CN111936660A - Cu-Ni合金溅射靶 - Google Patents

Cu-Ni合金溅射靶 Download PDF

Info

Publication number
CN111936660A
CN111936660A CN201980022696.9A CN201980022696A CN111936660A CN 111936660 A CN111936660 A CN 111936660A CN 201980022696 A CN201980022696 A CN 201980022696A CN 111936660 A CN111936660 A CN 111936660A
Authority
CN
China
Prior art keywords
alloy
sputtering target
alloy sputtering
twin
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980022696.9A
Other languages
English (en)
Inventor
加藤慎司
井尾谦介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Publication of CN111936660A publication Critical patent/CN111936660A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供一种Cu‑Ni合金溅射靶,其包含Ni,且其余部分由Cu和不可避免的杂质组成,其中,当将在相邻的晶粒之间的取向差在5°以上且180°以下的范围内的晶粒之间所形成的晶界的长度设为总晶界长度L,并将使面心立方晶格的(111)面及(110)面作为旋转轴旋转的情况下分别确认到3个晶格点的取向差的晶界的长度设为孪晶晶界长度LT时,由LT/L×100定义的孪晶比率在35%以上且65%以下的范围内。

Description

Cu-Ni合金溅射靶
技术领域
本发明涉及一种当形成包含Ni且其余部分由Cu和不可避免的杂质组成的Cu-Ni合金的薄膜时所使用的Cu-Ni合金溅射靶。
本申请主张基于2018年4月17日于日本申请的专利申请2018-079126号的优先权,并将其内容援用于此。
背景技术
例如,如专利文献1所示,所述的Cu-Ni合金的低反射、耐热性及电气特性优异,因此可以用作显示器等的布线膜。并且,例如如专利文献2-4中所记载,也可以用作铜布线的基底膜。
而且,包含40~50质量%的Ni的Cu-Ni合金的电阻温度系数小,因此例如如专利文献5所示,可以用作应变仪用薄膜电阻元件。
并且,该Cu-Ni合金的电动势大,因此例如如专利文献6-8所示,可以用作薄膜热电偶及补偿导线。
而且,即使在包含22质量%以下的Ni的Cu-Ni合金中,也可以用作普通电阻元件或低温发热体等。
如上述由Cu-Ni合金组成的薄膜例如通过溅射方法形成。例如,如专利文献9,10所示,以往的溅射方法中所使用的Cu-Ni合金溅射靶通过熔铸法进行制造。
并且,在专利文献11中提出有Cu-Ni合金的烧结体的制造方法。
专利文献1:日本特开2017-005233号公报
专利文献2:日本特开平05-251844号公报
专利文献3:日本特开平06-097616号公报
专利文献4:日本特开2010-199283号公报
专利文献5:日本特开平04-346275号公报
专利文献6:日本特开平04-290245号公报
专利文献7:日本特开昭62-144074号公报
专利文献8:日本特开平06-104494号公报
专利文献9:日本特开2016-029216号公报
专利文献10:日本特开2012-193444号公报
专利文献11:日本特开平05-051662号公报
在上述Cu-Ni合金膜中,当膜厚、组成产生偏差时,导致电阻等特性在膜内产生偏差。因此,要求形成膜厚、组成被均匀化的Cu-Ni合金膜。
并且,存在如下忧患,即,在Cu-Ni合金溅射靶的晶粒直径粗大化的情况下,容易发生异常放电,从而无法稳定地实施溅射成膜。
发明内容
本发明是鉴于前述情况而完成的,其目的在于提供一种能够稳定地形成膜厚、组成被均匀化的Cu-Ni合金膜的Cu-Ni合金溅射靶。
为了解决上述课题,本发明的Cu-Ni合金溅射靶包含Ni,且其余部分由Cu和不可避免的杂质组成,所述Cu-Ni合金溅射靶的特征在于,当将在相邻的晶粒之间的取向差在5°以上且180°以下的范围内的晶粒之间所形成的晶界的长度设为总晶界长度L,并将使面心立方晶格的(111)面及(110)面作为旋转轴旋转的情况下分别确认到3个晶格点的取向差的晶界的长度设为孪晶晶界长度LT时,由LT/L×100定义的孪晶比率被设在35%以上且65%以下的范围内。
根据该结构的Cu-Ni合金溅射靶,如上述规定的孪晶比率被设为35%以上,因此溅射面上的溅射速度的偏差变小,从而能够形成均匀的膜厚及组成的Cu-Ni合金膜。
并且,孪晶比率被设为65%以下,因此能够抑制溅射时的异常放电的发生,飞溅等减少,并能够以均匀的膜厚稳定地形成Cu-Ni合金膜。
在本发明的Cu-Ni合金溅射靶中,优选被设为如下组成,即,Ni的含量被设在16质量%以上且55质量%以下的范围内,且其余部分由Cu和不可避免的杂质组成。
在此情况下,Ni的含量被设为16质量%以上,因此能够形成耐腐蚀性优异的Cu-Ni合金膜。并且,Ni的含量被设为55质量%以下,因此能够形成电阻低的Cu-Ni合金膜。因此,能够形成尤其适用于要求耐腐蚀性及导电性的用途的Cu-Ni合金膜。
并且,在本发明的Cu-Ni合金溅射靶中,优选平均晶粒直径被设在5μm以上且100μm以下的范围内。
在此情况下,平均晶粒直径被设为100μm以下,因此能够充分地抑制溅射成膜时的异常放电的发生。并且,平均晶粒直径被设为5μm以上,因此能够将制造成本抑制得较低。
根据本发明,能够提供一种能够稳定地形成膜厚、组成被均匀化的Cu-Ni合金膜的Cu-Ni合金溅射靶。
附图说明
图1是Cu和Ni的二元状态图。
图2A是表示本实施方式的Cu-Ni合金溅射靶的孪晶比率的测定结果的一例的示意图。
图2B是表示本实施方式的Cu-Ni合金溅射靶的孪晶比率的测定结果的一例的示意图。
图3是表示本实施方式的Cu-Ni合金溅射靶的制造方法的一例的流程图。
图4是表示本实施方式的Cu-Ni合金溅射靶的制造方法的一例的流程图。
图5是表示实施例中的Cu-Ni合金溅射靶的溅射面上的孪晶比率的测定位置的说明图。
图6是表示实施例中的Cu-Ni合金膜的膜厚的测定位置的说明图。
具体实施方式
以下,对本发明的一实施方式所涉及的Cu-Ni合金溅射靶进行说明。
关于本实施方式的Cu-Ni合金溅射靶,当形成被用作布线膜、铜布线的基底膜、应变仪用薄膜电阻元件、薄膜热电偶及补偿导线、普通电阻元件或低温发热体等的Cu-Ni合金薄膜时进行使用。
本实施方式的Cu-Ni合金溅射靶可以为溅射面呈矩形的矩形平板型溅射靶,也可以为溅射面呈圆形的圆板型溅射靶。或者,也可以为溅射面被设为圆筒面的圆筒型溅射靶。
本实施方式的Cu-Ni合金溅射靶被设为如下组成,即,包含Ni且其余部分由Cu和不可避免的杂质组成。如图1的二元状态图所示,Ni和Cu形成完整的固溶体,因此优选根据所要求的耐腐蚀性及电阻等特性适当设定Ni的含量。
本实施方式的Cu-Ni合金溅射靶设为如下组成,即,Ni的含量被设在16质量%以上且55质量%以下的范围内,且其余部分由Cu和不可避免的杂质组成。
然后,在本实施方式的Cu-Ni合金溅射靶中,当将在相邻的晶粒之间的取向差在5°以上且180°以下的范围内的晶粒之间所形成的晶界的长度设为总晶界长度L,并将使面心立方晶格的(111)面及(110)面作为旋转轴旋转的情况下分别确认到3个晶格点的取向差的晶界的长度设为孪晶晶界长度LT时,由LT/L×100定义的孪晶比率被设在35%以上且65%以下的范围内。“使面心立方晶格的(111)面及(110)面作为旋转轴旋转的情况下分别确认到3个晶格点的取向差的晶界的长度”的含义与“Σ3(111)的重位晶界的长度”含义相同。
以如下方式计算上述孪晶比率。通过EBSD装置进行组织观察,使用分析软件测定相邻的晶粒之间的取向差,并提取其取向差在5°以上且180°以下的范围内的晶界。图2A是表示晶界的提取结果的图,黑线表示晶界。测定如此提取的晶界(在图2A中为黑线)的长度,并计算总晶界长度L。
接着,提取使面心立方晶格的(111)面及(110)面作为旋转轴旋转的情况下分别确认到3个晶格点的取向差的晶界作为孪晶晶界。使面心立方晶格的(111)面及(110)面作为旋转轴旋转的情况下分别确认到3个晶格点的取向差的晶界表示Σ3(111)的重位晶界。图2B是表示孪晶晶界的提取结果的图,黑线表示孪晶晶界。测定如此提取的孪晶晶界(在图2B中为黑线)的长度,并计算孪晶晶界长度LT
然后,根据以上述方式计算出的总晶界长度L及孪晶晶界长度LT计算出由LT/L×100定义的孪晶比率。
并且,在本实施方式的Cu-Ni合金溅射靶中,平均晶粒直径被设在5μm以上且100μm以下的范围内。
以下,对在本实施方式的Cu-Ni合金溅射靶中如上述规定了孪晶比率、平均晶粒直径及成分组成的理由进行说明。
(孪晶比率)
在Cu-Ni合金溅射靶中,通过将晶粒直径微细化,使溅射速度之差平均化,并使溅射面整体的溅射速度稳定,从而能够均匀的成膜。然而,将晶粒直径过度微细化会导致制造成本增加,从而在工业上难以实现。
在Cu-Ni合金溅射靶中,在孪晶比率高的情况下,即使晶粒直径相同,溅射面整体的溅射速度也稳定。因此,无需将晶粒直径过度微细化就能够均匀的成膜。
在Cu-Ni合金溅射靶中,在上述孪晶比率小于35%的情况下,存在无法使溅射面整体的溅射速度稳定的忧患。另一方面,在上述孪晶比率超过65%的情况下,存在溅射时发生异常放电的忧患。
因此,将本实施方式的Cu-Ni合金溅射靶的孪晶比率设定在35%以上且65%以下的范围内。
为了使溅射面整体的溅射速度进一步稳定,优选将上述孪晶比率的下限设为40%以上,进一步优选设为45%以上,另一方面,为了进一步抑制溅射时的异常放电,优选将上述孪晶比率的上限设为60%以下,进一步优选设为55%以下。
(平均晶粒直径)
如上述,在Cu-Ni合金溅射靶中,通过将晶粒直径微细化,能够使溅射面整体的溅射速度稳定。并且,若晶粒直径被粗大化,则存在溅射成膜时发生异常放电的忧患。
因此,在本实施方式中,为了进一步使溅射面整体的溅射速度稳定并抑制溅射成膜时的异常放电的发生,优选将平均晶粒直径设为100μm以下。另一方面,为了进一步抑制制造成本的增加,优选将平均晶粒直径设为5μm以上。
平均晶粒直径的下限优选设为10μm以上,进一步优选设为20μm以上。并且,平均晶粒直径的上限优选设为80μm以下,进一步优选设为50μm以下。
(成分组成)
如上述,Ni和Cu形成完整的固溶体,因此通过调整Ni含量,能够控制Cu-Ni合金膜的电阻及耐腐蚀性等特性。因此,根据对所形成的Cu-Ni合金膜的要求特性来设定Cu-Ni合金溅射靶中的Ni含量。
在形成耐腐蚀性充分优异的Cu-Ni合金膜的情况下,优选将Cu-Ni合金溅射靶中的Ni的含量设为16质量%以上。另一方面,在将Cu-Ni合金膜的电阻抑制得较低来确保导电性的情况下,优选将Cu-Ni合金溅射靶中的Ni的含量设为55质量%以下,如此制作的Cu-Ni合金溅射靶的电阻率成为5×10-4Ωcm以下。
在形成耐腐蚀性进一步优异的Cu-Ni合金膜的情况下,优选将Cu-Ni合金溅射靶中的Ni的含量的下限设为20质量%以上,优选设为25质量%以上。另一方面,在将Cu-Ni合金膜的电阻进一步抑制得较低的情况下,优选将Cu-Ni合金溅射靶中的Ni的含量的上限设为50质量%以下,优选设为45质量%以下。
接着,对本实施方式的Cu-Ni合金溅射靶的制造方法进行说明。
在本实施方式中,通过熔铸法或粉末烧结法来制造Cu-Ni合金溅射靶。因此,以下分别对基于熔铸法及粉末烧结法的制造方法进行说明。
接着,使用图3的流程图对基于熔铸法的Cu-Ni合金溅射靶的制造方法进行说明。
(熔铸工序S01)
以成为规定的配方比的方式称重Cu原料和Ni原料。关于Cu原料,优选使用纯度99.99质量%以上的Cu原料。并且,关于Ni原料,优选使用纯度99.9质量%以上的Ni原料。具体而言,优选使用无氧铜作为Cu原料,优选使用电解Ni作为Ni原料。
将如上述称重的Cu原料及Ni原料装入熔炼炉中以使其熔融。在真空中或惰性气体气氛(Ar、N2等)中进行Cu原料及Ni原料的熔融。在真空中进行的情况下,优选将真空度设为10Pa以下。在惰性气体气氛中进行的情况下,优选在直至10Pa以下为止进行真空置换之后,导入惰性气体。
在大气气氛中熔融的情况下,优选通过使用碳坩埚或由碳粉末等覆盖熔液面以使熔液面成为还原性气氛。
然后,将所获得的熔液浇注到铸模中,从而获得Cu-Ni合金铸锭。铸造法并无特别限制。在为了降低制造成本的情况下,优选采用连续铸造法及半连续铸造法等。
(热轧工序S02)
接着,对所获得的Cu-Ni合金铸锭实施热轧,从而获得热轧材料。
通过热轧工序S02中的热轧温度及总加工率,上述孪晶比率发生变化。
在热轧温度小于600℃的情况下,存在孪晶比率过度变高的忧患。另一方面,在热轧温度超过1050℃的情况下,存在无法提高孪晶比率的忧患。
因此,在本实施方式中,将热轧温度设定在600℃以上且1050℃以下的范围内。
热轧温度的下限优选设为650℃以上,进一步优选设为700℃以上。另一方面,热轧温度的上限优选设为1000℃以下,进一步优选设为950℃以下。
并且,若在热轧工序S02中的总加工率小于70%,则存在无法提高孪晶比率的忧患。
因此,在本实施方式中,将热轧工序S02中的总加工率设定在70%以上。
热轧工序S02中的总加工率优选设为75%以上,进一步优选设为80%以上。
而且,在热轧工序S02中,通过将每1道次的加工率抑制得较低,能够抑制孪晶比率的偏差。
因此,在本实施方式中,将热轧工序S02中的每1道次的加工率设定在15%以下。
热轧工序S02中的每1道次的加工率优选设为14%以下,进一步优选设为12%以下。
(塑性加工工序S03)
接着,根据需要,对热轧材料实施冷加工或矫直加工等塑性加工来获得塑性加工材料。即使在该塑性加工工序S03中,也优选将每1道次的加工率限制在15%以下。
(热处理工序S04)
接着,对热轧材料或塑性加工材料实施热处理。根据需要,可以反复实施塑性加工工序S03及热处理工序S04。
在最终热处理工序S04中,优选将热处理温度设在800℃以上且1000℃以下的范围内,并将在热处理温度下的保持时间设在0.5小时以上且2小时以下的范围内。通过在这种条件下实施最终热处理,能够将晶粒直径微细化。
最终热处理工序S04的热处理温度的下限优选设为820℃以上,进一步优选设为850℃以上。并且,最终热处理工序S04的热处理温度的上限优选设为980℃以下,进一步优选设为950℃以下。
而且,最终热处理工序S04的保持时间的下限优选设为0.7小时以上,进一步优选设为0.8小时以上。并且,最终热处理工序S04的保持时间的上限优选设为1.8小时以下,进一步优选设为1.5小时以下。
(机械加工工序S05)
在进行最终热处理之后,通过进行机械加工来获得规定形状及尺寸的Cu-Ni合金溅射靶。
接着,使用图4的流程图对基于粉末烧结法的Cu-Ni合金溅射靶的制造方法进行说明。
(Cu-Ni合金粉末形成工序S11)
以成为规定的配方比的方式称重Cu原料和Ni原料。关于Cu原料,优选使用纯度99.99质量%以上的Cu原料。并且,关于Ni原料,优选使用纯度99.9质量%以上的Ni原料。具体而言,优选使用无氧铜作为Cu原料,优选使用电解Ni作为Ni原料。
将如上述称重的Cu原料及Ni原料填充至坩埚中,并进行加热以使其熔融。作为坩埚的材料,能够使用氧化铝、莫来石、氧化镁及氧化锆等陶瓷耐火材料或者碳。例如,将其放入氧化铝制坩埚中并安装于雾化装置。在真空气氛中熔融Cu原料及Ni原料之后,一边从喷嘴滴下熔液一边喷射Ar气体来制作雾化粉末。冷却之后,通过将所获得的雾化粉末用筛子进行分级来获得规定粒径的Cu-Ni合金粉末。本实施方式中,将Cu-Ni合金粉末的粒径设在5μm以上且300μm以下的范围内。
喷嘴的孔径优选设在0.5mm以上且5.0mm以下的范围内,并优选将Ar气体的喷射气压设在1MPa以上且10MPa以下的范围内。
(烧结工序S12)
接着,对所获得的Cu-Ni合金粉末进行加压及加热来获得规定形状的烧结体。关于烧结工序S12中的烧结方法,例如能够适用热等静压法(HIP)及热压法(HP)等。本实施方式中,适用热等静压法(HIP)。
根据烧结工序S12中的加压压力及烧结温度,上述孪晶比率发生变化。
在烧结工序S12中的加压压力小于50MPa的情况下,存在无法提高孪晶比率的忧患。另一方面,在烧结工序S12中的加压压力超过150MPa的情况下,存在孪晶比率过度变高的忧患。
因此,本实施方式中,将烧结工序S12中的加压压力设定在50MPa以上且150MPa以下的范围内。
烧结工序S12中的加压压力的下限优选设为65MPa以上,进一步优选设为80MPa以上。另一方面,烧结工序S12中的加压压力的上限优选设为135MPa以下,进一步优选设为120MPa以下。
并且,在烧结工序S12中的烧结温度小于800℃的情况下,存在无法提高孪晶比率的忧患。另一方面,在烧结工序S12中的烧结温度超过1200℃的情况下,存在孪晶比率过度变高的忧患。
因此,本实施方式中,将烧结工序S12中的烧结温度设定在800℃以上且1200℃以下的范围内。
烧结工序S12中的烧结温度的下限优选设为850℃以上,进一步优选设为900℃以上。另一方面,烧结工序S12中的烧结温度的上限优选设为1150℃以下,进一步优选设为1100℃以下。
并且,烧结工序S12中的烧结温度下的保持时间优选设在1小时以上且6小时以下的范围内。
(机械加工工序S13)
通过对在烧结工序S12中所获得的烧结体进行机械加工来获得规定形状及尺寸的Cu-Ni合金溅射靶。
根据被设为上述结构的本实施方式的Cu-Ni合金溅射靶,孪晶比率被设为35%以上,因此溅射面上的溅射速度的偏差变小,从而能够形成均匀的膜厚及组成的Cu-Ni合金膜。另一方面,孪晶比率被设为65%以下,因此能够抑制溅射时的异常放电的发生,并能够稳定地形成Cu-Ni合金膜。
而且,在本实施方式的Cu-Ni合金溅射靶中,在将Ni的含量设为16质量%以上的情况下,能够形成耐腐蚀性优异的Cu-Ni合金膜。并且,在将Ni的含量设为55质量%以下的情况下,能够形成电阻低的Cu-Ni合金膜。因此,能够形成尤其适用于要求耐腐蚀性及导电性的用途的Cu-Ni合金膜。
并且,在本实施方式的Cu-Ni合金溅射靶中,在将平均晶粒直径设为100μm以下的情况下,能够进一步使溅射面整体的溅射速度稳定,并且能够进一步抑制溅射成膜时的异常放电的发生。另一方面,在将平均晶粒直径设为5μm以上的情况下,能够抑制制造成本的增加。
而且,在本实施方式中,在通过熔铸法来制造Cu-Ni合金溅射靶的情况下,将热轧工序S02中的热轧温度设在600℃以上且1050℃以下的范围内,并将总加工率设为70%以上,因此能够将上述孪晶比率设为35%以上且65%以下。
并且,在最终热处理工序S04中,将热处理温度设在800℃以上且1000℃以下的范围内,并将在热处理温度下的保持时间设在0.5小时以上且2小时以下的范围内,因此能够将平均晶粒直径设为100μm以下。
而且,在热轧工序S02及塑性加工工序S03中,将每1道次的加工率限制在15%以下,因此能够抑制孪晶比率的偏差。
并且,在本实施方式中,在通过粉末烧结法来制造Cu-Ni合金溅射靶的情况下,将烧结工序S12中的加压压力设在50MPa以上且150MPa以下的范围内,并将烧结工序S12中的烧结温度设在800℃以上且1200℃以下的范围内,因此能够将上述孪晶比率设为35%以上且65%以下。
以上,对本发明的实施方式进行了说明,但是本发明并不限定于此,在不脱离本发明的技术思想的范围内能够进行适当变更。
例如,本实施方式中,作为Cu-Ni合金溅射靶的制造方法,举出图3所示的熔铸法及图4所示的粉末烧结法为例进行了说明,但是并不限定于此,只要孪晶比率被设在35%以上且65%以下的范围内,则制造方法并无特别限定。
实施例
以下,对评价了前述本发明的Cu-Ni合金溅射靶的评价试验的结果进行说明。
首先,关于本发明例1~本发明例10及比较例1、比较例2的Cu-Ni合金溅射靶,以如下方式通过熔铸法进行了制造。
准备了纯度99.99质量%的无氧铜作为Cu原料,并准备了纯度99.9%以上的电解Ni作为Ni原料。将其称重,以使其成为表1所示的配合组成。
将称重的Cu原料及Ni原料装入真空熔炼炉中,并在真空度10Pa的条件下进行了熔融。将所获得的熔液浇入铸模中,从而制作了Cu-Ni合金铸锭。
接着,在表1所示的条件下对该Cu-Ni合金铸锭实施热轧,并且实施了最终热处理。热处理时间设为1.5小时。
对所获得的板材进行机械加工,从而获得了宽度150mm×长度500mm×厚度15mm的Cu-Ni合金溅射靶。
并且,关于本发明例11~本发明例17及比较例11、比较例12的Cu-Ni合金溅射靶,以如下方式通过粉末烧结法进行制造。
准备纯度为99.99质量%的无氧铜作为Cu原料,且准备纯度为99.9%以上的电解Ni作为Ni原料,将其放入氧化铝制坩埚中并安装于雾化装置,并在喷射温度1550℃、喷射气压5MPa及喷嘴直径1.5mm的条件下进行雾化,从而获得了表2所示的组成及粒径的Cu-Ni合金粉末。
通过HIP法在表2所示的条件下对所获得的Cu-Ni合金粉末进行加压及加热来获得了烧结体。
对所获得的烧结体进行机械加工,从而获得了宽度150mm×长度500mm×厚度15mm的Cu-Ni合金溅射靶。
关于以上述方式所获得的Cu-Ni合金溅射靶,以如下方式评价了成分组成、孪晶比率、平均晶粒直径、异常放电及膜的均匀性(膜厚、组成)。将评价结果示于表3及表4中。
(成分组成)
从所获得的Cu-Ni合金溅射靶采取测定试样,并使用XRF装置(RigakuCorporation制ZSX PrimusII)测定了Ni含量。将Cu及其他成分记载为其余部分。
(孪晶比率)
将所获得的Cu-Ni合金溅射靶的溅射面设为观察面,使用EBSD装置(TSLSolutionsOIM Data Collection 5)进行组织观察,并使用分析软件测定相邻的晶粒之间的取向差,提取其取向差在5°以上且180°以下的范围内的晶界,计算出总晶界长度L。
并且,提取使面心立方晶的(111)面及(110)面作为旋转轴旋转的情况下分别确认到3个晶格点的取向差的晶界即Σ3(111)的重位晶界作为孪晶晶界,计算出孪晶晶界长度LT
Σ3(111)的重位晶界是指在(111)面上具有60度的取向差的对称边界。
然后,根据以上述方式计算出的总晶界长度L及孪晶晶界长度LT计算出由LT/L×100定义的孪晶比率。
关于孪晶比率,如图5所示,在Cu-Ni合金溅射靶的溅射面中,在对角线交叉的交点(1)及各对角线上的角部(2)、(3)、(4)、(5)的5个点上进行孪晶比率的测定,并将在5个点上测定的孪晶比率的平均值、以及最大值与最小值之差作为偏差标记于表3及表4中。角部(2)、(3)、(4)、(5)设为从角部朝向内侧在对角线总长度的10%以内的范围内。
(平均晶粒直径)
从所获得的Cu-Ni合金溅射靶采取测定试样,并对溅射面进行抛光,使用光学显微镜进行微观组织观察,通过JIS H 0501:1986(切割法)测定晶粒直径,计算出平均晶粒直径。
(异常放电)
将Cu-Ni合金溅射靶焊接到无氧铜制垫板上,并将其安装于磁控管式DC溅射装置中。
接着,在以下溅射条件下,连续实施了60分钟的基于溅射法的成膜。在该溅射成膜期间,使用DC溅射装置的电源所附带的电弧计数器,计算了异常放电的发生次数。
极限真空度:5×10-5Pa
Ar气压:0.3Pa
溅射输出:直流1000W
(膜的均匀性)
通过膜厚及组成评价了使用本发明例及比较例的Cu-Ni合金溅射靶而形成的Cu-Ni合金膜的均匀性。
按如下评价了膜厚。
将Cu-Ni合金溅射靶焊接到无氧铜制垫板上,并将其安装于磁控管式DC溅射装置中。准备100mm见方的玻璃基板,并在该玻璃基板的表面上以目标膜厚100nm在以下条件下实施了溅射成膜。
靶材与基板的距离:60mm
极限真空度:5×10-5Pa
Ar气压:0.3Pa
溅射输出:直流1000W
关于所形成的Cu-Ni合金膜,如图6所示,在对角线交叉的交点(1)及各对角线上的角部(2)、(3)、(4)、(5)的5个点上,使用台阶仪测定每个膜厚。将所测定的膜厚的最大值与最小值之差作为“膜厚差”示于表3及表4中。角部(2)、(3)、(4)、(5)设为从角部朝向内侧在对角线总长度的10%以内的范围内。
按如下评价了组成。
将Cu-Ni合金溅射靶焊接到无氧铜制垫板上,并将其安装于磁控管式DC溅射装置中。准备100mm见方的玻璃基板,并在该玻璃基板的表面上、以目标膜厚300nm在以下条件下实施了3次溅射成膜。
极限真空度:5×10-5Pa
Ar气压:0.3Pa
溅射输出:直流1000W
通过XRF装置(Rigaku Corporation制ZSX PrimusII)测定所形成的Cu-Ni合金膜的Cu浓度以及Ni浓度,并通过下述式将Ni浓度标准化。关于Cu浓度以及Ni浓度,使用校正曲线,并根据Cu及Ni的检测强度进行计算。
Ni标准化浓度=Ni浓度/(Ni浓度+Cu浓度)×100
每成膜3次则实施该计算,并将Ni标准化浓度的最大值与最小值之差作为“组成差”示于表3及表4中。
[表1]
Figure BDA0002703777290000121
[表2]
Figure BDA0002703777290000122
[表3]
Figure BDA0002703777290000131
[表4]
Figure BDA0002703777290000132
在熔铸法中,在热轧工序中的总加工率被设为60%的比较例1中,孪晶比率降低至30%。因此,膜厚差及组成差大而无法形成均匀的膜。
在熔铸法中,在热轧工序中的热轧温度被设为400℃的比较例2中,孪晶比率高达70%。并且,平均晶粒直径成为120μm。因此,膜厚差大而无法形成均匀的膜。并且,异常放电次数相对较多。
在粉末烧结法中,在烧结工序中的加压压力被设为10MPa的比较例11中,孪晶比率降低至31%。因此,膜厚差及组成差大而无法形成均匀的膜。
在粉末烧结法中,在烧结工序中的加压压力被设为200MPa的比较例12中,孪晶比率高达69%。因此,膜厚差大而无法形成均匀的膜。并且,异常放电次数相对较多。
相对于此,根据通过熔铸法制造的本发明例1~本发明例10及通过粉末烧结法制造的本发明例11~本发明例17,孪晶比率均被设在35%以上且65%以下的范围内,从而膜厚差及组成差相对较小,并能够形成均匀的膜。
关于通过熔铸法制造的本发明例1~本发明例10,与将1道次的加工率设为20%的本发明例5相比,将1道次的加工率设为15%的本发明例1~本发明例4及本发明例6~本发明例10的孪晶比率的偏差得到抑制。
并且,与将最终热处理温度设为1100℃的本发明例7相比,在将最终热处理温度设为1000℃以下的本发明例1~本发明例6及本发明例8~本发明例10中,能够减小平均晶粒直径。
综上所述,确认到根据本发明例,能够提供一种能够稳定地形成膜厚、组成被均匀化的Cu-Ni合金膜的Cu-Ni合金溅射靶。
产业上的可利用性
根据本发明,能够提供一种能够稳定地形成膜厚、组成被均匀化的Cu-Ni合金膜的Cu-Ni合金溅射靶。

Claims (3)

1.一种Cu-Ni合金溅射靶,其包含Ni,且其余部分由Cu和不可避免的杂质组成,所述Cu-Ni合金溅射靶的特征在于,
当将在相邻的晶粒之间的取向差在5°以上且180°以下的范围内的晶粒之间所形成的晶界的长度设为总晶界长度L,并将使面心立方晶格的(111)面及(110)面作为旋转轴旋转的情况下分别确认到3个晶格点的取向差的晶界的长度设为孪晶晶界长度LT时,由LT/L×100定义的孪晶比率在35%以上且65%以下的范围内。
2.根据权利要求1所述的Cu-Ni合金溅射靶,其特征在于,
其组成如下:Ni的含量在16质量%以上且55质量%以下的范围内,且其余部分由Cu和不可避免的杂质组成。
3.根据权利要求1或2所述的Cu-Ni合金溅射靶,其特征在于,
平均晶粒直径在5μm以上且100μm以下的范围内。
CN201980022696.9A 2018-04-17 2019-04-17 Cu-Ni合金溅射靶 Pending CN111936660A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018079126A JP2019183251A (ja) 2018-04-17 2018-04-17 Cu−Ni合金スパッタリングターゲット
JP2018-079126 2018-04-17
PCT/JP2019/016435 WO2019203258A1 (ja) 2018-04-17 2019-04-17 Cu-Ni合金スパッタリングターゲット

Publications (1)

Publication Number Publication Date
CN111936660A true CN111936660A (zh) 2020-11-13

Family

ID=68238885

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980022696.9A Pending CN111936660A (zh) 2018-04-17 2019-04-17 Cu-Ni合金溅射靶

Country Status (4)

Country Link
JP (1) JP2019183251A (zh)
KR (1) KR20200144088A (zh)
CN (1) CN111936660A (zh)
WO (1) WO2019203258A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI804149B (zh) * 2022-01-10 2023-06-01 國立陽明交通大學 雙晶銅-鎳合金金屬層及其製備方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099426A1 (ja) * 2010-02-09 2011-08-18 三菱伸銅株式会社 純銅板の製造方法及び純銅板
JP2012046771A (ja) * 2010-08-24 2012-03-08 Furukawa Electric Co Ltd:The スパッタリングターゲット用銅材料及びその製造方法
CN103151090A (zh) * 2011-12-06 2013-06-12 株式会社神户制钢所 触摸屏传感器用Cu合金配线膜及其制造方法和触摸屏传感器及溅射靶
WO2016175151A1 (ja) * 2015-04-28 2016-11-03 三菱マテリアル株式会社 銅合金スパッタリングターゲット

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62144074A (ja) 1985-12-18 1987-06-27 Daikin Ind Ltd 流速計
JPH04290245A (ja) 1991-03-19 1992-10-14 Matsushita Electric Ind Co Ltd 半導体装置の熱応力測定素子
JPH04346275A (ja) 1991-05-23 1992-12-02 Hitachi Ltd 薄膜熱電対の形成方法
JPH0551662A (ja) 1991-08-22 1993-03-02 Sumitomo Metal Mining Co Ltd Cu−Ni系合金焼結体の製造方法
JPH05251844A (ja) 1991-12-27 1993-09-28 Southwall Technol Inc フレキシブル回路基板の製造方法
JP3447070B2 (ja) 1992-09-17 2003-09-16 三井化学株式会社 フレキシブル回路基板用材料
JPH06104494A (ja) 1992-09-18 1994-04-15 Fujitsu Ltd 薄膜熱電対素子とその製造方法
JP2010199283A (ja) 2009-02-25 2010-09-09 Susumu Co Ltd 複合抵抗器及びその製造方法
JP4869415B2 (ja) * 2010-02-09 2012-02-08 三菱伸銅株式会社 純銅板の製造方法及び純銅板
JP5895370B2 (ja) 2010-08-30 2016-03-30 大同特殊鋼株式会社 パネル用Cu電極保護膜用NiCu合金ターゲット材及び積層膜
JP5632821B2 (ja) * 2011-12-06 2014-11-26 株式会社神戸製鋼所 タッチパネルセンサー用Cu合金配線膜、及びその製造方法、並びにタッチパネルセンサー
JP6369750B2 (ja) * 2013-09-10 2018-08-08 日立金属株式会社 積層配線膜およびその製造方法ならびにNi合金スパッタリングターゲット材
JP5783293B1 (ja) * 2014-04-22 2015-09-24 三菱マテリアル株式会社 円筒型スパッタリングターゲット用素材
JP6190847B2 (ja) 2015-06-16 2017-08-30 株式会社神戸製鋼所 平面ディスプレイ又は曲面ディスプレイ向け低反射電極
JP6011700B2 (ja) 2015-09-18 2016-10-19 住友金属鉱山株式会社 Cu合金スパッタリングターゲット、この製造方法
WO2018207770A1 (ja) * 2017-05-09 2018-11-15 三菱マテリアル株式会社 CuNi合金スパッタリングターゲットおよびCuNi合金粉末

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099426A1 (ja) * 2010-02-09 2011-08-18 三菱伸銅株式会社 純銅板の製造方法及び純銅板
JP2012046771A (ja) * 2010-08-24 2012-03-08 Furukawa Electric Co Ltd:The スパッタリングターゲット用銅材料及びその製造方法
CN103151090A (zh) * 2011-12-06 2013-06-12 株式会社神户制钢所 触摸屏传感器用Cu合金配线膜及其制造方法和触摸屏传感器及溅射靶
WO2016175151A1 (ja) * 2015-04-28 2016-11-03 三菱マテリアル株式会社 銅合金スパッタリングターゲット

Also Published As

Publication number Publication date
KR20200144088A (ko) 2020-12-28
WO2019203258A1 (ja) 2019-10-24
JP2019183251A (ja) 2019-10-24

Similar Documents

Publication Publication Date Title
CN107614744B (zh) 溅射靶的制造方法
US11746409B2 (en) Process for producing and using a W—Ni sputtering target
JP5472353B2 (ja) 銀系円筒ターゲット及びその製造方法
JP4831468B2 (ja) Moターゲット材の製造方法
CN110621805A (zh) 铝合金以及具有高均匀性和高元素含量的制品
CN105209658A (zh) 圆筒型溅射靶用原材料
WO2018173450A1 (ja) タングステンシリサイドターゲット及びその製造方法
TW201606107A (zh) 濺鍍靶及濺鍍靶之製造方法
JP2023076733A (ja) タングステンスパッタリングターゲット
JP6037422B2 (ja) Ni−P合金又はNi−Pt−P合金からなるスパッタリングターゲットの製造方法
CN111936660A (zh) Cu-Ni合金溅射靶
TWI715466B (zh) 鉬合金靶材及其製造方法
JP2023165778A (ja) スパッタリングターゲット及び、スパッタリングターゲットの製造方法
JP6652276B2 (ja) Ti−Al合金スパッタリングターゲット
JP6583019B2 (ja) Cu−Ga合金スパッタリングターゲット、及び、Cu−Ga合金スパッタリングターゲットの製造方法
KR20130063518A (ko) 비정질 형성능을 가지는 결정질 합금, 그 제조방법, 스퍼터링용 합금타겟 및 그 제조방법
JP7293787B2 (ja) TaWSiターゲットおよびその製造方法
JP2017218621A (ja) ターゲット材及びその製造方法
KR20160073216A (ko) 반도체용 니켈 합금 타겟의 제조방법 및 이로부터 제조된 반도체용 니켈 합금 타겟
CN111788332B (zh) Cu-Ni合金溅射靶
TWI715467B (zh) 鉬合金靶材及其製造方法
WO2019167564A1 (ja) Cu-Ni合金スパッタリングターゲット
WO2016158293A1 (ja) Cu-Ga合金スパッタリングターゲット、及び、Cu-Ga合金スパッタリングターゲットの製造方法
JP2020147822A (ja) MgO−TiO系スパッタリングターゲットの製造方法
JP2018008852A (ja) 酸化物焼結体、その製造方法及びスパッタリングターゲット

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201113

WD01 Invention patent application deemed withdrawn after publication