtNPs/PPy光催化材料的SEM图;
图4(e)为本发明实施例2中制备的GO/PtNPs/PPy光催化材料的SEM图;
图4(f)为本发明实施例3中制备的GO/PtNPs/PPy光催化材料的SEM图;
图5(a)为本发明对比例1中制备的GO/PtNPs/PPy光催化材料对亚甲基蓝溶液的光催化降解效率图;
图5(b)为本发明对比例2中制备的GO/PtNPs/PPy光催化材料对亚甲基蓝溶液的光催化降解效率图;
图5(c)为本发明对比例3中制备的GO/PtNPs/PPy光催化材料对亚甲基蓝溶液的光催化降解效率图;
图5(d)为本发明实施例1中制备的GO/PtNPs/PPy光催化材料对亚甲基蓝溶液的光催化降解效率图;
图5(e)为本发明实施例2中制备的GO/PtNPs/PPy光催化材料对亚甲基蓝溶液的光催化降解效率图。
图5(f)为本发明实施例3中制备的GO/PtNPs/PPy光催化材料对亚甲基蓝溶液的光催化降解效率图。
具体实施方式
下面结合附图和具体实施例对本发明进一步说明。
对比例1
取5mL通过超声剥离制备的2.5g/L石墨烯分散和一定体积事先超声处理30min的5mM的K2PtCl6溶液混合均匀,然后逐滴加入与K2PtCl6溶液相同体积的200mM NaBH4溶液反应后制得石墨烯/纳米铂(GO/PtNPs)复合材料,所述K2PtCl6和NaBH4溶液体积为15mL;取1g木质素磺酸钠加入100mL蒸馏水中,在冰水浴中搅拌10min,将上述制得的GO/PtNPs复合材料分散于此溶液后,分别逐滴加入0.2mL的吡咯和50mL 0.2892M的FeCl3溶液。在冰水浴条件下边搅拌边反应7h后过滤、洗涤,放置于烘箱内在60℃的条件下烘干12h后即得三相石墨烯/纳米铂/聚吡咯(GO/PtNPs/PPy)复合光催化材料。
由上述方法制备的GO/PtNPs/PPy光催化材料标记为a。
对比例2
取5mL通过超声剥离制备的2.5g/L石墨烯分散液和一定体积事先超声处理30min的5mM的K2PtCl6溶液混合均匀,然后逐滴加入与K2PtCl6溶液相同体积的200mM NaBH4溶液反应后制得石墨烯/纳米铂(GO/PtNPs)复合材料,所述K2PtCl6和NaBH4溶液体积为15mL;取1g木质素磺酸钠加入100mL蒸馏水中,在冰水浴中搅拌10min,将上述制得的GO/PtNPs复合材料分散于此溶液后,分别逐滴加入0.6mL的吡咯和50mL 0.2892M的FeCl3溶液。在冰水浴条件下边搅拌边反应7h后过滤、洗涤,放置于烘箱内在60℃的条件下烘干12h后即得三相石墨烯/纳米铂/聚吡咯(GO/PtNPs/PPy)复合光催化材料。
由上述方法制备的GO/PtNPs/PPy光催化材料标记为b。
对比例3
取5mL通过超声剥离制备的2.5g/L石墨烯分散液和一定体积事先超声处理30min的5mM的K2PtCl6溶液混合均匀,然后逐滴加入与K2PtCl6溶液相同体积的200mM NaBH4溶液反应后制得石墨烯/纳米铂(GO/PtNPs)复合材料,所述K2PtCl6和NaBH4溶液体积为15mL;取1g木质素磺酸钠加入100mL蒸馏水中,在冰水浴中搅拌10min,将上述制得的GO/PtNPs复合材料分散于此溶液后,分别逐滴加入1.0mL的吡咯和50mL 0.2892M的FeCl3溶液。在冰水浴条件下边搅拌边反应7h后过滤、洗涤,放置于烘箱内在60℃的条件下烘干12h后即得三相石墨烯/纳米铂/聚吡咯(GO/PtNPs/PPy)复合光催化材料。
由上述方法制备的GO/PtNPs/PPy光催化材料标记为c。
实施例1
取5mL通过超声剥离制备的2.5g/L石墨烯分散液和一定体积事先超声处理30min的5mM的K2PtCl6溶液混合均匀,然后逐滴加入与K2PtCl6溶液相同体积的200mM NaBH4溶液反应后制得石墨烯/纳米铂(GO/PtNPs)复合材料,所述K2PtCl6和NaBH4溶液体积为25mL;取1g木质素磺酸钠加入100mL蒸馏水中,在冰水浴中搅拌10min,将上述制得的GO/PtNPs复合材料分散于此溶液后,分别逐滴加入0.6mL的吡咯和50mL 0.2892M的FeCl3溶液。在冰水浴条件下边搅拌边反应7h后过滤、洗涤,放置于烘箱内在60℃的条件下烘干12h后即得三相石墨烯/纳米铂/聚吡咯(GO/PtNPs/PPy)复合光催化材料。
由上述方法制备的GO/PtNPs/PPy光催化材料标记为d。
实施例2
取5mL通过超声剥离制备的2.5g/L石墨烯分散液和一定体积事先超声处理30min的5mM的K2PtCl6溶液混合均匀,然后逐滴加入与K2PtCl6溶液相同体积的200mM NaBH4溶液反应后制得石墨烯/纳米铂(GO/PtNPs)复合材料,所述K2PtCl6和NaBH4溶液体积为25mL;取1g木质素磺酸钠加入100mL蒸馏水中,在冰水浴中搅拌10min,将上述制得的GO/PtNPs复合材料分散于此溶液后,分别逐滴加入1.0mL的吡咯和50mL 0.2892M的FeCl3溶液。在冰水浴条件下边搅拌边反应7h后过滤、洗涤,放置于烘箱内在60℃的条件下烘干12h后即得三相石墨烯/纳米铂/聚吡咯(GO/PtNPs/PPy)复合光催化材料。
由上述方法制备的GO/PtNPs/PPy光催化材料标记为e。
实施例3
取5mL通过超声剥离制备的2.5g/L石墨烯分散液和一定体积事先超声处理30min的5mM的K2PtCl6溶液混合均匀,然后逐滴加入与K2PtCl6溶液相同体积的200mM NaBH4溶液反应后制得石墨烯/纳米铂(GO/PtNPs)复合材料,所述K2PtCl6和NaBH4溶液体积为35mL;取1g木质素磺酸钠加入100mL蒸馏水中,在冰水浴中搅拌10min,将上述制得的GO/PtNPs复合材料分散于此溶液后,分别逐滴加入1.0mL的吡咯和50mL 0.2892M的FeCl3溶液。在冰水浴条件下边搅拌边反应7h后过滤、洗涤,放置于烘箱内在60℃的条件下烘干12h后即得三相石墨烯/纳米铂/聚吡咯(GO/PtNPs/PPy)复合光催化材料。
由上述方法制备的GO/PtNPs/PPy光催化材料标记为f。
图1为所制备的GO/PtNPs/PPy复合光催化材料的紫外漫反射图。由图1可知,与各单体相比较,复合材料对可见光的有着显著提高的吸收能力,将在可见光下展示更强的光催化性能。
图2为本发明中石墨烯、聚吡咯两种单体和复合材料GO/PtNPs/PPy的红外光谱图。通过对比GO、PPy和复合材料的红外光谱图,可以看出复合材料在3402.2,2341.4,2358.8,1451.0,1184.2,1045.3,669.3cm-1处有强烈吸收峰,与GO和PPy的特征峰基本一致。进一步证明了GO和PPy成功地负载于GO/PtNPs/PPy复合光催化材料中。
图3为所制备的GO/PtNPs/PPy复合光催化材料的能谱图(EDX)。由图3可知,纳米铂分散较均匀,PPy也负载于GO表面。同时,复合材料的能谱图(EDX)还显示,复合材料中包含Pt、Cl、O、N、C等元素的含量。(其中含量较为丰富的Au元素是因为在做电镜时因为喷金所引入的,与本次实验无关)。进一步证明通过该制备方法成功地制备了GO/PtNPs/PPy复合光催化材料。
如图4(a)-(f)所示,为本发明中所制备的GO/PtNPs/PPy复合光催化材料的SEM图,对比例1、对比例2、对比例3、实施例1、实施例2和实施例3中制备的GO/PtNPs/PPy复合光催化材料分别为a、b、c、d、e和f,由图4(a)可知,当5mM的K2PtCl6和200mM NaBH4溶液的用量都为15mL,使用0.2mL的吡咯时,得到的GO/PtNPs/PPy复合光催化材料a没有固定的形状,有团聚的聚吡咯分散在石墨烯的表面。由图4(b)可知,当5mM的K2PtCl6和200mM NaBH4溶液的用量都为15mL,使用0.6mL的吡咯时,得到的GO/PtNPs/PPy复合光催化材料b呈无规则的颗粒状,颗粒表面粗糙,且团聚明显。由图4(c)可知,当5mM的K2PtCl6和200mM NaBH4溶液的用量都为15mL,使用1.0mL的吡咯时,得到的GO/PtNPs/PPy复合光催化材料c呈卷曲的片状结构,纳米铂颗粒分散均匀,材料表面具有明显的孔隙结构;由图4(d)可知,当5mM的K2PtCl6和200mM NaBH4溶液的用量都为25mL,使用0.6mL的吡咯时,得到的GO/PtNPs/PPy复合光催化材料d呈骨节状结构,片层表面具有明显的孔隙结构;由图4(e)可知,当5mM的K2PtCl6和200mM NaBH4液的用量都为25mL,使用1.0mL的吡咯时,得到的GO/PtNPs/PPy复合光催化材料e呈片层状,但层与层之间堆积比较紧密,不利于有机污染物在催化剂表面的预吸附;由图4(f)可知,当5mM的K2PtCl6和200mM NaBH4溶液的用量都为35mL,使用1.0mL的吡咯时,得到的GO/PtNPs/PPy复合光催化材料e呈片层状,且有效地克服了层与层之间的紧密堆积,有利于有机污染物在催化剂表面的预吸附,增大了污染物与催化剂表面的碰撞机会,提高其光催化降解性能。由此可见,当5mM的K2PtCl6和200mM NaBH4溶液的用量为在15~35mL之间,且使用1.0mL的吡咯时,可得到片层状的GO/PtNPs/PPy复合光催化材料。
采用亚甲基蓝模拟环境污染物对GO/PtNPs/PPy复合光催化材料的光催化性能进行实验,具体实验方法如下:
移取100mL浓度为10mg/L的染料溶液于石英试管中,加入100mg采用本对比例和实施例中制备得到的复合光催化材料(a-e),避光磁力搅拌30min后开启氙灯(300W,用滤波片过滤波长小于400nm的光),通冷却水使反应体系温度控制在10℃左右,每隔30min取样,过滤去除GO/PtNPs/PPy复合光催化材料,在紫外-可见分光光度计上测定不同光照时间后亚甲基蓝溶液的吸光度值。
如图5(a)-(f)所示,为所制备的GO/PtNPs/PPy复合光催化材料对亚甲基蓝溶液的光催化降解效率图,对比例1、对比例2、对比例3、实施例1、实施例2、实施例3中制备的钒酸铋光催化材料分别为a、b、c、d、e和f,从图5中可以看出,随着光照时间的延长,制备的GO/PtNPs/PPy复合光催化材料a-d对亚甲基蓝溶液主要是表面吸附作用,几乎没有光催化降解作用,其对亚甲基蓝的降解率分别为7.88%,17.43%,21.70%和21.43%。而实施例2和3在210min内对亚甲基蓝的降解率分别为66.24%(图5e)和79.37%(图5f),使得亚甲基蓝溶液在最大吸收波长λ=664nm处的吸光度值都有显著的降低。其中,实施例3中制备的GO/PtNPs/PPy复合光催化材料的光催化性最好。
本发明的有益效果是:发明了一种具有优异的光催化活性的GO基复合光催化材料的制备方法,以氧化石墨烯(GO)作为载体,以纳米铂(PtNPs)和聚吡咯(PPy)作为光电传导介质,制备过程对设备要求低、且反应条件温和,合成工艺简单易于实现,成功地得到了光催化性能较高的三相复合光催化材料GO/PtNPs/PPy。

Claims (4)

1.一种片层状三相复合光催化材料的制备方法,其特征在于,该方法包括以下:
步骤1:取通过超声剥离制备的2.5 g/L石墨烯分散液和预先经过超声处理30 min的5mM 的K2PtCl6溶液混合均匀;所述K2PtCl6溶液为25-35 mL;
步骤2:然后逐滴加入与K2PtCl6溶液相同体积的200 mM NaBH4溶液反应后制得石墨烯/纳米铂复合材料;
步骤3:取木质素磺酸钠加入蒸馏水中,在冰水浴中搅拌10 min,得到木质素磺酸钠溶液;将步骤2制得的石墨烯/纳米铂复合材料分散于木质素磺酸钠溶液后,分别逐滴加入吡咯和0.2892 M的FeCl3溶液;在冰水浴条件下边搅拌边反应后过滤、洗涤和干燥后得石墨烯/纳米铂/聚吡咯三相复合光催化材料;
所述吡咯和FeCl3溶液的体积比为1.0 mL:50mL;所述FeCl3溶液与步骤1石墨烯分散液的体积比为10:1。
2.根据权利要求1所述的一种片层状三相复合光催化材料的制备方法,其特征在于,步骤3所述木质素磺酸钠与蒸馏水的比例为1g: 100 mL。
3.根据权利要求1所述的一种片层状三相复合光催化材料的制备方法,其特征在于,步骤3所述反应的条件为:在冰水浴中边搅拌边反应时间不少于7 h。
4.根据权利要求1所述的一种片层状三相复合光催化材料的制备方法,其特征在于,步骤3所述冰水浴温度范围是0-5℃。
CN202011139417.8A 2020-10-22 2020-10-22 一种片层状三相复合光催化材料的制备方法 Active CN112169791B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011139417.8A CN112169791B (zh) 2020-10-22 2020-10-22 一种片层状三相复合光催化材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011139417.8A CN112169791B (zh) 2020-10-22 2020-10-22 一种片层状三相复合光催化材料的制备方法

Publications (2)

Publication Number Publication Date
CN112169791A CN112169791A (zh) 2021-01-05
CN112169791B true CN112169791B (zh) 2022-09-02

Family

ID=73923834

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011139417.8A Active CN112169791B (zh) 2020-10-22 2020-10-22 一种片层状三相复合光催化材料的制备方法

Country Status (1)

Country Link
CN (1) CN112169791B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114471538B (zh) * 2022-02-21 2022-10-18 杭州师范大学钱江学院 一种纤维丝-石墨烯-铂三元复合催化剂的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102941124A (zh) * 2012-11-21 2013-02-27 江南大学 一种可见光响应的聚吡咯/Bi2WO6复合催化剂及其制备方法
CN103435037A (zh) * 2013-08-22 2013-12-11 东华大学 一种液相还原法制备石墨烯/Pt纳米复合材料的方法
CN105572196A (zh) * 2016-01-20 2016-05-11 西北大学 镍钴合金/聚吡咯/还原石墨烯纳米复合材料及其应用
WO2017028520A1 (zh) * 2015-08-18 2017-02-23 华为技术有限公司 一种c2n石墨烯复合贵金属纳米催化剂及其制备方法
CN109261215A (zh) * 2018-10-16 2019-01-25 衡阳师范学院 一种光催化分解水制备氢气的催化剂
CN109317166A (zh) * 2018-11-08 2019-02-12 中国科学院合肥物质科学研究院 一种三元复合光催化剂的制备方法及应用
CN111185245A (zh) * 2020-02-25 2020-05-22 李艳华 一种氧化石墨烯负载钒酸铋纳米复合材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012088681A1 (zh) * 2010-12-29 2012-07-05 海洋王照明科技股份有限公司 一种pt/石墨烯催化剂及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102941124A (zh) * 2012-11-21 2013-02-27 江南大学 一种可见光响应的聚吡咯/Bi2WO6复合催化剂及其制备方法
CN103435037A (zh) * 2013-08-22 2013-12-11 东华大学 一种液相还原法制备石墨烯/Pt纳米复合材料的方法
WO2017028520A1 (zh) * 2015-08-18 2017-02-23 华为技术有限公司 一种c2n石墨烯复合贵金属纳米催化剂及其制备方法
CN105572196A (zh) * 2016-01-20 2016-05-11 西北大学 镍钴合金/聚吡咯/还原石墨烯纳米复合材料及其应用
CN109261215A (zh) * 2018-10-16 2019-01-25 衡阳师范学院 一种光催化分解水制备氢气的催化剂
CN109317166A (zh) * 2018-11-08 2019-02-12 中国科学院合肥物质科学研究院 一种三元复合光催化剂的制备方法及应用
CN111185245A (zh) * 2020-02-25 2020-05-22 李艳华 一种氧化石墨烯负载钒酸铋纳米复合材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Electrodeposition of platinum nanoparticles on polypyrrole-functionalized graphene;Wengao Zhao等;《J Mater Sci》;20131231;第2566–2573页 *
Preparation and photocatalytic activity of TiO2 Rose Bengal and Victoria Blue dye in visible light in aqueous solution;Azad Kumar等;《Desalination and Water Treatment》;20181231;第265–284页 *
基于贵金属的复合光催化材料的制备及其性能研究;薛金娟;《中国优秀博硕士学位论文全文数据库(博士)工程科技Ⅰ辑》;20170215;B020-28 *

Also Published As

Publication number Publication date
CN112169791A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
Wang et al. A bottom-up acidification strategy engineered ultrathin g-C3N4 nanosheets towards boosting photocatalytic hydrogen evolution
Yang et al. Construction of heterostructured MIL-125/Ag/g-C3N4 nanocomposite as an efficient bifunctional visible light photocatalyst for the organic oxidation and reduction reactions
Yan et al. Enhanced photocatalytic activity of Cu2O/g-C3N4 heterojunction coupled with reduced graphene oxide three-dimensional aerogel photocatalysis
Jiang et al. Novel ternary BiOI/g-C3N4/CeO2 catalysts for enhanced photocatalytic degradation of tetracycline under visible-light radiation via double charge transfer process
Nezamzadeh-Ejhieh et al. Sunlight photodecolorization of a mixture of Methyl Orange and Bromocresol Green by CuS incorporated in a clinoptilolite zeolite as a heterogeneous catalyst
Rouhi et al. Design and performance of polypyrrole/halloysite nanotubes/Fe3O4/Ag/Co nanocomposite for photocatalytic degradation of methylene blue under visible light irradiation
CN110813376B (zh) 一种聚吡咯修饰的纳米溴氧化铋光催化材料及其制备方法和应用
CN108816268B (zh) 复合光催化纳米材料及其制备方法、以及降解污染物方法
Ai et al. Surfactant-free synthesis of a novel octahedral ZnFe2O4/graphene composite with high adsorption and good photocatalytic activity for efficient treatment of dye wastewater
Li et al. Cyclized polyacrynitrile modified Ag3PO4 photocatalysts with enhanced photocatalytic activity under visible-light irradiation
Wang et al. Solar photocatalytic degradation of 2-sec-butyl-4, 6-dinitrophenol (DNBP) using TiO2/SiO2 aerogel composite photocatalysts
Huo et al. Thermo-responsive PNIPAM@ AgBr/CSs composite photocatalysts for switchable degradation of tetracycline antibiotics
CN106902890B (zh) 一种Cu-BTC/钒酸铋/SWCNTs三元异质结构光催化剂及制备方法和应用
CN112169791B (zh) 一种片层状三相复合光催化材料的制备方法
Zhang et al. Visible light-driven oxidant-free dehydrogenation of alcohols in water using porous ultrathin g-C3N4 nanosheets
CN107597163B (zh) 氮杂化石墨烯量子点和银共同修饰的石墨相氮化碳纳米片复合光催化剂及其制备方法和应用
CN111111638B (zh) 一种粉煤灰光催化材料的制备方法
CN104801308A (zh) 一种NiFe2O4/TiO2/海泡石复合光催化剂及其制备方法
Huang et al. Highly polymerized linear polyimide/H3PW12O40 photocatalyst with full visible light region absorption
CN113828296B (zh) 一种基于固相还原3d氧化石墨烯复合光催化气凝胶的制备方法
Ullah et al. Supported nanostructured photocatalysts: the role of support-photocatalyst interactions
Zhao et al. Network of graphene/black phosphorus/ZnO for enhanced photocatalytic dye removal under visible light
Zhou et al. Hydrothermal synthesis of magnetic carbon microspheres for effective adsorption of Cd (II) in water
Kalimuthu et al. Boron carbonitride sheet/Cu2O composite for an efficient photocatalytic hydrogen evolution
Zhu et al. Preparation and performance of photocatalytic TiO2 immobilized on palladium-doped carbon fibers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant