CN111912227A - Rapid sintering equipment and sintering method for dynamically loading coupled alternating current - Google Patents
Rapid sintering equipment and sintering method for dynamically loading coupled alternating current Download PDFInfo
- Publication number
- CN111912227A CN111912227A CN202010749837.1A CN202010749837A CN111912227A CN 111912227 A CN111912227 A CN 111912227A CN 202010749837 A CN202010749837 A CN 202010749837A CN 111912227 A CN111912227 A CN 111912227A
- Authority
- CN
- China
- Prior art keywords
- sintering
- dynamic loading
- control system
- pressure
- alternating current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005245 sintering Methods 0.000 title claims abstract description 167
- 238000011068 loading method Methods 0.000 title claims abstract description 158
- 238000000034 method Methods 0.000 title claims description 43
- 239000000463 material Substances 0.000 claims abstract description 22
- 238000010438 heat treatment Methods 0.000 claims abstract description 18
- 230000008878 coupling Effects 0.000 claims abstract description 6
- 238000010168 coupling process Methods 0.000 claims abstract description 6
- 238000005859 coupling reaction Methods 0.000 claims abstract description 6
- 230000008569 process Effects 0.000 claims description 32
- 230000003068 static effect Effects 0.000 claims description 24
- 239000000498 cooling water Substances 0.000 claims description 23
- 238000001816 cooling Methods 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 238000009529 body temperature measurement Methods 0.000 claims description 7
- 230000001105 regulatory effect Effects 0.000 claims description 7
- 230000017525 heat dissipation Effects 0.000 claims description 4
- 230000001808 coupling effect Effects 0.000 claims description 3
- 239000010720 hydraulic oil Substances 0.000 claims 4
- 230000001276 controlling effect Effects 0.000 claims 2
- 238000004140 cleaning Methods 0.000 claims 1
- 230000003247 decreasing effect Effects 0.000 claims 1
- 238000004321 preservation Methods 0.000 claims 1
- 230000000630 rising effect Effects 0.000 claims 1
- 239000013078 crystal Substances 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 13
- 238000000280 densification Methods 0.000 description 4
- 239000007770 graphite material Substances 0.000 description 4
- 238000001272 pressureless sintering Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 239000008204 material by function Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000008707 rearrangement Effects 0.000 description 2
- 238000002490 spark plasma sintering Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011858 nanopowder Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B17/00—Furnaces of a kind not covered by any of groups F27B1/00 - F27B15/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D11/00—Arrangement of elements for electric heating in or on furnaces
- F27D11/08—Heating by electric discharge, e.g. arc discharge
- F27D11/10—Disposition of electrodes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D19/00—Arrangements of controlling devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D21/00—Arrangement of monitoring devices; Arrangement of safety devices
- F27D21/0014—Devices for monitoring temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D7/00—Forming, maintaining or circulating atmospheres in heating chambers
- F27D7/06—Forming or maintaining special atmospheres or vacuum within heating chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D9/00—Cooling of furnaces or of charges therein
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D7/00—Forming, maintaining or circulating atmospheres in heating chambers
- F27D7/06—Forming or maintaining special atmospheres or vacuum within heating chambers
- F27D2007/063—Special atmospheres, e.g. high pressure atmospheres
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D19/00—Arrangements of controlling devices
- F27D2019/0006—Monitoring the characteristics (composition, quantities, temperature, pressure) of at least one of the gases of the kiln atmosphere and using it as a controlling value
- F27D2019/0009—Monitoring the pressure in an enclosure or kiln zone
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D19/00—Arrangements of controlling devices
- F27D2019/0028—Regulation
- F27D2019/0034—Regulation through control of a heating quantity such as fuel, oxidant or intensity of current
- F27D2019/0037—Quantity of electric current
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Furnace Details (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种动态加载耦合交变电流的快速烧结设备及烧结方法,属于烧结技术领域。The invention relates to a fast sintering device and a sintering method for dynamically loading coupled alternating current, and belongs to the technical field of sintering.
背景技术Background technique
烧结是高性能陶瓷等先进结构和功能材料制备过程中最关键的步骤之一。在传统的无压烧结过程中,粉体的表面曲率是唯一的烧结驱动力。当温度升高时,待烧结材料在烧结驱动力的作用下进行扩散传质,体系气孔率降低,致密度升高,最终得到致密的块体材料。然而,在烧结后期,晶粒的表面曲率减小,进一步致密化的驱动力显著下降,残余气孔无法得到有效排出,甚至导致晶粒异常长大,所以无压烧结技术制备的陶瓷材料常常有较高的气孔率和较大的晶粒尺寸。对此,研究人员开发出了热压烧结技术。热压烧结可在烧结的同时对待烧结粉体施加静态加载,从而提供额外的烧结驱动力。这一驱动力远大于表面曲率驱动力,能够有效促进致密化过程,降低烧结温度。相比无压烧结,热压烧结样品的致密度通常更高,晶粒尺寸更小,但由于静态加载作用下颗粒难以进行滑移重排,且容易产生“硬团聚”,导致最终产物微观结构的均匀性仍不够理想。研究表明,如果能够将静态加载改进为具有一定周期和振幅的动态加载,可以显著促进烧结末期微小残余气孔的排出,制备出超高强度的全致密陶瓷。Sintering is one of the most critical steps in the preparation of advanced structural and functional materials such as high-performance ceramics. In the traditional pressureless sintering process, the surface curvature of the powder is the only driving force for sintering. When the temperature rises, the material to be sintered undergoes diffusion and mass transfer under the action of the sintering driving force, the porosity of the system decreases, the density increases, and finally a dense bulk material is obtained. However, in the later stage of sintering, the surface curvature of the grains decreases, the driving force for further densification decreases significantly, the residual pores cannot be effectively discharged, and even causes the grains to grow abnormally. Therefore, the ceramic materials prepared by the pressureless sintering technology often have relatively poor performance. High porosity and larger grain size. In this regard, the researchers developed a hot-press sintering technology. Hot press sintering can apply static loading to the powder to be sintered while sintering, thereby providing additional sintering driving force. This driving force is much larger than the surface curvature driving force, which can effectively promote the densification process and reduce the sintering temperature. Compared with pressureless sintering, hot-pressed sintered samples are usually denser and smaller in grain size, but due to static loading, the particles are difficult to undergo slip rearrangement and are prone to "hard agglomeration", resulting in the microstructure of the final product. The uniformity is still not ideal. The research shows that if the static loading can be improved to dynamic loading with a certain period and amplitude, the discharge of tiny residual pores at the end of sintering can be significantly promoted, and ultra-high-strength fully dense ceramics can be prepared.
无压烧结和热压烧结使用外加热源加热,因此升温速率通常不高于20℃/min。在缓慢升温过程中,晶粒不可避免的发生粗化,从而降低了高温下的致密化驱动力。放电等离子体烧结(SPS)是近三十年发展起来的新型烧结技术,它在烧结过程中不使用外加热源,而是依靠脉冲直流电流通过模具产生的焦耳热对待烧结材料进行加热。这一技术的升温速率可高达每分钟数百摄氏度,从而有效避免了升温阶段的晶粒粗化,缩短烧结时间,提高烧结效率。但脉冲直流电流的方向性可能会导致样品正负极处的微观结构不一致,影响整体性能。如果能够用交变电流替代脉冲直流电流,可以完全避免样品在电流方向上的不均匀现象。此外,放电等离子体烧结采用静态加载,对于纳米粉体硬团聚的消除并不理想。若引入一个有一定振动频率和振动压力强度的动态加载,可在快速烧结的同时实现样品的完全致密化。并且使用交变电流不需要复杂的整流和滤波设备,能够降低烧结炉的制造成本,有利于工业化推广应用。Pressureless sintering and hot-pressing sintering use an external heat source for heating, so the heating rate is usually not higher than 20°C/min. During the slow heating process, the grains inevitably coarsen, which reduces the driving force for densification at high temperature. Spark plasma sintering (SPS) is a new type of sintering technology developed in the past three decades. It does not use an external heating source during the sintering process, but relies on the Joule heat generated by pulsed DC current through the mold to heat the material to be sintered. The heating rate of this technology can be as high as hundreds of degrees Celsius per minute, which effectively avoids grain coarsening in the heating stage, shortens the sintering time, and improves the sintering efficiency. However, the directionality of the pulsed DC current may lead to inconsistent microstructures at the positive and negative electrodes of the sample, affecting the overall performance. If the pulsed DC current can be replaced by an alternating current, the non-uniformity of the sample in the current direction can be completely avoided. In addition, spark plasma sintering adopts static loading, which is not ideal for eliminating the hard agglomeration of nano-powders. If a dynamic loading with a certain vibration frequency and vibration pressure intensity is introduced, the complete densification of the sample can be achieved with rapid sintering. In addition, the use of alternating current does not require complicated rectification and filtering equipment, which can reduce the manufacturing cost of the sintering furnace and is beneficial to industrialization and application.
发明内容SUMMARY OF THE INVENTION
针对上述问题,本发明的目的是提供一种动态加载耦合交变电流的快速烧结设备及烧结方法,该设备采用交变电流实现快速升温加热,可显著缩短烧结时间,同时采用动态加载热压烧结可显著提高待烧结材料致密度,减小晶粒尺寸,增强材料的各方面性能。In view of the above problems, the purpose of the present invention is to provide a fast sintering device and a sintering method with dynamic loading coupled with alternating current. It can significantly improve the density of the material to be sintered, reduce the grain size, and enhance the properties of the material in all aspects.
为实现上述目的,本发明采取以下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
本发明第一方面涉及一种动态加载耦合交变电流的快速烧结设备,包括如下部件:A first aspect of the present invention relates to a rapid sintering device for dynamically loading coupled alternating current, comprising the following components:
炉架,所述炉架内设置有炉体,所述炉体内形成有密闭的保压舱;a furnace rack, a furnace body is arranged in the furnace rack, and a closed pressure holding chamber is formed in the furnace body;
动态加载***,其包括动态加载发生部和动态加载控制部,所述动态加载发生部设置在所述保压舱内,用于对烧结材料进行加压加热;所述动态加载控制部设置在所述保压舱外,所述动态加载控制部的输出端与所述动态加载发生部连接,用于向所述动态加载发生部输出耦合后的总动态加载;A dynamic loading system includes a dynamic loading generation part and a dynamic loading control part, the dynamic loading generation part is arranged in the pressure holding chamber, and is used for pressurizing and heating the sintered material; the dynamic loading control part is arranged in the Outside the pressure holding chamber, the output end of the dynamic loading control part is connected to the dynamic loading generating part, and is used for outputting the coupled total dynamic loading to the dynamic loading generating part;
烧结控制***,设置在所述保压舱外,所述烧结控制***的输出端与所述动态加载控制部的输入端连接,所述烧结控制***用于根据输入的烧结工艺参数调控施加的总动态加载;The sintering control system is arranged outside the pressure holding chamber, the output end of the sintering control system is connected with the input end of the dynamic loading control part, and the sintering control system is used for regulating the applied total amount according to the input sintering process parameters. dynamic loading;
交变电流控制***,设置在所述保压舱外,其输入端与所述烧结控制***的输出端连接,输出端与所述动态加载发生部连接,用于向所述动态加载发生部输出交变电流并根据输入的烧结工艺参数调节交变电流的有效值及频率。The alternating current control system is arranged outside the pressure holding chamber, the input end of which is connected to the output end of the sintering control system, and the output end is connected to the dynamic loading generating part for outputting to the dynamic loading generating part Alternating current and adjust the effective value and frequency of the alternating current according to the input sintering process parameters.
所述的快速烧结设备,优选地,所述动态加载发生部包括电极、压头和模具套筒,所述电极包括上压头电极和下压头电极,所述压头包括上压头和下压头;所述上压头电极的上端穿过所述保压舱的舱壁与所述炉架固定连接,所述上压头电极的下端与所述上压头的上端连接,所述上压头的下端为自由端;所述下压头电极的下端穿过所述保压舱的舱壁与所述动态加载控制部连接,所述下压头电极的上端与所述下压头的下端连接,所述下压头的上端为自由端;所述上压头的自由端位于所述下压头的自由端的正上方,二者之间留有空隙,用于容纳烧结材料;所述模具套筒环套在所述上压头和所述下压头的外部。In the rapid sintering equipment, preferably, the dynamic loading generating part includes an electrode, an indenter and a die sleeve, the electrode includes an upper indenter electrode and a lower indenter electrode, and the indenter includes an upper indenter and a lower indenter. Indenter; the upper end of the upper indenter electrode is fixedly connected to the furnace frame through the bulkhead of the pressure holding chamber, the lower end of the upper indenter electrode is connected with the upper end of the upper indenter, and the upper The lower end of the pressure head is a free end; the lower end of the lower pressure head electrode is connected to the dynamic loading control part through the bulkhead of the pressure holding chamber, and the upper end of the lower pressure head electrode is connected to the lower pressure head electrode. The lower end is connected, and the upper end of the lower indenter is a free end; the free end of the upper indenter is located just above the free end of the lower indenter, leaving a gap between the two for accommodating the sintered material; the A die sleeve ring is sleeved outside the upper ram and the lower ram.
所述的快速烧结设备,优选地,所述动态加载控制部包括液压油缸、加载伺服阀和压力总控模块,所述液压油缸的输出端与所述下压头电极的下端连接,其输入端与所述加载伺服阀的输出端连接;所述压力总控模块的输入端与所述烧结控制***的输出端连接,其输出端与所述加载伺服阀的输入端连接。In the rapid sintering equipment, preferably, the dynamic loading control part includes a hydraulic cylinder, a loading servo valve and a pressure master control module, the output end of the hydraulic cylinder is connected to the lower end of the lower pressure head electrode, and the input end thereof It is connected with the output end of the loading servo valve; the input end of the pressure master control module is connected with the output end of the sintering control system, and the output end is connected with the input end of the loading servo valve.
所述的快速烧结设备,优选地,所述加载伺服阀包括静态加载伺服阀和动态加载伺服阀,所述静态加载伺服阀和所述动态加载伺服阀的输入端分别与所述压力总控模块的输出端连接,二者的输出端分别与所述液压油缸的输入端连接。In the rapid sintering equipment, preferably, the loading servo valve includes a static loading servo valve and a dynamic loading servo valve, and the input ends of the static loading servo valve and the dynamic loading servo valve are respectively connected with the pressure master control module. The output ends of the two are connected to the input ends of the hydraulic cylinder respectively.
所述的快速烧结设备,优选地,所述交变电流控制***的输出端分别与所述上压头电极和所述下压头电极连接,所述交变电流控制***、所述上压头电极、所述下压头电极、所述上压头、所述下压头和所述模具套筒构成导电通路。In the rapid sintering equipment, preferably, the output ends of the alternating current control system are respectively connected to the upper indenter electrode and the lower indenter electrode, the alternating current control system, the upper indenter The electrode, the lower indenter electrode, the upper indenter, the lower indenter and the die sleeve constitute a conductive path.
所述的快速烧结设备,优选地,所述动态加载***输出的静态加载为0~100T,T表示“吨”,输出的动态加载强度为0~5T,动态加载频率为0~100Hz;和/或,In the rapid sintering equipment, preferably, the static loading output by the dynamic loading system is 0-100T, where T represents "ton", the output dynamic loading intensity is 0-5T, and the dynamic loading frequency is 0-100Hz; and/ or,
所述交流电流控制***的工作电压为0~100V,工作电流为0~5000A。The working voltage of the AC current control system is 0-100V, and the working current is 0-5000A.
所述的快速烧结设备,优选地,还包括气氛控制***,其包括进出气孔和气氛控制模块,所述进出气孔设置在所述保压舱的舱壁上并贯穿所述保压舱的舱壁,所述气氛控制模块的输入端与所述烧结控制***的输出端连接,所述气氛控制模块的输出端与所述进出气孔连接。The rapid sintering equipment, preferably, further includes an atmosphere control system, which includes air inlet and outlet holes and an atmosphere control module, the air inlet and outlet holes are arranged on the bulkhead of the pressure-holding chamber and penetrate through the bulkhead of the pressure-holding chamber , the input end of the atmosphere control module is connected with the output end of the sintering control system, and the output end of the atmosphere control module is connected with the air inlet and outlet holes.
所述的快速烧结设备,优选地,还包括冷却***,所述冷却***包括冷却水通道和冷却水控制模块;所述冷却水通道设置在所述保压舱的舱壁上,并设有进水口和出水口,所述冷却水控制模块的输入端与所述烧结控制***的输出端连接,所述冷却水控制模块的输出端与所述进水口连接。The rapid sintering equipment, preferably, further includes a cooling system, the cooling system includes a cooling water channel and a cooling water control module; the cooling water channel is arranged on the bulkhead of the pressure holding chamber, and is provided with an inlet. A water outlet and a water outlet, the input end of the cooling water control module is connected with the output end of the sintering control system, and the output end of the cooling water control module is connected with the water inlet.
所述的快速烧结设备,优选地,还包括测温模块,其设置在所述保压舱的内舱壁上,并与所述烧结控制***连接,用于检测所述模具套筒的表面温度。The rapid sintering equipment, preferably, further includes a temperature measurement module, which is arranged on the inner bulkhead of the pressure holding chamber and is connected to the sintering control system for detecting the surface temperature of the mold sleeve .
本发明第二方面涉及一种上述动态加载耦合交变电流的快速烧结设备的烧结方法,包括如下步骤:The second aspect of the present invention relates to a sintering method for the above-mentioned rapid sintering equipment with dynamic loading coupled with alternating current, comprising the following steps:
a检查所述快速烧结设备,放入待烧结材料;a Check the rapid sintering equipment and put in the material to be sintered;
b通过所述烧结控制***输入烧结工艺参数;b input sintering process parameters through the sintering control system;
c根据烧结工艺参数要求,所述烧结控制***通过所述气氛控制***对所述保压舱进行抽真空或通入气体,待所述保压舱内的气压达到设定值后开始运行烧结程序;c According to the requirements of the sintering process parameters, the sintering control system uses the atmosphere control system to evacuate the pressure-holding chamber or introduce gas, and start the sintering program after the air pressure in the pressure-holding chamber reaches the set value ;
d根据烧结工艺参数要求,通过所述烧结控制***和所述动态加载***调控施加总动态加载的参数;d. According to the requirements of the sintering process parameters, the parameters for applying the total dynamic loading are regulated by the sintering control system and the dynamic loading system;
e根据烧结工艺参数要求,通过所述烧结控制***和所述交变电流控制***调节交变电流的有效值及频率,进而调节升降温速率和保温时间;通过所述测温模块检测所述模具套筒表面的温度;e According to the requirements of the sintering process parameters, the effective value and frequency of the alternating current are adjusted by the sintering control system and the alternating current control system, and then the heating and cooling rate and the holding time are adjusted; the mold is detected by the temperature measurement module. the temperature of the sleeve surface;
f根据烧结工艺参数要求,调整所述步骤c至所述步骤e三步的先后顺序,使待烧结材料在总动态加载和交变电流的耦合作用下快速烧结;烧结过程中通过所述冷却水控制***调节所述炉体的散热能力;f According to the requirements of the sintering process parameters, adjust the sequence of the three steps from the step c to the step e, so that the material to be sintered is rapidly sintered under the coupling action of the total dynamic loading and the alternating current; the cooling water is passed through the sintering process. The control system adjusts the heat dissipation capacity of the furnace body;
g烧结结束后,关闭所述交变电流控制***,通过所述气氛控制***使所述炉体内恢复常压,卸载压力;待所述模具套筒的表面温度降至室温且压力完全卸除后取出烧结体,对所述炉体的内部进行清理,关闭各工作模块,烧结完成。g After sintering, turn off the alternating current control system, restore the normal pressure in the furnace through the atmosphere control system, and unload the pressure; after the surface temperature of the mold sleeve drops to room temperature and the pressure is completely released The sintered body is taken out, the interior of the furnace body is cleaned, each working module is closed, and the sintering is completed.
所述的烧结方法,优选地,所述步骤b中的烧结工艺参数包括动态加载参数、升温速率、保温时间、降温速率和烧结气氛。In the sintering method, preferably, the sintering process parameters in the step b include dynamic loading parameters, heating rate, holding time, cooling rate and sintering atmosphere.
所述的烧结方法,优选地,所述步骤d中的总动态加载的参数包括总动态加载的均值、振幅、频率以及升降压速率和保压时间。In the sintering method, preferably, the parameters of the total dynamic loading in the step d include the mean value, amplitude, frequency, buck-boost rate and dwell time of the total dynamic loading.
本发明由于采取以上技术方案,其具有以下优点:The present invention has the following advantages due to taking the above technical solutions:
1、本发明由于能够在静态加载的基础上耦合具有一定强度与频率的动态加载,与传统静态加载烧结技术相比,可以显著提高烧结驱动力,降低烧结温度,促进烧结过程中的颗粒重排,抑制晶粒生长并提高烧结体的致密度,从而提高材料性能;1. Compared with the traditional static loading sintering technology, the present invention can significantly increase the sintering driving force, reduce the sintering temperature, and promote particle rearrangement in the sintering process because it can couple dynamic loading with a certain intensity and frequency on the basis of static loading. , inhibit the grain growth and increase the density of the sintered body, thereby improving the material properties;
2、本发明由于采用交变电流对待烧结进行烧结,与传统脉冲直流电烧结技术相比,不需要复杂的整流及滤波装置,因此可以在拥有超快升温速率,极短烧结时间等优势的同时降低烧结炉总体成本;2. Compared with the traditional pulsed direct current sintering technology, the present invention does not require complicated rectification and filtering devices due to the use of alternating current for sintering to be sintered, so it can have the advantages of ultra-fast heating rate, extremely short sintering time and other advantages at the same time. The overall cost of the sintering furnace;
3、本发明由于在国内外率先采用动态加载和交变电流耦合的先进烧结技术,有利于各种新科学现象的发现和相关科学问题的解决,促进烧结科学与技术的进一步发展,且所制备出烧结体的性能优于现有静态加载烧结技术和脉冲直流电流烧结技术制备的样品,具有良好的工业化应用前景。综上所述,本发明能够广泛应用于先进结构及功能材料的烧结过程中。3. The present invention takes the lead in adopting the advanced sintering technology of dynamic loading and alternating current coupling at home and abroad, which is conducive to the discovery of various new scientific phenomena and the solution of related scientific problems, and promotes the further development of sintering science and technology. The performance of the sintered body is better than that of the samples prepared by the existing static loading sintering technology and pulsed direct current sintering technology, and has a good industrial application prospect. In conclusion, the present invention can be widely used in the sintering process of advanced structural and functional materials.
附图说明Description of drawings
图1是本发明动态加载耦合交变电流的快速烧结设备的结构示意图;Fig. 1 is the structural schematic diagram of the rapid sintering equipment dynamically loading coupled alternating current according to the present invention;
图2是本发明总动态加载的耦合原理示意图,其中图2(a)为静态加载,图2(b)为动态加载,图2(c)为耦合后的总动态加载;Fig. 2 is a schematic diagram of the coupling principle of total dynamic loading of the present invention, wherein Fig. 2(a) is static loading, Fig. 2(b) is dynamic loading, and Fig. 2(c) is total dynamic loading after coupling;
图3是本发明的交变电流波形示意图;Fig. 3 is the alternating current waveform schematic diagram of the present invention;
图中各标记如下:The marks in the figure are as follows:
1-炉体;2-动态加载***,21-电极,211-上压头电极,212-下压头电极,22-压头,221-上压头,222-下压头,23-模具套筒,24-液压油缸,25-加载伺服阀,251-静态加载伺服阀,252-动态加载伺服阀,26-压力总控模块;3-交变电流控制***;4-烧结控制***;5-炉架;6-气氛控制***,61-进出气孔,62-气氛控制模块;7-冷却***,71-进水口,72-出水口,73-冷却水通道,74-冷却水控制模块;8-测温模块。1-furnace body; 2-dynamic loading system, 21-electrode, 211-upper indenter electrode, 212-lower indenter electrode, 22-indenter, 221-upper indenter, 222-lower indenter, 23-die sleeve Cylinder, 24- hydraulic cylinder, 25- loading servo valve, 251- static loading servo valve, 252- dynamic loading servo valve, 26- pressure master control module; 3- alternating current control system; 4- sintering control system; 5- Furnace rack; 6- Atmosphere control system, 61- Air inlet and outlet, 62- Atmosphere control module; 7- Cooling system, 71- Water inlet, 72- Water outlet, 73- Cooling water channel, 74- Cooling water control module; 8- Temperature measurement module.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the present invention clearer, the technical solutions in the present invention are described clearly and completely below. Obviously, the described embodiments are part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
本发明的描述中,需要理解的是,术语“上端”、“下端”、“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制。In the description of the present invention, it should be understood that the orientations or positional relationships indicated by the terms "upper end", "lower end", "upper", "lower", "inner", "outer", etc. are based on the orientations shown in the accompanying drawings Or the positional relationship is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the indicated device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be construed as a limitation on the protection scope of the present invention .
本发明首次将快速加热交变电流辅助烧结技术与动态加载热压烧结技术相结合,借助交变电流通过材料产生的焦耳热进行加热烧结,并可在烧结过程中施加具有一定频率和强度的动态加载,突破了传统电流辅助烧结技术只能使用静态加载的限制。The invention combines the rapid heating alternating current assisted sintering technology with the dynamic loading hot pressing sintering technology for the first time, and uses the alternating current to pass through the Joule heat generated by the material for heating and sintering. Loading, breaking through the limitation of traditional current-assisted sintering technology that can only use static loading.
实施例1Example 1
如图1-3所示,本实施例提供一种动态加载耦合交变电流的快速烧结设备,包括如下部件:As shown in Figures 1-3, this embodiment provides a rapid sintering device for dynamically loading coupled alternating current, including the following components:
炉架5,炉架5内设置有炉体1,炉体1内形成有密闭的保压舱;A
动态加载***2,其包括动态加载发生部和动态加载控制部,动态加载发生部设置在保压舱内,用于对烧结材料进行加压加热;动态加载控制部设置在保压舱外,动态加载控制部的输出端与动态加载发生部连接,用于向动态加载发生部输出耦合后的总动态加载;The dynamic loading system 2 includes a dynamic loading generation part and a dynamic loading control part. The dynamic loading generation part is arranged in the pressure holding chamber and is used to pressurize and heat the sintered material; the dynamic loading control part is arranged outside the pressure holding chamber, and the dynamic loading The output end of the loading control part is connected with the dynamic loading generating part, and is used for outputting the coupled total dynamic loading to the dynamic loading generating part;
烧结控制***4,设置在保压舱外,烧结控制***4的输出端与动态加载控制部的输入端连接,烧结控制***4用于根据输入的烧结工艺参数调控施加的总动态加载;The
交变电流控制***3,设置在保压舱外,其输入端与烧结控制***4的输出端连接,输出端与动态加载发生部连接,用于向所述动态加载发生部输出交变电流并根据输入的烧结工艺参数调节交变电流的有效值及频率。The alternating
本实施例中,优选地,动态加载发生部包括电极21、压头22和模具套筒23,电极21包括上压头电极211和下压头电极212,压头22包括上压头221和下压头222;上压头电极211的上端穿过保压舱的舱壁与炉架5固定连接,上压头电极211的下端与上压头221的上端连接,上压头221的下端为自由端;下压头电极212的下端穿过保压舱的舱壁与动态加载控制部连接,下压头电极212的上端与下压头222的下端连接,下压头222的上端为自由端;上压头221的自由端位于下压头222的自由端的正上方,二者之间留有空隙,用于容纳烧结材料;模具套筒23环套在上压头221和下压头222的外部。In this embodiment, preferably, the dynamic loading generating part includes an
本实施例中,优选地,动态加载控制部包括液压油缸24、加载伺服阀25和压力总控模块26,液压油缸24的输出端与下压头电极212的下端连接,其输入端与加载伺服阀25的输出端连接;压力总控模块26的输入端与烧结控制***4的输出端连接,其输出端与加载伺服阀25的输入端连接。In this embodiment, preferably, the dynamic loading control part includes a
本实施例中,优选地,加载伺服阀25包括静态加载伺服阀251和动态加载伺服阀252,静态加载伺服阀251和动态加载伺服阀252的输入端分别与压力总控模块26的输出端连接,二者的输出端分别与液压油缸24的输入端连接。在工作时,烧结控制***4根据预设的烧结制度将烧结压力信号发送给压力总控模块26,烧结压力信号包括一个强度较大的静态加载信号和一个振幅较小且有一定频率的动态加载信号;压力总控模块26根据接收的烧结压力信号向静态加载伺服阀251发送静态加载信号,同时向动态加载伺服阀252发送动态加载信号;静态加载伺服阀251和动态加载伺服阀252分别将静态加载信号和动态加载信号同时发送给液压油缸24,液压油缸24将接收的恒定压力信号和振荡压力信号进行耦合,向下压头电极212输出耦合后的总动态加载;总动态加载的耦合原理,如图2所示。In this embodiment, preferably, the
本实施例中,优选地,交变电流控制***3的输出端分别与上压头电极211和下压头电极212连接,交变电流控制***3、上压头电极211、下压头电极212、上压头221、下压头222和模具套筒23构成导电通路。在工作时,烧结控制***4根据预设的烧结制度将交变电流信号发送给交变电流控制***3,交变电流控制***3调节流经导电通路的交变电流。交变电流流经模具套筒23时产生焦耳热使模具套筒23升温,从而加热待烧结材料;交变电流的波形如图3所示。In this embodiment, preferably, the output ends of the alternating
本实施例中,优选地,动态加载***2输出的静态加载为0~100T,T表示“吨”,输出的动态加载强度为0~5T,动态加载频率为0~100Hz。In this embodiment, preferably, the static loading output by the dynamic loading system 2 is 0-100T, where T represents "ton", the output dynamic loading intensity is 0-5T, and the dynamic loading frequency is 0-100Hz.
本实施例中,优选地,交流电流控制***3的工作电压为0~100V,工作电流为0~5000A。In this embodiment, preferably, the working voltage of the AC
本实施例中,优选地,还包括气氛控制***6,其包括进出气孔61和气氛控制模块62,进出气孔61设置在保压舱的舱壁上并贯穿保压舱的舱壁,气氛控制模块62的输入端与烧结控制***4的输出端连接,气氛控制模块62的输出端与进出气孔61连接。在工作时,烧结控制***4向气氛控制模块62发送抽真空或充气信号,气氛控制模块62根据接收到的信号通过进出气孔61对炉体1进行抽真空或充入气体的操作。In this embodiment, preferably, an
本实施例中,优选地,还包括冷却***7,冷却***7包括冷却水通道73和冷却水控制模块74;冷却水通道73设置在保压舱的舱壁上,并设有进水口71和出水口72,冷却水控制模块74的输入端与烧结控制***4的输出端连接,冷却水控制模块74的输出端与进水口71连接。在工作时,冷却水控制模块74根据烧结控制***4发送的冷却水循环信号调节冷却水在冷却水通道73内的流速,从而调控炉体1的散热速率。In this embodiment, preferably, a cooling system 7 is also included, and the cooling system 7 includes a
本实施例中,优选地,还包括测温模块8,其设置在保压舱的内舱壁上,并与烧结控制***4连接,用于检测模具套筒23的表面温度,并将温度测量值反馈给烧结控制***4;烧结控制***4根据接收到的温度测量值反馈向交变电流控制***3发送交变电流信号,调节交变电流大小,从而对模具套筒23的温度进行调节。In this embodiment, preferably, a
本实施例中,优选地,测温模块8可以通过红外测温装置进行测温,还可以通过高温热电偶进行测温。In this embodiment, preferably, the
本实施例中,优选地,上压头电极211和下压头电极212为高强度导电石墨材料(根据具体的烧结压力选择强度与之相匹配的石墨材料);上压头221、下压头222为高强度导电石墨材料;模具套筒23可根据待烧结材料的导电性而选择高强度导电石墨材料或其他绝缘材料。In this embodiment, preferably, the
实施例2Example 2
如图1-3所示,本实施例涉及一种动态加载耦合交变电流的快速烧结设备的烧结方法,包括如下步骤:As shown in Figures 1-3, this embodiment relates to a sintering method for a fast sintering device dynamically loaded with coupled alternating current, including the following steps:
a检查快速烧结设备,放入待烧结材料;a Check the rapid sintering equipment and put in the material to be sintered;
b通过烧结控制***4输入烧结工艺参数;b Input the sintering process parameters through the
c根据烧结工艺参数要求,烧结控制***4通过气氛控制***6对保压舱进行抽真空或通入气体(例如氩气、氮气等),待保压舱内的气压达到设定值后开始运行烧结程序;c According to the requirements of the sintering process parameters, the
d根据烧结工艺参数要求,通过烧结控制***4和动态加载***2调控施加总动态加载的参数;d According to the requirements of the sintering process parameters, the parameters for applying the total dynamic loading are regulated by the
e根据烧结工艺参数要求,通过烧结控制***4和交变电流控制***3调节交变电流的有效值及频率,进而调节升降温速率和保温时间;通过测温模块8检测模具套筒23表面的温度;e According to the requirements of the sintering process parameters, the effective value and frequency of the alternating current are adjusted by the
f根据烧结工艺参数要求,调整步骤c至步骤e三步的先后顺序,使待烧结材料在总动态加载和交变电流的耦合作用下快速烧结;烧结过程中通过冷却水控制***7调节炉体1的散热能力;f According to the requirements of the sintering process parameters, adjust the sequence of the three steps from step c to step e, so that the material to be sintered is rapidly sintered under the coupling action of the total dynamic loading and the alternating current; during the sintering process, the cooling water control system 7 is used to adjust the
g烧结结束后,关闭交变电流控制***3,通过气氛控制***6使炉体1内恢复常压,卸载压力;待模具套筒23的表面温度降至室温且压力完全卸除后取出烧结体,对炉体1的内部进行清理,关闭各工作模块,烧结完成。g After sintering, turn off the alternating
本实施例中,优选地,步骤b中的烧结工艺参数包括动态加载参数、升温速率、保温时间、降温速率和烧结气氛。In this embodiment, preferably, the sintering process parameters in step b include dynamic loading parameters, heating rate, holding time, cooling rate and sintering atmosphere.
本实施例中,优选地,步骤d中的总动态加载的参数包括总动态加载的均值、振幅、频率以及升降压速率和保压时间。In this embodiment, preferably, the parameters of the total dynamic loading in step d include the mean value, amplitude, frequency, buck-boost rate and pressure holding time of the total dynamic loading.
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that it can still be The technical solutions described in the foregoing embodiments are modified, or some technical features thereof are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the embodiments of the present invention.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010749837.1A CN111912227A (en) | 2020-07-30 | 2020-07-30 | Rapid sintering equipment and sintering method for dynamically loading coupled alternating current |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010749837.1A CN111912227A (en) | 2020-07-30 | 2020-07-30 | Rapid sintering equipment and sintering method for dynamically loading coupled alternating current |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111912227A true CN111912227A (en) | 2020-11-10 |
Family
ID=73286792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010749837.1A Pending CN111912227A (en) | 2020-07-30 | 2020-07-30 | Rapid sintering equipment and sintering method for dynamically loading coupled alternating current |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111912227A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112390629A (en) * | 2020-12-04 | 2021-02-23 | 吉林大学 | Device and method for rapidly sintering ceramic |
CN112723894A (en) * | 2020-12-31 | 2021-04-30 | 中国建筑材料科学研究总院有限公司 | Densified hexagonal boron nitride ceramic and preparation method and device thereof |
CN113154882A (en) * | 2021-04-27 | 2021-07-23 | 华南师范大学 | Non-pressure rapid sintering device and method for 3D printing |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4536366A (en) * | 1978-04-07 | 1985-08-20 | Inoue-Japax Research Incorporated | Sintering method and apparatus |
US4931702A (en) * | 1988-05-03 | 1990-06-05 | Fiziko-Tekhnichesky Institut Imeni A.F. Ioffe An Sssr | Electric-arc device |
CN102260802A (en) * | 2011-07-20 | 2011-11-30 | 佛山市钜仕泰粉末冶金有限公司 | Target preparation device and target processing method thereof |
JP2012044021A (en) * | 2010-08-20 | 2012-03-01 | Toyota Motor Corp | Anisotropic magnet manufacturing method |
CN105066682A (en) * | 2015-08-05 | 2015-11-18 | 清华大学 | Rapid-densification pressure-coupling dynamic sintering furnace and sintering method |
CN105135873A (en) * | 2015-08-05 | 2015-12-09 | 清华大学 | Dynamic pressure electric pulse double-field control sintering furnace and sintering method |
JP5941686B2 (en) * | 2012-02-07 | 2016-06-29 | エス.エス.アロイ株式会社 | Pulse energization dynamic pressure thermal processing equipment |
CN107217167A (en) * | 2017-05-31 | 2017-09-29 | 泰安蔚蓝金属陶瓷材料有限公司 | A kind of preparation technology of metal-base composites |
CN109682202A (en) * | 2019-01-30 | 2019-04-26 | 清华大学 | A kind of ultrasonic wave added direct current sintering furnace and sintering method |
CN110116206A (en) * | 2019-04-22 | 2019-08-13 | 武汉科技大学 | A kind of dedicated AC power frequency discharge sintering equipment of thermoelectric material and sintering method |
-
2020
- 2020-07-30 CN CN202010749837.1A patent/CN111912227A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4536366A (en) * | 1978-04-07 | 1985-08-20 | Inoue-Japax Research Incorporated | Sintering method and apparatus |
US4931702A (en) * | 1988-05-03 | 1990-06-05 | Fiziko-Tekhnichesky Institut Imeni A.F. Ioffe An Sssr | Electric-arc device |
JP2012044021A (en) * | 2010-08-20 | 2012-03-01 | Toyota Motor Corp | Anisotropic magnet manufacturing method |
CN102260802A (en) * | 2011-07-20 | 2011-11-30 | 佛山市钜仕泰粉末冶金有限公司 | Target preparation device and target processing method thereof |
JP5941686B2 (en) * | 2012-02-07 | 2016-06-29 | エス.エス.アロイ株式会社 | Pulse energization dynamic pressure thermal processing equipment |
CN105066682A (en) * | 2015-08-05 | 2015-11-18 | 清华大学 | Rapid-densification pressure-coupling dynamic sintering furnace and sintering method |
CN105135873A (en) * | 2015-08-05 | 2015-12-09 | 清华大学 | Dynamic pressure electric pulse double-field control sintering furnace and sintering method |
CN107217167A (en) * | 2017-05-31 | 2017-09-29 | 泰安蔚蓝金属陶瓷材料有限公司 | A kind of preparation technology of metal-base composites |
CN109682202A (en) * | 2019-01-30 | 2019-04-26 | 清华大学 | A kind of ultrasonic wave added direct current sintering furnace and sintering method |
CN110116206A (en) * | 2019-04-22 | 2019-08-13 | 武汉科技大学 | A kind of dedicated AC power frequency discharge sintering equipment of thermoelectric material and sintering method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112390629A (en) * | 2020-12-04 | 2021-02-23 | 吉林大学 | Device and method for rapidly sintering ceramic |
CN112723894A (en) * | 2020-12-31 | 2021-04-30 | 中国建筑材料科学研究总院有限公司 | Densified hexagonal boron nitride ceramic and preparation method and device thereof |
CN113154882A (en) * | 2021-04-27 | 2021-07-23 | 华南师范大学 | Non-pressure rapid sintering device and method for 3D printing |
CN113154882B (en) * | 2021-04-27 | 2023-08-29 | 华南师范大学 | Pressureless rapid sintering device and sintering method for 3D printing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111912227A (en) | Rapid sintering equipment and sintering method for dynamically loading coupled alternating current | |
CN105135873B (en) | Dynamic pressure electric pulse double-field control sintering furnace and sintering method | |
US5989487A (en) | Apparatus for bonding a particle material to near theoretical density | |
US4448747A (en) | High density sintering method for powder molded products | |
JP5023093B2 (en) | High frequency induction heating apparatus for ceramic material and non-pressure sintering method using the same | |
CN113831144B (en) | Method for preparing ceramic material by multi-field coupling ultra-fast sintering | |
CN108947542A (en) | The direct flash burning molding method for preparing of ceramic powder stock | |
CN112390629B (en) | Device and method for rapidly sintering ceramic | |
CN108409333B (en) | AlMgB14-TiB2/Ti gradient functional composite material and preparation method thereof | |
CN105865205A (en) | Two-way hot pressing high temperature oscillation sintering furnace | |
CN106116559B (en) | A kind of electric field-assisted ceramic low-temp quick-combustion device | |
CN109682202A (en) | A kind of ultrasonic wave added direct current sintering furnace and sintering method | |
CN105906347A (en) | Method for preparing nanocrystal aluminum nitride ceramics | |
CN216205255U (en) | Ultrafast heating sintering device and ultrafast intensification reation kettle | |
CN109373761B (en) | Multi-field coupling material processing system | |
CN209820120U (en) | A pressure sintering furnace with magnetic field coupling direct current | |
CN209726776U (en) | An Ultrasonic Assisted DC Sintering Furnace | |
US20250051241A1 (en) | Plasma-assisted ceramic sintering device and ceramic sintering method | |
CN206176981U (en) | Intermediate frequency bidirectional vibration atmosphere sintering stove | |
CN111906303A (en) | Sintering furnace and hard alloy sintering method based on same | |
CN214684268U (en) | High-temperature rapid hot-pressing vacuum direct-current sintering device | |
CN101792320A (en) | Method for sintering high-dielectric CaCu3Ti4O12 ceramics by using spark plasma | |
CN101050121A (en) | Dual heating mode flash sintering method combining current heating with radiant heating | |
CN209181522U (en) | A kind of multi- scenarios method material handling system | |
CN112157265A (en) | Method and equipment for preparing metal fiber porous material by resistance sintering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201110 |
|
RJ01 | Rejection of invention patent application after publication |