CN111437840A - 3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂及其制备方法和应用 - Google Patents

3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN111437840A
CN111437840A CN202010440440.4A CN202010440440A CN111437840A CN 111437840 A CN111437840 A CN 111437840A CN 202010440440 A CN202010440440 A CN 202010440440A CN 111437840 A CN111437840 A CN 111437840A
Authority
CN
China
Prior art keywords
comos
mos
type heterostructure
deionized water
hierarchical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010440440.4A
Other languages
English (en)
Other versions
CN111437840B (zh
Inventor
杨丽君
张蕾
张傲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning University
Original Assignee
Liaoning University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning University filed Critical Liaoning University
Priority to CN202010440440.4A priority Critical patent/CN111437840B/zh
Publication of CN111437840A publication Critical patent/CN111437840A/zh
Application granted granted Critical
Publication of CN111437840B publication Critical patent/CN111437840B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • B01J27/0515Molybdenum with iron group metals or platinum group metals
    • B01J35/33
    • B01J35/61
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/28Per-compounds
    • C25B1/30Peroxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

本发明属于催化技术领域,具体涉及一种3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂及其制备方法和应用,制备方法如下:将(NH4)6Mo7O24·4H2O和CH4N2S溶解于去离子水中,加入CoMoS4搅拌均匀,转移到高压釜中进行反应,自然冷却至室温后离心收集样品,去离子水和乙醇洗涤数次,干燥得到目标产物。在可见光照射以及特定附加偏压作用下,且没有任何助催化剂、牺牲剂条件下,在120min内催化合成的H2O2的产量高达到205μmol/L。本发明具有简便、高效、成本低、对可见光吸收度高的特点能够应用于光催化制备过氧化氢以及降解有机物等领域。

Description

3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂及其制备方 法和应用
技术领域
本发明涉及可见光响应的3D分级花状MoS2@CoMoS4 Z型异质结构催化剂及其制备方法和在光电催化制备H2O2方面的应用,主要针对于工业上大规模生产H2O2,属于高附加值化学品生产、催化技术领域。
背景技术
光催化技术是一种成本低、性能高、不会引发二次污染的成熟绿色技术,在绿色氧化降解和绿色合成方面均显示出潜在的应用前景。光电催化可以实现在电驱动下更有效地利用太阳能,提高太阳能转换成化学能的光能转换效率,以取得更好的应用价值。
过氧化氢(H2O2)作为一种仅以水和氧气为副产物的清洁化学氧化剂引发了人们的广泛关注。它不仅具有环境友好以及可再生等一系列优点,还是非常有前景的新型化学资源,被广泛应用于生物科学(消毒),环境修复(有机分解)和化学加工(纸浆漂白)等多个行业中。传统的H2O2的工业合成方法由于工艺复杂、成本高且产生大量的废弃有毒副产物等限制了这几种方法的实际应用。近年来,光催化生产H2O2受到了人们越来越多的关注,因为该过程仅需要水、氧气和阳光作为原料,将低密度太阳能转化为可储存化学能,具有无二次污染,设备简单,投资少,产量高等优点。但光催化生产H2O2这一手段很难选择性地阻止热力学更有利的4e-生成O2的副反应发生,而电催化与光催化相结合的光电催化手段进行相关改性可以有效克服这两种缺点,且催化剂更易回收,从而是一种更清洁可持续的生产方法。目前光电催化技术已被广泛被用于各种催化领域,包括产H2、O2以及CO2的还原,但由于在光阳极上通过光电化学水氧化反应生成H2O2时会具有比较高的氧化电位以及两种副产物O2和·OH,在H2O2生产方面所需要的催化剂既要有很强的氧化能力又要具有一定的选择性。另外,光生电子和空穴的复合导致光量子产率低,也限制了光电催化技术在实际中的应用。
研究发现,过渡金属硫化物兼具优良的光、电化学性能。片状、花状、立方体状等多种结构的硫化物通常具有很大的导电率使之具有很好的电化学性能;大多数过渡金属硫化物具有相对窄的带隙而具有比较好的可见光利用效率;同时具有很好的机械强度,容易获得,循环性好等优点,使其成为减少环境污染、生产和储存能源以及各种科学活动的最佳候选之一。因此,设计并构建具有大比表面积、良好的日光收集能力、良好的导电性、合适的能带位置的半导体材料,将是一种十分有效的用于生产H2O2的策略。
发明内容
本发明的目的之一是提供一种具有可见光响应并能有效分离光生电子和空穴的3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂及其制备方法。
本发明的目的之二是提供一种利用3D分级花状MoS2@CoMoS4 Z型异质结构光电催化制备H2O2的方法。
针对光催化生产H2O2很难选择性地阻止热力学更有利的4e-生成O2的副反应发生,通过将负载催化剂的碳纸用作工作电极、铂丝作为对电极,甘汞电极作为参比电极,通过电化学工作站给予-0.5V的电压,氙灯给光进行光电催化制备H2O2
为实现上述目的,发明采用的技术方案是:一种3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂,制备方法包括如下步骤:将(NH4)6Mo7O24·4H2O和CH4N2S溶解于去离子水中,加入CoMoS4搅拌均匀,转移到高压釜中进行反应,自然冷却至室温后离心收集样品,去离子水和乙醇洗涤数次,在60℃的烘箱中干燥12h,得到目标产物。
优选地,上述的一种3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂,按质量比,CoMoS4:(NH4)6Mo7O24·4H2O:CH4N2S为149:618:1142。
优选地,上述的一种3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂,所述的反应是在180℃下加热24h。
优选地,上述的一种3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂,所制备的3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂,其中MoS2和CoMoS4的质量比为0.05:1—0.25:1。
优选地,上述的一种3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂,所述的CoMoS4的制备方法包括如下步骤:分别取CoCl2·6H2O、(NH4)6Mo7O24·4H2O、CO(NH2)2、Na2S·9H2O和NH4F溶解于去离子水中,转移至高压釜中进行反应,自然冷却至室温后离心收集样品,并用去离子水和乙醇洗涤数次,在60℃的烘箱中干燥12h,得到CoMoS4
优选地,上述的一种3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂,按摩尔比,CoCl2·6H2O:(NH4)6Mo7O24·4H2O:CO(NH2)2:Na2S·9H2O:NH4F=0.5:0.071:5:3:2.5。
优选地,上述的一种3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂,所述的反应是在120℃下加热12h。
上述的一种3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂在光电催化制备H2O2中的应用。
优选地,上述的应用,方法如下:将权利要求1所述的3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂,加入到去离子水中超声分散,涂覆在碳纸上作为工作电极,铂丝为对电极,甘汞电极为参比电极,置于石英反应容器中,构成三电极体系;在-0.5V vs.RHE偏压、环境温度25℃的条件下,采用300W氙灯照射模拟太阳光照射,调节去离子水的pH至酸性并通入O2,使其在溶液中连续均匀的鼓泡,在黑暗中进行磁力搅拌60min,以达到照射前的吸附-脱附平衡,在光电驱动下进行反应。
优选地,上述的应用,所述的调节pH至酸性是采用HClO4将悬浮液的pH值调为3。
优选地,上述的应用,所述的光照为采用300W氙灯作为光源,所述的氙灯λ≥420nm。
本发明的有益效果是:本发明通过MoS2和CoMoS4两种材料复合的方式,进一步提高光响应范围及光催化性能,提高其捕捉光子的效率,抑制电子空穴对的复合,提高电子从价带跃迁至导带的利用率,提高光催化活性。采用本发明的方法,在可见光照射以及特定附加偏压作用下,在120min内催化合成的H2O2的产量高达到205μmol/L,为生产H2O2提供了绿色的合成路线和可持续技术。
本发明具有简便、高效、成本低、对可见光吸收度高的特点,所制备的3D分级花状MoS2@CoMoS4 Z型异质结构光电催化材料具有带隙窄、比表面积大、良好的导电性、催化活性高的特点,且有良好的可见光吸收性能和良好的稳定性,光生电子空穴对分离效率高,界面电荷传输效率快,光电催化制备H2O2产量高,能够应用于光催化制备过氧化氢以及降解有机物等领域。
附图说明
图1是3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂的SEM图。
图2是MoS2、CoMoS4和MoS2@CoMoS4的XRD图。
图3是不同气体环境对光电催化H2O2产生的影响。
图4是不同pH对光电催化H2O2产生的影响。
图5是MoS2、CoMoS4和MoS2@CoMoS4光电催化产生H2O2浓度。
具体实施方式
实施例1 3D分级花状MoS2@CoMoS4 Z型异质结复合催化剂的制备
(一)3D CoMoS4微花的制备
分别称量0.5mmol的CoCl2·6H2O、0.071mmol的(NH4)6Mo7O24·4H2O、5mmol的CO(NH2)2、3mmol的Na2S·9H2O和2.5mmol的NH4F,溶解于36mL去离子水中,在室温下搅拌以形成澄清溶液,然后将其转移到衬有特氟龙的不锈钢高压釜中,在120℃下加热12h,自然冷却至室温后收集产物,用去离子水和乙醇洗涤数次,并在60℃下干燥12h,得到CoMoS4
(二)3D分级花状MoS2@CoMoS4 Z型异质结复合催化剂的制备
分别称量0.5mmol的(NH4)6Mo7O24·4H2O和15mmol的CH4N2S溶解在35mL去离子水中,加入0.149g CoMoS4继续搅拌20min,然后将溶液转移至特氟龙高压釜中加热到180℃持续24h,自然冷却至室温后通过离心收集沉淀物,用蒸馏水和乙醇洗涤数次,在60℃的烘箱中干燥12h,得到分级花状MoS2@CoMoS4复合材料。
由图1可以看到,复合材料为3D分级花状结构,2D MoS2纳米薄片均匀生长在3DCoMoS4表面上。图2的XRD谱图证实了该复合材料为MoS2@CoMoS4
(三)不同MoS2、CoMoS4质量比的3D分级花状MoS2@CoMoS4 Z型异质结复合催化剂的制备
分别称量0.5mmol的(NH4)6Mo7O24·4H2O和15mmol的CH4N2S溶解在35mL去离子水中,分别加入0.0037g、0.0075g、0.00112g、0.149g和0.186g CoMoS4继续搅拌20min,然后将溶液转移至特氟龙高压釜中加热到180℃持续24h,自然冷却至室温后通过离心收集沉淀物,用蒸馏水和乙醇洗涤数次,在60℃的烘箱中干燥12h,按质量比,MoS2:CoMoS4=0.05:1、0.1:1、0.15:1、0.2:1、0.25:1。
实施例2
方法:称量5mg的复合材料,加入到0.5mL去离子水中,超声5min,用移液枪将分散液逐滴滴涂到碳纸上(2cm×1cm),并在60℃下干燥2h,以形成均匀的薄膜,得到光电极。
以上述得到的光电极作为工作电极,铂丝为对电极,甘汞电极为参比电极,置于石英反应容器中,构成三电极体系。在-0.5V vs.RHE偏压、环境温度25℃的条件下,采用300W氙灯照射模拟太阳光照射,将三电极体系***至含有50mL去离子水的石英反应器中,使用1.0mol/L HClO4调节溶液的pH值,在黑暗条件下向溶液中通入气体30min至饱和。在光电驱动的催化反应过程中,每30min取出1mL的溶液,用KMnO4氧化还原滴定法分析产出的H2O2含量。
(一)MoS2@CoMoS4复合材料的比例对H2O2的生成量的影响
在pH为3的50mL去离子水中,黑暗条件下通入O2 30min,采用比例不同的MoS2@CoMoS4复合材料负载在碳纸上做光电极制备H2O2,反应时间为120min。结果如表1。
表1
Figure BDA0002503967140000041
Figure BDA0002503967140000051
由表1可见,随着MoS2比例的增加,H2O2的生成量呈现先增加后减少的趋势。根据H2O2的生成量,选择含20%MoS2的复合材料为最佳催化剂。
(二)不同的气体环境对H2O2生成的影响
在pH为3的50mL去离子水,黑暗条件下分别将N2、空气和O2通入悬浮液中30min,采用MoS2@CoMoS4复合材料负载在碳纸上做光电极制备H2O2。结果如图3。
在O2/可见光辐射的条件下H2O2的生成量最高;当溶液中通入空气时,由于空气中的氧含量较低,因此H2O2的生成量下降;当溶液中通入N2时H2O2的生成几乎被完全抑制,只有极少量的H2O2生成,表明O2对光电催化生产H2O2是至关重要的。
(三)不同pH对H2O2生成的影响
在50mL去离子水,采用HClO4分别调节反应溶液的pH值为2、3、5,在黑暗条件下将O2通入悬浮液中30min,采用MoS2@CoMoS4复合材料负载在碳纸上做光电极制备H2O2。结果如图4。
在pH值为3时H2O2的生成量达到最大值,而当pH值继续增加至5或降低到2时,H2O2的含量减少,表明光电催化生产H2O2的活性还取决于水溶液的pH,故选pH为3时为最佳pH值。
实施例3
分别称取MoS2、CoMoS4和MoS2@CoMoS4各5mg,加入到0.5mL去离子水中,超声5min,用移液枪将溶液逐滴滴涂到碳布上(2cm×1cm),并在60℃下干燥2h,以形成均匀的薄膜,得到不同光电极,组建不同的三电极体系。在-0.5V vs.RHE偏压、环境温度25℃的条件下,在pH为3的50mL去离子水溶液中,采用300W氙灯照射模拟太阳光照射,采用不同光电极进行光电催化制备H2O2,结果如图5所示。
MoS2@CoMoS4 Z型异质结复合催化剂光催化产H2O2的效果要优于单一组分光电催化剂。反应120min后,MoS2@CoMoS4的H2O2产量达到了最大值,约为205μmol/L,分别为单纯CoMoS4(110μmol/L)和MoS2(70μmol/L)的2和3倍。

Claims (10)

1.一种3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂,其特征在于,制备方法包括如下步骤:将(NH4)6Mo7O24·4H2O和CH4N2S溶解于去离子水中,加入CoMoS4搅拌均匀,转移到高压釜中进行反应,自然冷却至室温后离心收集样品,去离子水和乙醇洗涤数次,在60℃的烘箱中干燥12h,得到目标产物。
2.根据权利要求1所述的一种3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂,其特征在于,按质量比,CoMoS4:(NH4)6Mo7O24·4H2O:CH4N2S为149:618:1142。
3.根据权利要求1所述的一种3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂,其特征在于,所述的反应是在180℃下加热24h。
4.根据权利要求1所述的一种3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂,其特征在于,所述的CoMoS4的制备方法包括如下步骤:分别取CoCl2·6H2O、(NH4)6Mo7O24·4H2O、CO(NH2)2、Na2S·9H2O和NH4F溶解于去离子水中,转移至高压釜中进行反应,自然冷却至室温后离心收集样品,并用去离子水和乙醇洗涤数次,在60℃的烘箱中干燥12h,得到CoMoS4
5.根据权利要求4所述的一种3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂,其特征在于,按摩尔比,CoCl2·6H2O:(NH4)6Mo7O24·4H2O:CO(NH2)2:Na2S·9H2O:NH4F=0.5:0.071:5:3:2.5。
6.根据权利要求4所述的一种3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂,其特征在于,所述的反应是在120℃下加热12h。
7.权利要求1所述的一种3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂在光电催化制备H2O2中的应用。
8.根据权利要求7所述的应用,其特征在于,方法如下:将权利要求1所述的3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂,加入到去离子水中超声分散,涂覆在碳纸上作为工作电极,铂丝为对电极,甘汞电极为参比电极,置于石英反应容器中,构成三电极体系;在-0.5V vs.RHE偏压、环境温度25℃的条件下,采用300W氙灯照射模拟太阳光照射,调节去离子水的pH至酸性并通入O2,使其在溶液中连续均匀的鼓泡,在黑暗中进行磁力搅拌60min,以达到照射前的吸附-脱附平衡,在光电驱动下进行反应。
9.根据权利要求8所述的应用,其特征在于,所述的调节pH至酸性是采用HClO4将悬浮液的pH值调为3。
10.根据权利要求8所述的应用,其特征在于,所述的光照为采用300W氙灯作为光源,所述的氙灯λ≥420nm。
CN202010440440.4A 2020-05-22 2020-05-22 3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂及其制备方法和应用 Active CN111437840B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010440440.4A CN111437840B (zh) 2020-05-22 2020-05-22 3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010440440.4A CN111437840B (zh) 2020-05-22 2020-05-22 3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111437840A true CN111437840A (zh) 2020-07-24
CN111437840B CN111437840B (zh) 2021-10-22

Family

ID=71657816

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010440440.4A Active CN111437840B (zh) 2020-05-22 2020-05-22 3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111437840B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112421065A (zh) * 2020-12-04 2021-02-26 合肥工业大学 一种碳/二硫化钼-硫钼钴复合电化学催化剂材料及其制备与应用
CN112853373A (zh) * 2021-01-08 2021-05-28 广东省科学院测试分析研究所(中国广州分析测试中心) 共生孪晶Ni2Mo6S6O2/MoS2二维纳米片的合成方法
CN114481168A (zh) * 2022-02-23 2022-05-13 辽宁大学 3D花状Z型异质结光电催化剂Zn3In2S6@Bi2WO6及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100280287A1 (en) * 2008-09-04 2010-11-04 Range Fuels, Inc. Cobalt-molybdenum sulfide catalyst materials and methods for stable alcohol production from syngas
CN106824198A (zh) * 2017-03-10 2017-06-13 中国科学技术大学 钴基产氧催化剂及其制备方法以及一种碱性制氢电解槽
CN107342174A (zh) * 2017-09-12 2017-11-10 信阳师范学院 一种二维层状CoMoS4纳米片为超级电容器电极材料的制备方法
CN107663637A (zh) * 2017-09-05 2018-02-06 中国科学院福建物质结构研究所 钼酸盐纳米复合材料及其制备方法和应用
CN108336335A (zh) * 2018-02-05 2018-07-27 福州大学 一种用作锂离子电池负极材料的钼酸钴/二硫化钼复合材料及其制备
CN109637834A (zh) * 2018-11-01 2019-04-16 太原理工大学 一种用于超级电容器的形貌可控的钴钼硫化物/石墨烯复合材料及其制备方法
CN110136975A (zh) * 2019-05-13 2019-08-16 华侨大学 一种无定形四硫代钼酸钴/硒化镍纳米片阵列复合材料的制备方法及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100280287A1 (en) * 2008-09-04 2010-11-04 Range Fuels, Inc. Cobalt-molybdenum sulfide catalyst materials and methods for stable alcohol production from syngas
CN106824198A (zh) * 2017-03-10 2017-06-13 中国科学技术大学 钴基产氧催化剂及其制备方法以及一种碱性制氢电解槽
CN107663637A (zh) * 2017-09-05 2018-02-06 中国科学院福建物质结构研究所 钼酸盐纳米复合材料及其制备方法和应用
CN107342174A (zh) * 2017-09-12 2017-11-10 信阳师范学院 一种二维层状CoMoS4纳米片为超级电容器电极材料的制备方法
CN108336335A (zh) * 2018-02-05 2018-07-27 福州大学 一种用作锂离子电池负极材料的钼酸钴/二硫化钼复合材料及其制备
CN109637834A (zh) * 2018-11-01 2019-04-16 太原理工大学 一种用于超级电容器的形貌可控的钴钼硫化物/石墨烯复合材料及其制备方法
CN110136975A (zh) * 2019-05-13 2019-08-16 华侨大学 一种无定形四硫代钼酸钴/硒化镍纳米片阵列复合材料的制备方法及其应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
LEI ZHANG ET AL.: ""Fabrication of 3D hierarchical CoSnO3@CoO pine needle-like array photoelectrode for enhanced photoelectrochemical properties"", 《JOURNAL OF MATERIALS CHEMISTRY A》 *
LIJUN YANG ET AL.: ""Architecting Z-scheme Bi2S3@CoO with 3D chrysanthemums-like architecture for both photoeletro-oxidization and -reduction performance under visible light"", 《CHEMICAL ENGINEERING JOURNAL》 *
XIANG REN ET AL.: ""Self-supported CoMoS4 nanosheet array as an efficient catalyst for hydrogen evolution reaction at neutral pH"", 《NANO RESEARCH》 *
YANNA GUO ET AL.: ""Mesoporous Iron-doped MoS2/CoMo2S4 Heterostructures through Organic−Metal Cooperative Interactions on Spherical Micelles for Electrochemical Water Splitting"", 《ACS NANO》 *
孙建鹏等: ""多孔CoS1.097/MoS2复合微球用于全pH值电解水产氢"", 《第十届全国无机化学学术会议(第一卷)》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112421065A (zh) * 2020-12-04 2021-02-26 合肥工业大学 一种碳/二硫化钼-硫钼钴复合电化学催化剂材料及其制备与应用
CN112853373A (zh) * 2021-01-08 2021-05-28 广东省科学院测试分析研究所(中国广州分析测试中心) 共生孪晶Ni2Mo6S6O2/MoS2二维纳米片的合成方法
US11946161B2 (en) 2021-01-08 2024-04-02 Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou) Method for synthesizing intergrown twin Ni2Mo6S6O2/MoS2 two-dimensional nanosheet
CN114481168A (zh) * 2022-02-23 2022-05-13 辽宁大学 3D花状Z型异质结光电催化剂Zn3In2S6@Bi2WO6及其制备方法和应用
CN114481168B (zh) * 2022-02-23 2024-03-22 辽宁大学 3D花状Z型异质结光电催化剂Zn3In2S6@Bi2WO6及其制备方法和应用

Also Published As

Publication number Publication date
CN111437840B (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
CN111437840B (zh) 3D分级花状MoS2@CoMoS4 Z型异质结构光电催化剂及其制备方法和应用
Hao et al. Controllable electrostatic self-assembly of sub-3 nm graphene quantum dots incorporated into mesoporous Bi 2 MoO 6 frameworks: efficient physical and chemical simultaneous co-catalysis for photocatalytic oxidation
WO2017128847A1 (zh) 一种规模化太阳能光催化-光电催化分解水制氢的方法
Mu et al. A review on metal-organic frameworks for photoelectrocatalytic applications
CN111450849B (zh) 3D分级立方体状α-MnS@CuS Z型异质结构光电催化剂及其制备方法和应用
CN111203231B (zh) 硫化铟锌/钒酸铋复合材料及其制备方法和应用
CN111437824B (zh) 3D层状微花结构CoWO4@Bi2WO6 Z型异质结复合催化剂及其制备方法和应用
Zhang et al. Ni (OH) 2 modified Mn0. 5Cd0. 5S with efficient photocatalytic H2 evolution activity under visible-light
CN111036243B (zh) 含氧空缺的过渡金属掺杂的BiOBr纳米片光催化剂及其制备方法和应用
CN107761127B (zh) 一种多酸和酞菁共同修饰的纳米多孔钒酸铋析氧电极的制备方法
Wang et al. The g-C3N4 nanosheets decorated by plasmonic Au nanoparticles: A heterogeneous electrocatalyst for oxygen evolution reaction enhanced by sunlight illumination
Zheng et al. Interaction between InP and SnO2 on TiO2 nanotubes for photoelectrocatalytic reduction of CO2
Albo et al. Electro‐, photo‐, and photoelectro‐chemical reduction of CO2
CN111468138B (zh) 一维棒状CuBi2O4@CuBi2S4可见光催化剂及其制备方法和应用
CN107570154B (zh) 一种铁基制氢电催化剂及制备方法
CN116555784A (zh) 一种疏水性中空双壳层Mo2N-Co3O4@Fe2O3 Z型异质结光电催化剂的制备方法和应用
Qi et al. ZIF/Co-C 3 N 4 with enhanced electrocatalytic reduction of carbon dioxide activity by the photoactivation process
CN113026031A (zh) 电极材料及其制备方法和应用以及组装电解水装置
CN109833893B (zh) 一种碳化钛复合磷掺杂氧化钨光电催化剂及其制备方法
CN113403642B (zh) BiVO4/Co1-XS复合光电极的制备方法及其应用
Ling et al. Self-assembled membranes modulate the active site of carbon fiber paper to boost the two-electron water oxidation reaction
CN112044442B (zh) 具有原子缺陷的β相镍铁氢氧化物/碳纳米管复合物的制备方法及其应用
CN113697783A (zh) 一种多孔g-C3N4纳米薄片的制备方法及其应用
CN111992215A (zh) 一种镧系钙钛矿负载二氧化铅催化剂及其制备方法和应用
Zhang et al. BaTiO3/Fe2O3/MoS2/Ti photoanode for visible light responsive photocatalytic fuel cell degradation of rhodamine B and electricity generation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant