CN111617747B - 一种壳聚糖/纳米金属复合水凝胶及其制备方法和应用 - Google Patents

一种壳聚糖/纳米金属复合水凝胶及其制备方法和应用 Download PDF

Info

Publication number
CN111617747B
CN111617747B CN202010394620.3A CN202010394620A CN111617747B CN 111617747 B CN111617747 B CN 111617747B CN 202010394620 A CN202010394620 A CN 202010394620A CN 111617747 B CN111617747 B CN 111617747B
Authority
CN
China
Prior art keywords
chitosan
composite hydrogel
acid
solution
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010394620.3A
Other languages
English (en)
Other versions
CN111617747A (zh
Inventor
张丽华
谢海波
黄富荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou University
Original Assignee
Guizhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou University filed Critical Guizhou University
Priority to CN202010394620.3A priority Critical patent/CN111617747B/zh
Publication of CN111617747A publication Critical patent/CN111617747A/zh
Application granted granted Critical
Publication of CN111617747B publication Critical patent/CN111617747B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种壳聚糖/纳米金属复合水凝胶及其制备方法和应用。以含有巯基或硫醚的壳聚糖水凝胶为基体,在基体内均匀分散粒径为0.1‑100nm的金属纳米颗粒。可用于催化、水处理、制药和抗菌领域。本发明具有金属纳米颗粒负载稳定性好、分散性高的特点,此外,还具有制备工艺简单,操作方便,成本低廉,应用范围广的特点。

Description

一种壳聚糖/纳米金属复合水凝胶及其制备方法和应用
技术领域
本发明涉及一种水凝胶及其制备方法和应用,特别是一种壳聚糖/纳米金属复合水凝胶及其制备方法和应用。
背景技术
高分子水凝胶是具有三维网络结构的材料。聚合物成为水凝胶材料必须具备两个条件:高分子主链或侧链上具有大量的亲水基团和具备适当的交联网络结构。制备高分子水凝胶的起始材料可以是单体(水溶性或油溶性单体)、聚合物(天然或合成聚合物)或者是单体和聚合物的混合体(功能材料,2003(4):382-385)。水凝胶在水中能够产生十分明显的溶胀行为,并且能保持一定的形状,不会发生溶解。水凝胶具的吸水能力和保水能力通常依赖于通过共价键、氢键、离子键、物理缠结等构成的三维网络结构(Soft Matter,2010,6(11),2364-2371)。水凝胶以各种物理形式存在,包括膜、球、微凝胶和纳米凝胶等。
以海洋生物质为原料的水凝胶有助于缓解石油资源紧张以及防止地球变暖,引起了国内外广泛的关注。壳聚糖作为一种典型的海洋生物质材料,是自然界中唯一大量存在的碱性多糖,具有良好的吸湿性、保湿性、生物可降解性、生物相容性以及抗菌性等,充分利用纤维素资源对全人类社会的可持续发展具有重要的意义(Progress in PolymerScience,2011,36(8),981-1014)。壳聚糖不溶于水和碱性溶液,能够溶于甲酸、醋酸等有机酸溶液以及稀磷酸、稀盐酸等无机酸;壳聚糖分子结构上的氨基在酸性溶液中能发生质子化形成-NH3+,稀酸的羧基去质子化形成-COO-。二元酸的加入则可以在壳聚糖的分子链间引入交联结构。
尺寸小于100nm的纳米金属具有表面效应和量子尺寸效应,显示出与宏观块状金属不同的催化、光学、电学等特性,在催化、传感器、光电器件和生物医学等领域具有潜在的用途(Applied Catalysis B-Environmental,241,415-423)。一般来说,纳米金属的制备需要将高价的金属离子还原为零价。但是,单纯的纳米金属具有很高的表面能,极易发生聚集形成大尺寸的金属颗粒,同时失去纳米金属的独特性能。因此,将纳米金属固定在合适的载体上是解决这一问题的一种有效途径。
虽然目前已有利用水凝胶、石墨烯和二氧化硅微球等作为载体来负载金属纳米颗粒的研究,但是,现目前的负载方式或多或少都存在负载稳定性差、分散性不高的缺陷。
发明内容
本发明的目的在于,提供一种壳聚糖/纳米金属复合水凝胶及其制备方法和应用。本发明具有金属纳米颗粒负载稳定性好、分散性高的特点,此外,还具有制备工艺简单,操作方便,成本低廉,应用范围广的特点。
本发明的技术方案:一种壳聚糖/纳米金属复合水凝胶,以含有巯基或硫醚的壳聚糖水凝胶为基体,在基体内均匀分散粒径为0.1-100nm的金属纳米颗粒。
一种前述的壳聚糖/纳米金属复合水凝胶的制备方法,包括如下步骤:
(1)选取壳聚糖为原料;
(2)将壳聚糖、巯基酸或硫醚酸、水混合;
(3)将混合物置于20-80℃下反应1-8h,得到均相壳聚糖溶液;
(4)将均相壳聚糖溶液离心脱泡后滴入乙醇,形成球状壳聚糖凝胶;
(5)将球状壳聚糖凝胶置于含有目标金属离子的溶液中,常温震荡1-48h,吸附目标金属离子;
(6)将吸附有目标金属离子的凝胶置于硼氢化钠溶液中常温震荡1-48h,得到壳聚糖/纳米金属复合水凝胶。
前述的壳聚糖/纳米金属复合水凝胶的制备方法,步骤(1)所述的壳聚糖是以蟹壳、虾壳、昆虫或微生物等生物质资源提取的壳聚糖的一种或任意几种的组合;所述壳聚糖的脱乙酰度为50%-100%。
前述的壳聚糖/纳米金属复合水凝胶的制备方法,步骤(2)所述的巯基酸或硫醚酸具有水溶性,且巯基酸或硫醚酸具有以下结构特征:
Figure GDA0002601207610000031
其中:
A系列为含有巯基的一元酸;
B系列含有巯基或硫醚的二元酸。
前述的壳聚糖/纳米金属复合水凝胶的制备方法,步骤(2)所述的混合体系中,壳聚糖的质量浓度为0.1-10%,巯基酸或硫醚酸的质量浓度为0.1%-30%。
前述的壳聚糖/纳米金属复合水凝胶的制备方法,步骤(4)所述乙醇与壳聚糖溶液的体积比为5-10:1。
前述的壳聚糖/纳米金属复合水凝胶的制备方法,所述的壳聚糖具有如下结构:
Figure GDA0002601207610000032
其中,50<n<1000;R为-NH2或质子化氨基-NH3 +;其中,为质子化氨基时,巯基酸或硫醚酸去质子化形成如下结构的一种或一种以上的混合物:
Figure GDA0002601207610000041
其中:
A系列为含有巯基的一元酸;
B系列含有巯基或硫醚的二元酸。
前述的壳聚糖/纳米金属复合水凝胶的制备方法,步骤(5)所述的含有目标金属离子的溶液中的金属离子浓度为0.01-100mg/mL,球状壳聚糖凝胶与含有目标金属离子的溶液的体积比为1:10-100。
前述的壳聚糖/纳米金属复合水凝胶的制备方法,步骤(6)所述的硼氢化钠溶液浓度为0.01-10mol/L,吸附有目标金属离子的凝胶与硼氢化钠溶液的体积比为1:10-100。
一种前述的壳聚糖/纳米金属复合水凝胶在催化、水处理、制药和抗菌领域的应用。
本发明的有益效果
本发明基于壳聚糖溶解于含有巯基或硫醚的一元羧酸和二元羧酸的水溶液中,壳聚糖分子链的氨基发生质子化破坏壳聚糖的氢键网络结构促使其溶解,并且二元羧酸对壳聚糖分子链具备交联作用,经过反溶剂的再生制备了含有巯基或硫醚的壳聚糖水凝胶,再将纳米金属颗粒负载到凝胶上,从而制备出壳聚糖/纳米金属复合水凝胶材料。
本发明的明显优点是制备的复合水凝胶材料以含巯基或硫醚的壳聚糖水凝胶为基体,纳米金属在其内部均匀分散,粒径约0.1-100nm,具有独特的结构优势;所使用的壳聚糖水凝胶制备方便快捷且大小形貌可控,分子结构上具有含硫的巯基或硫醚基团以及氨基和羟基,能够稳定的负载大量的纳米金属,且可有效避免纳米金属制备过程中的团聚问题。
本发明所制备的壳聚糖/纳米金属复合水凝胶材料可以应用于催化、水处理、制药和抗菌等诸多领域,例如可用于催化降解硝基苯衍生物,可用于吸附水体中的汞离子,可用于4-氨基苯酚等医药中间体的生产。
本发明还具有工艺简单、操作方便、成本低廉等优点。
附图说明
图1:本发明专利步骤流程图;
图2:壳聚糖/纳米金复合水凝胶的扫描电子显微镜(SEM)照片;
图3:壳聚糖/纳米金复合水凝胶的透射电子显微镜(TEM)照片和XRD谱图;
图4:紫外-可见光分光光度计监控4-硝基苯酚还原过程。
具体实施方式
下面结合实施例对本发明作进一步的说明,但并不作为对本发明限制的依据。
本发明的实施例
实施例1
本发明制备方法的步骤如下:
(1)选取脱乙酰度为50%的壳聚糖为原料;
(2)将0.1wt%壳聚糖、巯基酸或硫醚酸0.1wt%和余量的水混合;
(3)将混合物置于20℃下反应8h,得到均相壳聚糖溶液;
(4)将均相壳聚糖溶液离心脱泡后按体积比1:5滴入乙醇,形成球状壳聚糖凝胶;
(5)将球状壳聚糖凝胶置于含有目标金属离子的溶液中,金属离子浓度为0.01mg/mL,常温震荡48h,吸附目标金属离子;
(6)将吸附有目标金属离子的凝胶按体积比1:10置于浓度为0.01mol/L的硼氢化钠溶液中常温震荡48h,得到壳聚糖/纳米金属复合水凝胶。
实施例2
本发明制备方法的步骤如下:
(1)选取脱乙酰度为100%的壳聚糖为原料;
(2)将10wt%壳聚糖、巯基酸或硫醚酸30wt%和余量的水混合;
(3)将混合物置于80℃下反应1h,得到均相壳聚糖溶液;
(4)将均相壳聚糖溶液离心脱泡后按体积比1:10滴入乙醇,形成球状壳聚糖凝胶;
(5)将球状壳聚糖凝胶置于含有目标金属离子的溶液中,金属离子浓度为100mg/mL,常温震荡1h,吸附目标金属离子;
(6)将吸附有目标金属离子的凝胶按体积比1:100置于浓度为10mol/L的硼氢化钠溶液中常温震荡1h,得到壳聚糖/纳米金属复合水凝胶。
实施例3
按实施例1的步骤,称取蟹壳壳聚糖1.25克、3-巯基丙酸0.394克、硫代苹果酸0.279克和去离子水20mL,一起加入到圆底烧瓶中,温度为80℃,机械搅拌6h,得到壳聚糖的均相溶液。将壳聚糖溶液通过10,000rpm的转速进行离心脱泡,使用一次性注射器将壳聚糖溶液逐滴滴入3倍量的无水乙醇中,形成直径为3mm的壳聚糖凝胶珠。将此水凝胶珠在无水乙醇中浸泡2h老化。将300颗壳聚糖凝胶珠转移至50mL,1.5mM的氯金酸钠水溶液中在25℃下震荡24h,随后将壳聚糖凝胶柱转移至30mL,0.1M的硼氢化钠水溶液中在保持25℃下震荡2h,将负载的Au(III)还原为纳米金,即可得到壳聚糖/纳米金复合水凝胶。
实施例4
壳聚糖/纳米金复合水凝胶的应用,催化4-硝基苯酚的还原反应制取4-氨基苯酚实验步骤:
1)配制0.1mM 4-硝基苯酚的水溶液;
2)配制0.1M硼氢化钠的水溶液;
3)取3ml NaBH4溶液和3ml 4-硝基苯酚溶液于烧杯,加入30颗实施例2制备的壳聚糖/纳米金复合水凝胶材料,在室温下进行反应,使用紫外-可见光分光光度计对反应过程进行了监控。
实施例5
按实施例1的步骤,称取虾壳壳聚糖1.25克、3-巯基丙酸0.71克、硫代苹果酸0.5克和去离子水20mL,一起加入到圆底烧瓶中,温度为60℃,机械搅拌4h,得到壳聚糖的均相溶液。将壳聚糖溶液通过10,000rpm的转速进行离心脱泡,使用一次性注射器将壳聚糖溶液逐滴滴入3倍量的无水乙醇中,形成直径为3mm的壳聚糖凝胶珠。将此水凝胶珠在无水乙醇中浸泡4h老化。将300颗壳聚糖凝胶珠转移至50mL,1.5mM的氯金酸钠水溶液中在25℃下震荡24h,随后将壳聚糖凝胶珠转移至30mL,0.1M的硼氢化钠水溶液中在保持25℃下震荡2h,将负载的Au(III)还原为纳米金,即可得到壳聚糖/纳米金复合水凝胶。
实施例6
按实施例1的步骤,称取虾壳壳聚糖1.25克、巯基乙酸0.71克、硫代苹果酸0.5克和去离子水20mL,一起加入到圆底烧瓶中,温度为60℃,机械搅拌4h,得到壳聚糖的均相溶液。将壳聚糖溶液通过10,000rpm的转速进行离心脱泡,使用一次性注射器将壳聚糖溶液逐滴滴入3倍量的无水乙醇中,形成直径为3mm的壳聚糖凝胶珠。将此水凝胶珠在无水乙醇中浸泡4h老化。将300颗壳聚糖凝胶珠转移至50mL,1.5mM的氯金酸钠水溶液中在25℃下震荡24h,随后将壳聚糖凝胶柱转移至30mL,0.1M的硼氢化钠水溶液中在保持25℃下震荡2h,将负载的Au(III)还原为纳米金,即可得到壳聚糖/纳米金复合水凝胶。
实施例7
按实施例1的步骤,称取平菇菌丝体提取的壳聚糖1.25克、4-巯基丁酸0.284克、硫代苹果酸0.803克和去离子水20mL,一起加入到圆底烧瓶中,温度为40℃,机械搅拌4h,得到壳聚糖的均相溶液。将壳聚糖溶液通过10,000rpm的转速进行离心脱泡,使用一次性注射器将壳聚糖溶液逐滴滴入3倍量的无水乙醇中,形成直径为3mm的壳聚糖凝胶珠。将此水凝胶珠在无水乙醇中浸泡4h老化。将300颗壳聚糖凝胶珠转移至50mL,1.5mM的氯金酸钠水溶液中在25℃下震荡24h,随后将壳聚糖凝胶柱转移至30mL,0.1M的硼氢化钠水溶液中在保持25℃下震荡2h,将负载的Au(III)还原为纳米金,即可得到壳聚糖/纳米金复合水凝胶。
实施例8
按实施例1的步骤,称取从蚕蛹提取的壳聚糖1.25克、3-巯基丙酸0.284克、内消旋-2,3-二巯基丁二酸0.803克和去离子水20mL,一起加入到圆底烧瓶中,温度为40℃,机械搅拌4h,得到壳聚糖的均相溶液。将壳聚糖溶液通过10,000rpm的转速进行离心脱泡,使用一次性注射器将壳聚糖溶液逐滴滴入3倍量的无水乙醇中,形成直径为3mm的壳聚糖凝胶珠。将此水凝胶珠在无水乙醇中浸泡4h老化。将300颗壳聚糖凝胶珠转移至50mL,1.5mM的氯金酸钠水溶液中在25℃下震荡24h,随后将壳聚糖凝胶柱转移至30mL,0.1M的硼氢化钠水溶液中在保持25℃下震荡2h,将负载的Au(III)还原为纳米金,即可得到壳聚糖/纳米金复合水凝胶。
以上所述,仅为本发明创造较佳的具体实施方式,但本发明创造的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明创造揭露的技术范围内,根据本发明创造的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明创造的保护范围之内。

Claims (9)

1.一种壳聚糖/纳米金属复合水凝胶,其特征在于:以含有巯基或硫醚的壳聚糖水凝胶为基体,在基体内均匀分散粒径为0.1-100nm的金属纳米颗粒;所述的壳聚糖/纳米金属复合水凝胶的制备方法包括如下步骤:
(1)选取壳聚糖为原料;
(2)将壳聚糖、巯基酸或硫醚酸、水混合;
(3)将混合物置于20-80oC下反应1-8h,得到均相壳聚糖溶液;
(4)将均相壳聚糖溶液离心脱泡后滴入乙醇,形成球状壳聚糖凝胶;
(5)将球状壳聚糖凝胶置于含有目标金属离子的溶液中,常温震荡1-48h,吸附目标金属离子;
(6)将吸附有目标金属离子的凝胶置于硼氢化钠溶液中常温震荡1-48h,得到壳聚糖/纳米金属复合水凝胶。
2.根据权利要求1所述的壳聚糖/纳米金属复合水凝胶,其特征在于:制备方法中,所述步骤(1)的壳聚糖是以蟹壳、虾壳、昆虫或微生物等生物质资源提取的壳聚糖的一种或任意几种的组合;所述壳聚糖的脱乙酰度为50-100%。
3.根据权利要求1所述的壳聚糖/纳米金属复合水凝胶,其特征在于:制备方法中,所述步骤(2)的巯基酸或硫醚酸具有水溶性,且巯基酸或硫醚酸具有以下结构特征:
Figure DEST_PATH_IMAGE002
其中:
A系列为含有巯基的一元酸;
B系列含有巯基或硫醚的二元酸。
4.根据权利要求1所述的壳聚糖/纳米金属复合水凝胶,其特征在于:制备方法中,所述步骤(2)的混合体系中,壳聚糖的质量浓度为0.1-10%,巯基酸或硫醚酸的质量浓度为0.1-30%。
5.根据权利要求1所述的壳聚糖/纳米金属复合水凝胶,其特征在于:制备方法中,所述步骤(4)乙醇与壳聚糖溶液的体积比为5-10:1。
6.根据权利要求1所述的壳聚糖/纳米金属复合水凝胶,其特征在于:所述的壳聚糖具有如下结构:
Figure DEST_PATH_IMAGE004
其中,50<n<1000;R为-NH2或质子化氨基-NH3 +;其中,为质子化氨基时,巯基酸或硫醚酸去质子化形成如下结构的一种或一种以上的混合物:
Figure DEST_PATH_IMAGE006
其中:
A系列为含有巯基的一元酸;
B系列含有巯基或硫醚的二元酸。
7.根据权利要求1所述的壳聚糖/纳米金属复合水凝胶,其特征在于:制备方法中,所述步骤(5)的含有目标金属离子的溶液中的金属离子浓度为0.01-100mg/mL,球状壳聚糖凝胶与含有目标金属离子的溶液的体积比为1:10-100。
8.根据权利要求1所述的壳聚糖/纳米金属复合水凝胶,其特征在于:制备方法中,所述步骤(6)的硼氢化钠溶液浓度为0.01-10mol/L,吸附有目标金属离子的凝胶与硼氢化钠溶液的体积比为1:10-100。
9.一种根据权利要求1所述的壳聚糖/纳米金属复合水凝胶在催化、水处理、制药和抗菌领域的应用。
CN202010394620.3A 2020-05-11 2020-05-11 一种壳聚糖/纳米金属复合水凝胶及其制备方法和应用 Active CN111617747B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010394620.3A CN111617747B (zh) 2020-05-11 2020-05-11 一种壳聚糖/纳米金属复合水凝胶及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010394620.3A CN111617747B (zh) 2020-05-11 2020-05-11 一种壳聚糖/纳米金属复合水凝胶及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111617747A CN111617747A (zh) 2020-09-04
CN111617747B true CN111617747B (zh) 2022-05-31

Family

ID=72255082

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010394620.3A Active CN111617747B (zh) 2020-05-11 2020-05-11 一种壳聚糖/纳米金属复合水凝胶及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111617747B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116393102A (zh) * 2023-03-16 2023-07-07 华南农业大学 一种镉砷同步移除复合材料及其制备方法与应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002053252A2 (en) * 2000-12-31 2002-07-11 Amersham Biosciences Ab A method for mixed mode adsorption and mixed mode adsorbents
WO2009092814A1 (en) * 2008-01-25 2009-07-30 Cpe Lyon Formation Continue Et Recherche Hybrid organic-inorganic materials that contain stabilized carbene
CN103706357A (zh) * 2014-01-08 2014-04-09 南京工业大学 胺功能化介孔硅胶负载金催化剂的制备方法及应用
CN103769062A (zh) * 2014-02-27 2014-05-07 江南大学 一种功能化聚乙烯醇水凝胶及其制备方法
CN104353428A (zh) * 2014-11-03 2015-02-18 中国科学院过程工程研究所 一种氧化还原响应性金属凝胶与壳聚糖复合磁性微球、制备方法及其应用
CN105749887A (zh) * 2014-12-16 2016-07-13 中国科学院大连化学物理研究所 一种液相色谱固定相的制备方法及其糖基键合固定相
CN106178079A (zh) * 2016-07-20 2016-12-07 国家纳米科学中心 一种含纳米金的抗菌壳聚糖敷料及其制备方法
CN108948380A (zh) * 2018-07-18 2018-12-07 贵州大学 纤维素聚质子型离子液体凝胶/纳米金属复合材料及其制备方法与应用
CN108948381A (zh) * 2018-07-24 2018-12-07 阿里生物新材料(常州)有限公司 一种用于去除水中银离子的壳聚糖基水凝胶及其制备方法
CN109265691A (zh) * 2017-07-18 2019-01-25 中国科学院苏州纳米技术与纳米仿生研究所 水凝胶及其制备方法与应用
CN110327964A (zh) * 2019-08-02 2019-10-15 浙江师范大学 一种用于硫醚选择性氧化的钒催化剂及其制备方法
CN110935424A (zh) * 2019-11-27 2020-03-31 南京二维纳米科技有限公司 一种复合纳米凝胶的制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002053252A2 (en) * 2000-12-31 2002-07-11 Amersham Biosciences Ab A method for mixed mode adsorption and mixed mode adsorbents
WO2009092814A1 (en) * 2008-01-25 2009-07-30 Cpe Lyon Formation Continue Et Recherche Hybrid organic-inorganic materials that contain stabilized carbene
CN103706357A (zh) * 2014-01-08 2014-04-09 南京工业大学 胺功能化介孔硅胶负载金催化剂的制备方法及应用
CN103769062A (zh) * 2014-02-27 2014-05-07 江南大学 一种功能化聚乙烯醇水凝胶及其制备方法
CN104353428A (zh) * 2014-11-03 2015-02-18 中国科学院过程工程研究所 一种氧化还原响应性金属凝胶与壳聚糖复合磁性微球、制备方法及其应用
CN105749887A (zh) * 2014-12-16 2016-07-13 中国科学院大连化学物理研究所 一种液相色谱固定相的制备方法及其糖基键合固定相
CN106178079A (zh) * 2016-07-20 2016-12-07 国家纳米科学中心 一种含纳米金的抗菌壳聚糖敷料及其制备方法
CN109265691A (zh) * 2017-07-18 2019-01-25 中国科学院苏州纳米技术与纳米仿生研究所 水凝胶及其制备方法与应用
CN108948380A (zh) * 2018-07-18 2018-12-07 贵州大学 纤维素聚质子型离子液体凝胶/纳米金属复合材料及其制备方法与应用
CN108948381A (zh) * 2018-07-24 2018-12-07 阿里生物新材料(常州)有限公司 一种用于去除水中银离子的壳聚糖基水凝胶及其制备方法
CN110327964A (zh) * 2019-08-02 2019-10-15 浙江师范大学 一种用于硫醚选择性氧化的钒催化剂及其制备方法
CN110935424A (zh) * 2019-11-27 2020-03-31 南京二维纳米科技有限公司 一种复合纳米凝胶的制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Facile preparation of size-controlled gold nanoparticles using versatile and end-functionalized thioether polymer ligands;Xin Huang;《Nanoscale》;20110208(第3期);第1600-1607页 *
Ultrahigh-surface-area nitrogen-doped hierarchically porous carbon materials derived from chitosan and betaine hydrochloride sustainable precursors for high-performance supercapacitors;Jian Cheng;《Sustainable Energy & Fuels 》;20190307(第3期);第1215–1224页 *
壳聚糖对大豆分离蛋白中残留砷的去除研究;张丽华;《农产品加工》;20171230(第24期);第7-8页 *
水凝胶的制备及应用研究;顾雪梅;《广州化工》;20120523;第40卷(第10期);第11-13页 *
聚乙烯醇壳聚糖凝胶的制备及性能研究;何领好;《化工新型材料》;20090715;第37卷(第7期);第33-36页 *
螯合树脂研究•ⅩⅨ以壳聚糖为母体的螯合树脂的合成及其吸附性能;胡运华;《离子交换与吸附》;19920629(第3期);第229-233页 *

Also Published As

Publication number Publication date
CN111617747A (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
Zhu et al. Preparation of PdNPs doped chitosan-based composite hydrogels as highly efficient catalysts for reduction of 4-nitrophenol
Tang et al. Mussel-inspired green metallization of silver nanoparticles on cellulose nanocrystals and their enhanced catalytic reduction of 4-nitrophenol in the presence of β-cyclodextrin
Wang et al. Reversible immobilization of glucoamylase onto magnetic chitosan nanocarriers
Pinto et al. Composites of cellulose and metal nanoparticles
Long et al. In situ synthesis of new magnetite chitosan/carrageenan nanocomposites by electrostatic interactions for protein delivery applications
Abdelgawad et al. Antibacterial carrageenan/cellulose nanocrystal system loaded with silver nanoparticles, prepared via solid-state technique
Jiang et al. Synthesis of superparamagnetic carboxymethyl chitosan/sodium alginate nanosphere and its application for immobilizing α-amylase
Jayeoye et al. Green, in situ fabrication of silver/poly (3-aminophenyl boronic acid)/sodium alginate nanogel and hydrogen peroxide sensing capacity
Gong et al. Facile synthesis of ultra stable Fe3O4@ Carbon core-shell nanoparticles entrapped satellite au catalysts with enhanced 4-nitrophenol reduction property
CN111617747B (zh) 一种壳聚糖/纳米金属复合水凝胶及其制备方法和应用
CN102827330A (zh) 一种温敏性核壳结构凝胶纳米粒子的制备方法及其产物的应用
CN111407722A (zh) 一种银纳米粒子复合水凝胶、其制备方法及其应用
CN111514097B (zh) 一种核桃壳多酚的pH响应型纳米水凝胶的制备方法
CN108948380B (zh) 纤维素聚质子型离子液体凝胶/纳米金属复合材料及其制备方法与应用
Rahmani et al. Preparation of self-healable nanocomposite hydrogel based on Gum Arabic/gelatin and graphene oxide: Study of drug delivery behavior
Jin et al. Calcium-cross linked polysaccharide microcapsules for controlled release and antimicrobial applications
Chen et al. Structural and mechanistic insights into starch microgel/anthocyanin complex assembly and controlled release performance
Karpuraranjith et al. Synergistic effect of chitosan-zinc-tin oxide colloidal nanoparticle and their binding performance on bovine albumin serum
Qian et al. Microwave-assisted solvothermal in-situ synthesis of CdS nanoparticles on bacterial cellulose matrix for photocatalytic application
Zhao et al. Synthesis and applications of pectin-based nanomaterials
Li et al. Synthesis and properties of silver nanoparticles in chitosan‐based thermosensitive semi‐interpenetrating hydrogels
Liu et al. ECOFRIENDLY FABRICATION OF Au/Fe 3 O 4-CHITOSAN COMPOSITES FOR CATALYTIC REDUCTION OF METHYL ORANGE.
Zhang et al. Chitosan/carbon dots modified cellulose nanofibrils/ZIF-8 gel bead: An effective and easily separable photocatalytic adsorbent for Cr (VI) removal
CN111349338A (zh) 一种用于热吸收传导的片层阵列复合材料及其制备和应用
CN108993534B (zh) 一种修饰密度高、均匀性好的纳米金/银磁性催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant