JP2012044021A - Anisotropic magnet manufacturing method - Google Patents

Anisotropic magnet manufacturing method Download PDF

Info

Publication number
JP2012044021A
JP2012044021A JP2010184686A JP2010184686A JP2012044021A JP 2012044021 A JP2012044021 A JP 2012044021A JP 2010184686 A JP2010184686 A JP 2010184686A JP 2010184686 A JP2010184686 A JP 2010184686A JP 2012044021 A JP2012044021 A JP 2012044021A
Authority
JP
Japan
Prior art keywords
mold
mpa
anisotropic magnet
magnet
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010184686A
Other languages
Japanese (ja)
Inventor
Osamu Yamashita
修 山下
Yasuhiro Katsukawa
康宏 勝川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010184686A priority Critical patent/JP2012044021A/en
Publication of JP2012044021A publication Critical patent/JP2012044021A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of manufacturing anisotropic magnets in high productivity.SOLUTION: An anisotropic magnet manufacturing method for compressing magnetic material powers in a mold composed of a rigid body comprises a first step of performing hot compression with a pressure of 5 MPa or less in a mold M and a second step of continuously performing hot compression at a distortion speed of 5 sor greater in the mold M.

Description

本発明は、高い生産性で異方性磁石を製造する方法に関する。   The present invention relates to a method for producing an anisotropic magnet with high productivity.

ネオジム磁石(NdFe14B)等の希土類磁石で代表される強力な永久磁石は、高い磁束密度を達成するために磁化容易軸(c軸)が特定方向に配向した高い異方性を有することが必要である。 Strong permanent magnets typified by rare earth magnets such as neodymium magnets (Nd 2 Fe 14 B) have high anisotropy in which the easy axis (c-axis) is oriented in a specific direction in order to achieve a high magnetic flux density. It is necessary.

特許文献1に、磁石粉末を成形固化した後に、歪を加えて結晶を配向させる鉄−希土類系永久磁石の製造方法が開示されている。配向性の高い磁石を製造できるとされている。   Patent Document 1 discloses a method for producing an iron-rare earth permanent magnet in which a magnet powder is molded and solidified and then a strain is applied to orient a crystal. It is said that a highly oriented magnet can be manufactured.

しかしこの方法では、熱間プレス加工等により成形する工程と、冷却固化後に、熱間ダイアップセット加工等により歪を付与する工程とで、異なる加工型に材料を移し変える必要があり、生産性が悪いという問題があった。   However, in this method, it is necessary to transfer materials to different processing molds in the process of forming by hot pressing or the like, and in the process of applying strain by hot die-up set processing after cooling and solidification. There was a problem of being bad.

特許文献2に、磁石合金を鞘体に収容し、500℃以上の温度に加熱し、次いで8s−1以上の歪速度で鍛造する方法が開示されている。 Patent Document 2 discloses a method in which a magnet alloy is housed in a sheath body, heated to a temperature of 500 ° C. or higher, and then forged at a strain rate of 8 s −1 or higher.

しかしこの方法では、鍛造の際に鞘体が塑性変形してしまい、鞘体を再利用することができず、生産性が悪いという問題があった。   However, this method has a problem that the sheath body is plastically deformed during forging, the sheath body cannot be reused, and the productivity is poor.

特公平04−020242号公報Japanese Patent Publication No. 04-020242 特開2002−516925号公報JP 2002-516925 A

本発明は、高い生産性で異方性磁石を製造できる方法を提供することを目的とする。   An object of this invention is to provide the method of manufacturing an anisotropic magnet with high productivity.

剛体から成る成形型内で磁石材料粉末を圧縮加工する異方性磁石の製造方法であって、
上記成形型内で5MPa以下の圧力で熱間圧縮加工する第1工程、および
引き続き上記同一の成形型内で5s−1以上の歪速度で熱間圧縮加工する第2工程
を含むことを特徴とする異方性磁石の製造方法。
A method for producing an anisotropic magnet, in which a magnet material powder is compressed in a rigid mold.
A first step of hot compressing at a pressure of 5 MPa or less in the mold, and a second step of hot compressing at a strain rate of 5 s -1 or more in the same mold. A method for manufacturing an anisotropic magnet.

本発明は、先ず第1工程において5MPa以下で熱間低圧下することにより、粉末粒子同士をある程度凝着させて粒子間の滑りを抑制した状態とした後、引き続き第2工程において同じ成形型内で5s−1以上の高い歪速度で熱間圧縮加工することにより、粒子間の滑りに優先して粒子自体すなわち結晶に大きな歪を付与して配向させ、異方性の高い磁石材料を製造できる。 In the present invention, firstly, in the first step, a hot low pressure is applied at 5 MPa or less so that the powder particles are adhered to some extent to prevent slipping between the particles, and then in the second step, the same mold is used. By applying hot compression processing at a high strain rate of 5 s -1 or higher, it is possible to produce a highly anisotropic magnet material by giving large strain to the particles themselves, that is, crystals, in preference to slipping between the particles. .

プロセス全体を通して一貫して「同一」の「剛体」の成形型内で圧縮加工を行なうので、型の変更も鞘体の使用も必要なく、高い生産性を実現できる。   Since the compression process is performed consistently throughout the entire process in the “same” “rigid” mold, high productivity can be achieved without changing the mold or using a sheath.

図1は、従来技術(特許文献1)による成形固化→据え込みの工程を示す。FIG. 1 shows a process of molding solidification → upsetting according to the prior art (Patent Document 1). 図2は、本発明による軽圧下→高歪速度圧縮の工程を示す。FIG. 2 shows a process of light pressure reduction → high strain rate compression according to the present invention. 図3は、1次圧縮時の圧力と残留磁束密度との関係を示す。FIG. 3 shows the relationship between the pressure during primary compression and the residual magnetic flux density. 図4は、2次圧縮時の歪速度と残留磁束密度との関係を示す。FIG. 4 shows the relationship between strain rate and residual magnetic flux density during secondary compression.

本発明の特徴を特許文献1の従来技術と比較して説明する。   The features of the present invention will be described in comparison with the prior art of Patent Document 1.

まず図1を参照して、従来技術を説明する。   First, the prior art will be described with reference to FIG.

先ず、図(1)の第1工程で、筒状のダイD1とパンチP1とから成る成形型M1で磁石材料の粉末W’を成形し固化して一体のワークWとする。Fは成形圧力である。   First, in the first step of FIG. 1A, a magnetic material powder W 'is formed and solidified by a forming die M1 composed of a cylindrical die D1 and a punch P1 to form an integrated work W. F is a molding pressure.

次に、成形固化されたワークWを成形型M1から取り出して、第2工程で据え込みを行なうための一回り大きい別の成形型M2に移し変える。   Next, the work W that has been formed and solidified is taken out from the forming mold M1 and transferred to another forming mold M2 that is slightly larger for upsetting in the second step.

次に、図1(2)の第2工程で、筒状のダイD2とパンチP2から成る据え込み用成形型M2内でワークWの据え込みを行なって歪を付与し、結晶を配向させる。   Next, in the second step of FIG. 1 (2), the workpiece W is placed in the upset mold M2 composed of the cylindrical die D2 and the punch P2 to give strain and to orient the crystal.

第1工程の「成形固化」なしで直接第2工程の「据え込み」を行なうと、磁石材料の粉末粒子同士の滑りが生じ、粉末粒子の再配列・緻密化が起きるだけで、結晶に歪を付与することはできず、結晶を配向させることができない。   If the “upset” of the second step is performed directly without the “molding and solidification” of the first step, the powder particles of the magnet material will slip, and the powder particles will be rearranged and densified, causing distortion in the crystals. Cannot be imparted, and the crystal cannot be oriented.

そのため従来技術では、先ず第1工程の「成形固化」により、磁石材料の粉末粒子同士を結合させ、圧縮した際の粒子同士の滑りを抑制する必要がある。しかし、第1工程の成形固化により材料(ワーク)の密度が著しく高まる。そこで第2工程では、結晶を配向させるためには、一回り大きい成形型に材料を移し変えて据え込みを行なう必要がある。   Therefore, in the prior art, first, it is necessary to bind the powder particles of the magnet material by the “molding and solidification” in the first step and to suppress the slip of the particles when compressed. However, the density of the material (workpiece) is remarkably increased by molding and solidifying in the first step. Therefore, in the second step, in order to orient the crystals, it is necessary to transfer the material to a mold that is one size larger and perform upsetting.

このようにプロセスの途中で別の成形型へ移し変える操作が必要になり、生産性が悪いという問題があった。   In this way, there is a problem that productivity is poor because an operation of transferring to another mold is necessary during the process.

この問題を解決するために、本発明は以下に説明する特徴を有する。   In order to solve this problem, the present invention has the following features.

図2を参照して本発明を説明する。   The present invention will be described with reference to FIG.

先ず、図2(1)の第1工程で、筒状のダイDとパンチPから成る成形型M内で、5MPa以下の低い圧下力Fで圧縮加工することにより、磁石材料W’の粉末粒子同士を互いの接点のみで小さく塑性変形させて仮結合し、低密度の成形体Wとする。これにより、粉末粒子W’同士の滑りを実質的に抑制する。   First, in the first step of FIG. 2 (1), the powder particles of the magnet material W ′ are subjected to compression processing with a low rolling force F of 5 MPa or less in a mold M comprising a cylindrical die D and a punch P. They are plastically deformed to a small extent only at their respective contacts, and temporarily joined together to form a low-density molded body W. Thereby, slippage between the powder particles W ′ is substantially suppressed.

次に、図2(2)の第2工程で、第1工程と同じ成形型M内に低密度成形体Wを収容したままの状態で、5s−1以上の高い歪速度で圧縮加工する。 Next, in the second step of FIG. 2B, compression processing is performed at a high strain rate of 5 s −1 or higher while the low-density molded body W is housed in the same mold M as in the first step.

熱間加工温度において、低密度のワークWを5s−1以上の高い歪速度で圧縮加工することにより、粒子同士の滑りを抑制して結晶に大きな歪を付与し、結晶を配向させることができる。5s−1未満の歪速度では、粉末粒子同士の滑りが支配的になって単に粒子が移動するだけで、結晶に大きな歪を付与することができない。 By compressing a low-density work W at a high strain rate of 5 s -1 or higher at the hot working temperature, it is possible to suppress slipping between particles and to impart a large strain to the crystal and to orient the crystal. . When the strain rate is less than 5 s −1 , slip between the powder particles is dominant, and the particles simply move, and a large strain cannot be imparted to the crystal.

〔実施例1〕
合金組成14.6Nd74.2Fe4.5Co0.5Ga6.2B(原子比)に対応する割合で配合した原料をアーク炉で溶解し、合金ビレットを得た。
[Example 1]
The raw materials blended at a ratio corresponding to the alloy composition 14.6Nd74.2Fe4.5Co0.5Ga6.2B (atomic ratio) were melted in an arc furnace to obtain an alloy billet.

このビレットをAr雰囲気中でメルトスピニングし、リボン状の薄片を得た。この薄片は厚さ30μm程度で、非晶質と結晶質の混合物であった。   This billet was melt-spun in an Ar atmosphere to obtain ribbon-like flakes. The flakes were about 30 μm thick and were a mixture of amorphous and crystalline.

次に、このリボン状薄片を200μm程度に粉砕し、粉末状の材料を得た。   Next, the ribbon-like flakes were pulverized to about 200 μm to obtain a powdery material.

得られた材料を、第1工程として、内径φ10mmの超硬製ダイス中へ充填し、超硬製パンチにより成形圧力0.5MPaで加圧しながら600℃で5分加熱した。これにより上記の成形圧力および温度で熱間圧縮加工が行なわれた。引き続き、第2工程として、同じ成形型内で歪速度50s−1で圧縮加工した。すなわち、600℃を成形開始温度とする熱間圧縮加工を行なった。 As a first step, the obtained material was filled into a cemented carbide die having an inner diameter of φ10 mm, and heated at 600 ° C. for 5 minutes while being pressed with a molding pressure of 0.5 MPa with a cemented carbide punch. Thus, hot compression processing was performed at the above molding pressure and temperature. Subsequently, as a second step, compression processing was performed in the same mold at a strain rate of 50 s −1 . That is, hot compression processing was performed at 600 ° C. as the molding start temperature.

〔比較例1〕
実施例1と同様に成形体を得た。ただし、第2工程で歪速度0.1s−1で圧縮加工した点のみが実施例1と異なる。
[Comparative Example 1]
A molded body was obtained in the same manner as in Example 1. However, it differs from Example 1 only in that it was compressed at a strain rate of 0.1 s −1 in the second step.

≪磁気特性の評価≫
実施例1および比較例1で作製した成形体について、その中心部からワイヤーカットにより2mm角の試料を切り出し、振動試料型磁力計(VSM)により、加圧方向の磁気特性(残留磁束密度)を測定した。表1に結果を示す。
≪Evaluation of magnetic properties≫
About the molded body produced in Example 1 and Comparative Example 1, a 2 mm square sample was cut out from the center by wire cutting, and the magnetic characteristics (residual magnetic flux density) in the pressing direction were measured by a vibrating sample magnetometer (VSM). It was measured. Table 1 shows the results.

Figure 2012044021
Figure 2012044021

表1中の配向度とは、残留磁束密度を飽和磁束密度で除した値である。本発明による実施例1は、比較例1に比べて著しく高い配向度が得られた。   The degree of orientation in Table 1 is a value obtained by dividing the residual magnetic flux density by the saturation magnetic flux density. In Example 1 according to the present invention, an extremely high degree of orientation was obtained as compared with Comparative Example 1.

〔実施例2〕
合金組成14.6Nd74.2Fe4.5Co0.5Ga6.2B(原子比)に対応する割合で配合した原料をアーク炉で溶解し、合金ビレットを得た。
[Example 2]
The raw materials blended at a ratio corresponding to the alloy composition 14.6Nd74.2Fe4.5Co0.5Ga6.2B (atomic ratio) were melted in an arc furnace to obtain an alloy billet.

このビレットをAr雰囲気中でメルトスピニングし、リボン状の薄片を得た。この薄片は厚さ30μm程度で、非晶質と結晶質の混合物であった。   This billet was melt-spun in an Ar atmosphere to obtain ribbon-like flakes. The flakes were about 30 μm thick and were a mixture of amorphous and crystalline.

次に、このリボン状薄片を200μm程度に粉砕し、粉末状の材料を得た。   Next, the ribbon-like flakes were pulverized to about 200 μm to obtain a powdery material.

<第1工程>
得られた材料(9.0g)を、内径φ10mmの超硬製ダイスに充填し、超硬製パンチにより種々の成形圧力(0.5MPa、5MPa、50MPa、200MPa)を印加しながら、600℃で5分間加熱した。これにより上記各成形圧力で熱間圧縮加工が行なわれた。
<First step>
The obtained material (9.0 g) was filled into a carbide die having an inner diameter of φ10 mm, and various molding pressures (0.5 MPa, 5 MPa, 50 MPa, 200 MPa) were applied at 600 ° C. with a carbide punch. Heated for 5 minutes. As a result, hot compression processing was performed at the respective molding pressures.

これにより得られた材料の密度は、それぞれ5.2g/cm、6.1g/cm、7.4g/cm、7.6g/cmであった。この密度は、投入した粉末重量(9.0g)と、成形機の変位計から求めた加熱開始後5分におけるワーク高さとから算出した。すなわち、材料は成形型の中に収容されたままの状態で維持している。この材料の真密度は7.6g/cmである。したがって、それぞれの成形圧力で加熱したワークの、真密度に対する割合は、68%、80%、97%、100%である。 The density of the obtained material was 5.2 g / cm 3 , 6.1 g / cm 3 , 7.4 g / cm 3 , and 7.6 g / cm 3 , respectively. This density was calculated from the weight of the charged powder (9.0 g) and the workpiece height 5 minutes after the start of heating, which was determined from the displacement meter of the molding machine. That is, the material is maintained in a state of being accommodated in the mold. The true density of this material is 7.6 g / cm 3 . Accordingly, the ratio of the workpiece heated at each forming pressure to the true density is 68%, 80%, 97%, and 100%.

<第2工程>
上記の加熱終了後、直ちに、パンチにより種々の歪速度50s−1、5s−1、0.1s−1で、面圧が500MPaになるまで圧縮した。すなわち、600℃を成形開始温度とする熱間圧縮加工を行なった。圧縮終了後、直ちに冷却し、成形体を得た。
<Second process>
Immediately after completion of the heating, the punch was compressed at various strain rates of 50 s −1 , 5 s −1 , and 0.1 s −1 until the surface pressure reached 500 MPa. That is, hot compression processing was performed at 600 ° C. as the molding start temperature. Immediately after the compression, the product was cooled to obtain a molded body.

≪磁気特性の評価≫
実施例2で作製した成形体について、その中心部からワイヤーカットにより2mm角の試料を切り出し、振動試料型磁力計(VSM)により、加圧方向の磁気特性(残留磁束密度)を測定した。図3、4に結果を示す。
≪Evaluation of magnetic properties≫
About the molded object produced in Example 2, the sample of 2 square mm was cut out from the center part by wire cutting, and the magnetic characteristic (residual magnetic flux density) of a pressurization direction was measured with the vibration sample type magnetometer (VSM). The results are shown in FIGS.

図3、4の結果から、高い残留磁束密度を持つ成形体を得るためには、下記(1)(2)の条件を満たすことが必要であることが分かった。   From the results of FIGS. 3 and 4, it was found that the following conditions (1) and (2) must be satisfied in order to obtain a molded body having a high residual magnetic flux density.

(1)第1工程での熱間圧縮加工は成形圧力5MPa以下で行なう必要がある。好ましくは0.5MPa以下にする。   (1) The hot compression process in the first step needs to be performed at a molding pressure of 5 MPa or less. Preferably, the pressure is 0.5 MPa or less.

(2)第2工程での熱間圧縮加工は歪速度5s−1で行なう必要がある。好ましくは50s−1以上にする。 (2) The hot compression process in the second step needs to be performed at a strain rate of 5 s- 1 . Preferably, it is 50 s -1 or more.

このように本発明によれば、プロセス全体を通して一貫して「同一」の「剛体」の成形型内で圧縮加工を行なうので、型の変更も鞘体の使用も必要なく、従来は得られなかった高い生産性を実現できる。   As described above, according to the present invention, since compression processing is performed in the same “rigid” mold throughout the entire process, there is no need to change the mold or use a sheath body, which cannot be obtained conventionally. High productivity can be realized.

本発明によれば、高い生産性で異方性磁石を製造できる方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the method which can manufacture an anisotropic magnet with high productivity is provided.

Claims (1)

剛体から成る成形型内で磁石材料粉末を圧縮加工する異方性磁石の製造方法であって、
上記成形型内で5MPa以下の圧力で熱間圧縮加工する第1工程、および
引き続き上記同一の成形型内で5s−1以上の歪速度で熱間圧縮加工する第2工程
を含むことを特徴とする異方性磁石の製造方法。
A method for producing an anisotropic magnet, in which a magnet material powder is compressed in a rigid mold.
A first step of hot compressing at a pressure of 5 MPa or less in the mold, and a second step of hot compressing at a strain rate of 5 s -1 or more in the same mold. A method for manufacturing an anisotropic magnet.
JP2010184686A 2010-08-20 2010-08-20 Anisotropic magnet manufacturing method Pending JP2012044021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010184686A JP2012044021A (en) 2010-08-20 2010-08-20 Anisotropic magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010184686A JP2012044021A (en) 2010-08-20 2010-08-20 Anisotropic magnet manufacturing method

Publications (1)

Publication Number Publication Date
JP2012044021A true JP2012044021A (en) 2012-03-01

Family

ID=45899979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010184686A Pending JP2012044021A (en) 2010-08-20 2010-08-20 Anisotropic magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP2012044021A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061466A1 (en) * 2012-10-18 2014-04-24 トヨタ自動車株式会社 Manufacturing method for rare-earth magnet
WO2014080852A1 (en) * 2012-11-20 2014-05-30 トヨタ自動車株式会社 Method for manufacturing rare-earth magnet
JP2017018977A (en) * 2015-07-09 2017-01-26 トヨタ自動車株式会社 Forging method
KR101733335B1 (en) 2013-04-01 2017-05-08 도요타 지도샤(주) Method of production rare-earth magnet
TWI615859B (en) * 2016-10-14 2018-02-21 財團法人金屬工業研究發展中心 Anisotropic magnet manufacturing method and magnet manufacturing equipment
CN111912227A (en) * 2020-07-30 2020-11-10 清华大学 Rapid sintering equipment and sintering method for dynamically loading coupled alternating current

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061466A1 (en) * 2012-10-18 2014-04-24 トヨタ自動車株式会社 Manufacturing method for rare-earth magnet
WO2014080852A1 (en) * 2012-11-20 2014-05-30 トヨタ自動車株式会社 Method for manufacturing rare-earth magnet
KR101733335B1 (en) 2013-04-01 2017-05-08 도요타 지도샤(주) Method of production rare-earth magnet
JP2017018977A (en) * 2015-07-09 2017-01-26 トヨタ自動車株式会社 Forging method
TWI615859B (en) * 2016-10-14 2018-02-21 財團法人金屬工業研究發展中心 Anisotropic magnet manufacturing method and magnet manufacturing equipment
CN111912227A (en) * 2020-07-30 2020-11-10 清华大学 Rapid sintering equipment and sintering method for dynamically loading coupled alternating current

Similar Documents

Publication Publication Date Title
JP6044504B2 (en) Rare earth magnet manufacturing method
JP5815655B2 (en) R-T-B-M-C sintered magnet manufacturing method and manufacturing apparatus thereof
JP2012044021A (en) Anisotropic magnet manufacturing method
KR101690896B1 (en) Manufacturing method for rare-earth magnet
JPWO2007069454A1 (en) Manufacturing method of radial anisotropic magnet
JP2013084802A (en) Sintered compact of rare earth magnet precursor and manufacturing method of magnetic powder for forming the same
JP2012244111A (en) Manufacturing method of rare earth magnet
JP2012142388A (en) Method for producing rare earth magnet
KR101813427B1 (en) Method of manufacturing rare earth magnet
JP6472640B2 (en) Hot-worked magnet, raw material powder thereof, molded body formed from the raw material powder, and production method thereof
US20100321139A1 (en) Permanent magnet and method of producing permanent magnet
JP5742733B2 (en) Rare earth magnet manufacturing method
JP2015093312A (en) Forward extrusion forging device and forward extrusion forging method
JP2015135856A (en) Method for manufacturing rare earth bond magnet
JP7155971B2 (en) Arc-shaped permanent magnet and manufacturing method thereof
JP5057211B2 (en) Amorphous metal molded body and method for producing the same
JP5704186B2 (en) Rare earth magnet manufacturing method
JP2016076614A (en) Method for manufacturing rare earth magnet
JP6718358B2 (en) Rare earth magnet and manufacturing method thereof
JP2007254813A (en) Method for producing rare earth sintered magnet and die for molding used therefor
JP6604321B2 (en) Rare earth magnet manufacturing method
JP2011159898A (en) Magnet and method of manufacturing the same
JP2015123463A (en) Forward extrusion forging device and forward extrusion forging method
JP2014170859A (en) Magnetic anisotropic magnet and manufacturing method thereof
JPH01245503A (en) Manufacture of rare-earth magnet