CN111282586B - 一种原位氧化铝包覆碳化钛催化剂的制备方法及其应用 - Google Patents

一种原位氧化铝包覆碳化钛催化剂的制备方法及其应用 Download PDF

Info

Publication number
CN111282586B
CN111282586B CN202010210280.4A CN202010210280A CN111282586B CN 111282586 B CN111282586 B CN 111282586B CN 202010210280 A CN202010210280 A CN 202010210280A CN 111282586 B CN111282586 B CN 111282586B
Authority
CN
China
Prior art keywords
reaction
titanium carbide
preparation
catalyst
mul
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010210280.4A
Other languages
English (en)
Other versions
CN111282586A (zh
Inventor
梁诗景
詹辉
江莉龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202010210280.4A priority Critical patent/CN111282586B/zh
Publication of CN111282586A publication Critical patent/CN111282586A/zh
Application granted granted Critical
Publication of CN111282586B publication Critical patent/CN111282586B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • B01J35/33
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/32Freeze drying, i.e. lyophilisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

本发明公开了一种超疏水性原位氧化铝包覆碳化钛催化剂的制备方法及其应用,属于材料制备、电催化及精细化工的技术领域。所述的电催化剂是以氟化钠、商品碳化铝钛、N‑甲基吡咯烷酮、碳酸钠、氢氧化钠、聚四氟乙烯为原料,通过分批次投料,温和条件下加热搅拌法,利用刻蚀溶出的铝离子作为铝源,首次开发出高性能的电催化固氮用超疏水性原位氧化铝包覆碳化钛电催化剂。本发明制备的电催化剂具有很好的稳定性,比表面积大,良好的电催化性能,同时还保持良好的抗氧化性能,很高的热稳定性等。本发明的制备过程简单方便,能耗低,成本低,有较大的应用潜力。

Description

一种原位氧化铝包覆碳化钛催化剂的制备方法及其应用
技术领域
本发明属于材料制备、电催化及精细化工的技术领域,具体涉及一种超疏水性原位氧化铝包覆碳化钛催化剂的制备方法与应用。
背景技术 氨是世界上生产的第二大化学品。2015年全球氨生产量接近1.46亿吨,预计到2050年将增长40%,氨基肥料有助于为全球增长的人口供应食物(到2050年约100亿)。氨还可以在清洁运输的发展中发挥重要作用,并且可以直接用于氨燃料电池或间接用于氢燃料电池。与其他常规燃料相比,氨可以是氢的优质能量载体(例如,液氨中的氢含量为17.6 wt%,而甲醇为12.5 wt%)。因此,可持续的氨生产是食品能源化学的关键。
目前氨的生产主要依靠工业上的Haber-Bosch工艺。Haber-Bosch工艺必须在高温高压下使用纯氢进行氨合成,而纯氢通常来源于天然气的蒸汽重整;同时,天然气的蒸汽重整过程中会产生大量的二氧化碳气体,因此,氨生产是引起气候变化的重要因素。找到新型的合成氨的替代方法在目前来说具有很大的科学意义。尽管文献仍然稀少,但已经报道了许多通过N2和水或蒸汽的电还原直接产生NH3的电催化研究。大多数关于氨的电化学生产的研究都是基于高温和高压下的固态电解质。其他研究也是基于液体电解质,如有机溶剂,离子液体,熔盐,高压或环境压力的含水电解质。在这些研究中,过渡金属配合物和材料通常被用作催化剂。如果利用溶剂水直接作为氢质子来源来代替氢气作为氢质子来源,不仅能够大大节约氨合成过程中的成本,同时也避免了重整过程中的二氧化碳排放,减少了对环境的影响,因此水性电解质方法具有简单性和低成本的特点。然而,含水电解质方法遭受竞争性氢析出,这限制了总效率,导致总反应速率低。迄今为止,在环境条件下含水反应的法拉第效率基本都不超过10%。
碳化钛是一种新型的二维材料,单层的厚度通常小于1 nm,横向尺寸范围从纳米到微米。此外,碳化钛具有丰富的表面官能团,例如羟基,氧或氟。在存在完整的金属原子层和表面官能团的情况下,使其拥有良好的电子传导性和亲水性质,同时,碳化钛结构高度有序,可用理论计算预测其性质。碳化钛由于其层状结构具有更大的内表面积,并且通过N-甲基吡咯烷酮的插层后的碳化钛晶面间距会进一步增加,使其内表面积进一步扩大,并且碳化钛的层间空间有利于氮气的富集,因此能够使碳化钛成为电还原固氮成为可能。
发明内容
本发明的目的在于提供一种超疏水性原位氧化铝包覆碳化钛催化剂制备方法及其在电催化方面的应用。
为实现上述目的,本发明采用如下技术方案:
一种超疏水性原位氧化铝包覆碳化钛催化剂是以氟化钠、商品碳化铝钛、N-甲基吡咯烷酮、碳酸钠、氢氧化钠、聚四氟乙烯为原料,通过分批次投料,温和条件下加热搅拌法,利用刻蚀溶出的铝离子作为铝源,制备出高性能的电催化固氮用超疏水性原位氧化铝包覆碳化钛电催化剂,具体包括以下步骤:
1)取0.4 g Ti3AlC2和50 mL的NMP溶液含NaF(6 mol/L)放入塑料反应器中,在60-100 ℃下进行搅拌加热,转速为1000 r/min,反应时间为1-4 h。
2)于反应得到的悬浊液中加入0.05-0.2 g碳酸钠和50-100 µL 聚四氟乙烯PTFE乳浊液(含量40wt%),并利用4 mol/L的氢氧化钠溶液调节pH值为10,在60 ℃,1000 r/min下继续搅拌反应0.5-2 h, 然后置于超声波机(频率40 kHz, 功率100 W)中超声反应1 h。
3)将上述反应液在3500 r/min的离心机中离心去除溶剂后,再分别用无水乙醇和去离子水洗涤至溶液中离子溶度低于10 ppm。最后移入冷冻干燥机在-18℃下进行冷冻干燥6 h,得到样品。
所得的超疏水性原位氧化铝包覆碳化钛催化剂主要是用于电化学合成氨。具体为:将2 mg所述催化剂分散于由225 µL乙醇,225 µL水和50 µL nafion所组成的分散液中,超声分散一个小时后,取50 µL分散液滴于1*1 cm-2的碳纸上制成工作电极,然后在利用传统三电极体系进行电催化合成氨。
本发明的显著优点在于:
(1)本发明制备条件简单,首次利用N-甲基吡咯烷酮插层碳化钛材料,所制得的材料层间距增加,使其能够暴露更多的表面缺陷,提供更多的反应活性中心。
(2)创造性的利用聚四氟乙烯溶液对电极材料做疏水处理后,使得材料本身具备了超疏水性,从而抑制了电化学固氮中的析氢反应,提高了固氮反应的法拉第效率。
(3)创造性的利用原位生成氧化铝包覆,形成了氧化铝-碳化钛-聚四氟乙烯强复合结构,首次制备出了一种新型的超疏水性原位氧化铝包覆碳化钛催化剂。
(4)创造性的利用N-甲基吡咯烷酮、聚四氟乙烯、碳酸钠和刻蚀产生的铝离子协同制备出超疏水性原位氧化铝包覆碳化钛催化剂,克服了以往报道的碳化钛催化剂材料制备过程复杂,需要多工序才能做到氧化铝包覆和催化剂的超疏水性的问题。
附图说明
图1为实施例1所得超疏水性原位氧化铝包覆碳化钛催化剂的X射线粉末衍射图(XRD)。
图2为实施例2所得超疏水性原位氧化铝包覆碳化钛催化剂电催化剂的扫描电镜图。
图3为实施例2所得超疏水性原位氧化铝包覆碳化钛催化剂施加偏压,不施加偏压和空白样进行电化学固氮后溶液中氨含量对比图。
图4为实施例1所制备得到的碳化钛材料的亲疏水性测试。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1
取0.4 g Ti3AlC2和50 mL的NMP溶液含NaF(6 mol/L)放入塑料反应器中,在60 ℃下进行搅拌加热,转速为1000 r/min,反应时间为4 h。于反应得到的悬浊液中加入0.2 g碳酸钠和50 µL PTFE乳浊液(含量40%),并利用4 mol/L的氢氧化钠溶液调节pH值为10,在60℃,1000 r/min下继续搅拌反应0.5 h, 然后置于超声波机(频率40 kHz, 功率100 W)中超声反应1 h。将上述反应液在3500 r/min的离心机中离心去除溶剂后,再分别用无水乙醇和去离子水洗涤至溶液中离子溶度低于10 ppm。最后移入冷冻干燥机进行冷冻干燥,得到样品。
实施例2
取0.4 g Ti3AlC2和50 mL的去离子水含NaF(6 mol/L)放入塑料反应器中,在80 ℃下进行搅拌加热,转速为1000 r/min,反应时间为2 h。于反应得到的悬浊液中加入0.05 g碳酸钠和60 µL PTFE乳浊液(含量40%),并利用4 mol/L的氢氧化钠溶液调节pH值为10,在60 ℃,1000 r/min下继续搅拌反应0.5 h, 然后置于超声波机(频率40 kHz, 功率100 W)中超声反应1 h。将上述反应液在3500 r/min的离心机中离心去除溶剂后,再分别用无水乙醇和去离子水洗涤至溶液中离子溶度低于10 ppm。最后移入冷冻干燥机进行冷冻干燥,得到样品。
实施例3
取0.4 g Ti3AlC2和50 mL的去离子水含NaF(6 mol/L)放入塑料反应器中,在80 ℃下进行搅拌加热,转速为1000 r/min,反应时间为1 h。于反应得到的悬浊液中加入0.2 g碳酸钠和100 µL PTFE乳浊液(含量40%),并利用4 mol/L的氢氧化钠溶液调节pH值为10,在60℃,1000 r/min下继续搅拌反应2 h, 然后置于超声波机(频率40 kHz, 功率100 W)中超声反应1 h。将上述反应液在3500 r/min的离心机中离心去除溶剂后,再分别用无水乙醇和去离子水洗涤至溶液中离子溶度低于10 ppm。最后移入冷冻干燥机进行冷冻干燥,得到样品。
实施例4
取0.4 g Ti3AlC2和50 mL的去离子水含NaF(6 mol/L)放入塑料反应器中,在100℃下进行搅拌加热,转速为1000 r/min,反应时间为1 h。于反应得到的悬浊液中加入0.1 g碳酸钠和60 µL PTFE乳浊液(含量40%),并利用4 mol/L的氢氧化钠溶液调节pH值为10,在60 ℃,1000 r/min下继续搅拌反应0.5 h, 然后置于超声波机(频率40 kHz, 功率100 W)中超声反应1 h。将上述反应液在3500 r/min的离心机中离心去除溶剂后,再分别用无水乙醇和去离子水洗涤至溶液中离子溶度低于10 ppm。最后移入冷冻干燥机进行冷冻干燥,得到样品。
应用例1
将2 mg本发明制备获得样品分散于由225 µL乙醇,225 µL水和50 µL nafion所组成的分散液中,超声分散一个小时后,取50 µL分散液滴于1*1 cm-2的碳纸上制成工作电极。然后在利用传统三电极体系进行电催化合成氨。
图1为实施例1至实施例4所得碳化钛电催化剂的X射线粉末衍射图,从图1可以看出,利用本发明方法成功制备出二维层状碳化钛,并且在经过N-甲基吡咯烷酮插层处理后,晶面(002),即2θ处峰位置前移,表明晶面间距明显增大。氧化铝和聚四氟乙烯的包覆修饰并不改变碳化钛材料的结晶性。
图2为未经反应的碳化铝钛与实施例2的扫描电镜图的比较。从图中可以看出,碳化铝钛为致密性层状结构(图2左)。而利用本发明制备的二维层状碳化钛材料为纳米片状堆叠结构,并且可以清楚的看到碳化铝钛中间铝层被剥离(图2右)。且碳化钛表面被覆盖一层略微粗糙的氧化铝和聚四氟乙烯复合层。
图3为实施例1所制备得到的碳化钛材料制备成电催化工作电极后,采用三电极***,施加-0.3 V的偏压与不施加偏压,氩气气氛下空白实验及其直接用不滴加任何溶液的1cm*1 cm的碳纸作为空白样,然后对比其固氮反应后的氨产量。电化学反应用三电极***,制备电极作为工作电极,参比电极电极为银/氯化银电极,铂片作为对电极,氨含量测定用离子色谱及靛酚蓝分光光度法。
图4为实施例1所制备得到的碳化钛材料的亲疏水性测试。从图中可见,水的接触角达到146度,展现了超疏水性。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (7)

1.一种用于电化学合成氨的原位氧化铝包覆碳化钛催化剂的制备方法,其特征在于:所述催化剂以氟化钠NaF、商品碳化铝钛Ti3AlC2、N-甲基吡咯烷酮NMP、碳酸钠、氢氧化钠、聚四氟乙烯PTFE为原料,具体制备方法为:利用氟化钠将商品碳化铝钛中Al层刻蚀溶出,利用N-甲基吡咯烷酮填充Al层空间,形成层状碳化钛后,通过碳酸钠和氢氧化钠,调节反应体系的pH值,实现将溶出的Al离子在碳化钛表面转化为氧化铝包覆层;与此同时,引入的聚四氟乙烯乳浊液,使得聚四氟乙烯与氧化铝层形成紧密复合,从而最终得到超疏水性原位氧化铝包覆碳化钛催化剂;具体包括以下步骤:
1)取0.4 g Ti3AlC2和50 mL的含6 mol/LNaF的NMP溶液放入塑料反应器中,进行搅拌加热反应;
2)于反应得到的悬浊液中加入0.05-0.2 g碳酸钠和50-100 µL 含量40wt%PTFE乳浊液,并利用4 mol/L的氢氧化钠溶液调节pH值为10,继续搅拌反应, 然后超声反应1 h;
3)将上述反应液在3500 r/min的离心机中离心去除溶剂后,再分别用无水乙醇和去离子水洗涤至溶液中离子溶度低于10 ppm,最后移入冷冻干燥机在-18℃下进行冷冻干燥6h,得到样品。
2.根据权利要求1所述的制备方法,其特征在于:步骤1)所述搅拌加热反应具体为:在60-100 ℃下进行搅拌加热,转速为1000 r/min,反应时间为1-4 h。
3.根据权利要求1所述的制备方法,其特征在于:步骤2)所述继续搅拌反应具体为:在60 ℃,1000 r/min下继续搅拌反应0.5-2 h。
4.根据权利要求1所述的制备方法,其特征在于:步骤2)所述超声反应的超声机条件是:频率40 kHz, 功率100 W。
5.如权利要求1-4任一项所述方法制备的用于电化学合成氨的原位氧化铝包覆碳化钛催化剂。
6.如权利要求5所述的原位氧化铝包覆碳化钛催化剂在用于电化学合成氨的应用。
7.根据权利要求6所述的应用,其特征在于:将2 mg所述催化剂分散于由225 µL乙醇,225 µL水和50 µL nafion所组成的分散液中,超声分散一个小时后,取50 µL分散液滴于1*1 cm-2的碳纸上制成工作电极,然后在利用传统三电极体系进行电催化合成氨。
CN202010210280.4A 2020-03-24 2020-03-24 一种原位氧化铝包覆碳化钛催化剂的制备方法及其应用 Active CN111282586B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010210280.4A CN111282586B (zh) 2020-03-24 2020-03-24 一种原位氧化铝包覆碳化钛催化剂的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010210280.4A CN111282586B (zh) 2020-03-24 2020-03-24 一种原位氧化铝包覆碳化钛催化剂的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN111282586A CN111282586A (zh) 2020-06-16
CN111282586B true CN111282586B (zh) 2022-07-08

Family

ID=71028635

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010210280.4A Active CN111282586B (zh) 2020-03-24 2020-03-24 一种原位氧化铝包覆碳化钛催化剂的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN111282586B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113089001B (zh) * 2021-03-24 2022-05-13 福州大学 一种超疏水性的钼基催化剂的制备方法及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2005568A1 (fr) * 1968-04-04 1969-12-12 Battelle Institut E V Electrodes avec catalyseur mixte a carbure metallique pour cellules a combustibles-hydrogene et procede pour la preparation du catalyseur
CN1609055A (zh) * 2004-09-21 2005-04-27 北京交通大学 一种钛硅碳化物粉及其以铝为反应助剂的常压合成方法
CN103014793A (zh) * 2012-12-11 2013-04-03 广东电网公司电力科学研究院 脉冲电沉积制备碳化钛涂层的方法
CN105463224A (zh) * 2015-11-25 2016-04-06 陕西理工学院 一种TiCx-Al2O3-TiAl3/Al基复合材料及其制备方法
CN107930621A (zh) * 2017-12-07 2018-04-20 中国工程物理研究院核物理与化学研究所 一种碳化硅疏水催化剂及制备方法
CN109167066A (zh) * 2018-09-03 2019-01-08 济南大学 一种少层碳化钛原位生长氮掺杂碳纳米管三维复合材料的制备方法
CN109647464A (zh) * 2019-01-09 2019-04-19 青岛大学 一种将氮气转化为氨气的电催化材料

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6838205B2 (en) * 2001-10-10 2005-01-04 Lynntech, Inc. Bifunctional catalytic electrode

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2005568A1 (fr) * 1968-04-04 1969-12-12 Battelle Institut E V Electrodes avec catalyseur mixte a carbure metallique pour cellules a combustibles-hydrogene et procede pour la preparation du catalyseur
CN1609055A (zh) * 2004-09-21 2005-04-27 北京交通大学 一种钛硅碳化物粉及其以铝为反应助剂的常压合成方法
CN103014793A (zh) * 2012-12-11 2013-04-03 广东电网公司电力科学研究院 脉冲电沉积制备碳化钛涂层的方法
CN105463224A (zh) * 2015-11-25 2016-04-06 陕西理工学院 一种TiCx-Al2O3-TiAl3/Al基复合材料及其制备方法
CN107930621A (zh) * 2017-12-07 2018-04-20 中国工程物理研究院核物理与化学研究所 一种碳化硅疏水催化剂及制备方法
CN109167066A (zh) * 2018-09-03 2019-01-08 济南大学 一种少层碳化钛原位生长氮掺杂碳纳米管三维复合材料的制备方法
CN109647464A (zh) * 2019-01-09 2019-04-19 青岛大学 一种将氮气转化为氨气的电催化材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A novel route to prepare a Ti3SnC2/Al2O3 composite;Wang, S et.al;《SCRIPTA MATERIALIA》;20170122;第131卷;第80-83页 *

Also Published As

Publication number Publication date
CN111282586A (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
Chen et al. Activity origins and design principles of nickel-based catalysts for nucleophile electrooxidation
Sun et al. Bismuth-based free-standing electrodes for ambient-condition ammonia production in neutral media
Tang et al. Advances in the application of manganese dioxide and its composites as electrocatalysts for the oxygen evolution reaction
Zeng et al. Highly boosted gas diffusion for enhanced electrocatalytic reduction of N 2 to NH 3 on 3D hollow Co–MoS 2 nanostructures
CN103394350A (zh) 一种钛钨氧化物包覆碳纳米管载铂电催化剂的制备方法
CN109279583A (zh) 一种二硒化钼/氮掺杂碳复合纳米材料及其制备方法与应用
CN110117797B (zh) 一种电解池及其在电解水制氢中的应用
Ying et al. Mn-doped Bi2O3 nanosheets from a deep eutectic solvent toward enhanced electrocatalytic N2 reduction
Bhullar et al. Effect of water frustration on water oxidation catalysis in the nanoconfined interlayers of layered manganese oxides birnessite and buserite
CN111282586B (zh) 一种原位氧化铝包覆碳化钛催化剂的制备方法及其应用
CN111229318B (zh) 一种超疏水性铜基原位复合催化剂及其制备方法与应用
Chebrolu et al. Overview of emerging catalytic materials for electrochemical green ammonia synthesis and process
Broicher et al. Particle size-controlled synthesis of high-performance MnCo-based materials for alkaline OER at fluctuating potentials
Glebova et al. Thermally expanded graphite as functional material in the technology of electrode material with mixed conductivity
Lv et al. N/C doped nano-size IrO2 catalyst of high activity and stability in proton exchange membrane water electrolysis
CN106935858B (zh) 一种大面积石墨烯的制备方法及其应用
CN114203989A (zh) FeP/Fe2P/NC复合材料及其制备方法
CN114855216A (zh) 一种镍基制氢催化剂及其合成方法、应用
CN114808026A (zh) 一种二维金属有机框架纳米片支撑贵金属单原子催化剂及其制备方法和应用
Ruan et al. Emerging two-dimensional materials for electrocatalytic nitrogen reduction reaction to yield ammonia
Wang et al. Crystalline-Amorphous Ni3Se4-Ni Hydroxide Heterostructure as an Efficient Electrocatalyst for Oxidation Evolution Reaction
CN111268723A (zh) 控制二氧化锡形貌的方法、锡-二氧化锡复合材料及应用
Kuang et al. Efficient electrocatalytic CO 2 conversion into formate with Al x Bi y O z nanorods in a wide potential window
CN113604835B (zh) 用于enrr的电催化材料b-vs2的制备方法
Kuroda et al. Oxygen evolution reaction (OER) at nanostructured metal oxide electrocatalysts in water electrolyzers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant