CN111200309A - 一种双向直流充电机电路 - Google Patents

一种双向直流充电机电路 Download PDF

Info

Publication number
CN111200309A
CN111200309A CN202010031375.XA CN202010031375A CN111200309A CN 111200309 A CN111200309 A CN 111200309A CN 202010031375 A CN202010031375 A CN 202010031375A CN 111200309 A CN111200309 A CN 111200309A
Authority
CN
China
Prior art keywords
bridge
circuit
bidirectional
frequency
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010031375.XA
Other languages
English (en)
Inventor
周强
杨斌
黄晓康
吴景童
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Energy Efficiency Electrical Technology Co.,Ltd.
Original Assignee
Gospower Digital Technology Shenzhen Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gospower Digital Technology Shenzhen Co ltd filed Critical Gospower Digital Technology Shenzhen Co ltd
Priority to CN202010031375.XA priority Critical patent/CN111200309A/zh
Publication of CN111200309A publication Critical patent/CN111200309A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种双向直流充电机电路,包括与交流侧连接的双向AC/DC变换电路和与直流侧连接的双向DC/DC变换电路,双向AC/DC变换电路与双向DC/DC变换电路通过母线相连;双向AC/DC变换电路包括全桥开关电路,双向DC/DC变换电路包括带高频变压器的双半桥LLC电路;正向工作时,全桥开关电路工作整流模式下,两个半桥交替工作在工频和高频模式,反向工作时,全桥开关电路工作在逆变模式。本发明的AC/DC电路的两个半桥工作在工频和高频交替状态,可以有效减少开关损耗,降低开关管的发热。

Description

一种双向直流充电机电路
[技术领域]
本发明涉及双向直流充电机,尤其涉及一种双向直流充电机电路。
[背景技术]
随着人们户外出行的需求增加,需要在户外对一些交流用电设备的供电,但是电动汽车的动力电池是直流电。传统的车载逆变器也可以提供交流220V的输出,但是取电方式是从低压蓄电池取电。低压蓄电池的存储电量较小。因此需要车载DC/DC变换器先从动力电池取电到低压蓄电池,然后再从低压蓄电池通过车载逆变器转换为交流220V给随车交流用电设备供电。两级能量转换的过程中会带来能量的损耗,而且车载逆变器一般功率较小,只有几百瓦。
申请号为CN201110167515.7的发明公开了一种电动汽车车载双向充电机,包括:AC/DC变换器、DC/DC变换器、微处理器控制电路及滤波电路;所述AC/DC变换器一端经滤波电路连接电网,另一端经DC/DC变换器连接电池组;所述微处理器控制电路分别与AC/DC变换器及DC/DC变换器相连。该发明AC/DC变换器四个开关管S5、S6、S7、S8同步驱动,开关损耗大。
[发明内容]
本发明要解决的技术问题是提供一种AC/DC变换器开关损耗小,发热低的双向直流充电机电路。
为了解决上述技术问题,本发明采用的技术方案是,一种双向直流充电机电路,包括与交流侧连接的双向AC/DC变换电路和与直流侧连接的双向DC/DC变换电路,双向AC/DC变换电路与双向DC/DC变换电路通过母线相连;双向AC/DC变换电路包括全桥开关电路,双向DC/DC变换电路包括带高频变压器的双半桥LLC电路;正向工作时,全桥开关电路工作整流模式下,两个半桥交替工作在工频和高频模式,反向工作时,全桥开关电路工作在逆变模式下,两个半桥交替工作在工频和高频模式。
以上所述的双向直流充电机电路,正向工作时,双半桥LLC电路与母线连接的第一半桥作为原边工作在PFM或PWM+Burst模式下;当双半桥LLC电路的第一半桥工作在PWM+Burst模式时,与所述直流侧连接的第二半桥作为副边不进行驱动,利用开关管的体二极管进行整流;反向工作时,双半桥LLC电路的第二半桥作为原边工作在PFM或PWM+Burst模式下,双半桥LLC电路的第一半桥作为副边不进行驱动,利用开关管的体二极管进行整流。
以上所述的双向直流充电机电路,正向工作时,全桥开关电路工作SPWM整流模式下,两个半桥交替工作在单极性SPWM调制的工频和高频模式;反向工作时,全桥开关电路工作在SPWM逆变模式下,两个半桥交替工作在单极性SPWM调制的工频和高频模式。
以上所述的双向直流充电机电路,带高频变压器的双半桥LLC电路包括谐振部件和隔直电容,谐振部件包括谐振电感和谐振电容;双半桥LLC电路第一半桥的中点通过谐振部件与高频变压器的第一绕组串接,双半桥LLC电路第二半桥的中点通过隔直电容与高频变压器的第二绕组串接。
以上所述的双向直流充电机电路,双向AC/DC变换电路包括电感,全桥开关电路第一半桥的中点通过电感接第一交流端子,全桥开关电路第二半桥的中点接第二交流端子。
以上所述的双向直流充电机电路,正向重载时,双半桥LLC电路第二半桥的开关管跟随双半桥LLC电路第一半桥的开关管同步整流,采用PFM调频调制,开关频率的调节范围在最小开关频率与最大开关频率之间,占空比固定为最大值。
以上所述的双向直流充电机电路,正向轻载或空载时,双半桥LLC电路第一半桥的开关管采用PWM占空比调制;保持开关频率为最大开关频率不变,占空比变化范围在最大值与最小值之间调节。
以上所述的双向直流充电机电路,正向轻载或空载时,双半桥LLC电路第一半桥的开关管采用PWM脉冲Burst调制,在PWM脉冲Burst调制期间,保持开关频率为最大开关频率,保持PWM占空比为最小值。
本发明双向直流充电机电路AC/DC电路的两个半桥工作在工频和高频交替状态,可以有效减少开关损耗,降低开关管的发热。
[图说明]
下面结合图和具体实施方式对本发明作进一步详细的说明。
图1是本发明实施例双向直流充电机的外形图。
图2是本发明实施例双向直流充电机电路的原理图。
图3是本发明实施例双向AC/DC全桥电路的驱动波形图。
图4是本发明实施例双向DC/DC电路重载驱动波形及电流电压对应图。
图5是双向DC/DC电路第一半桥开关管轻载或空载驱动波形图。
其中,A)为PWM占空比调制,B)为PWM脉冲Burst调制。
图6是本发明实施例双向DC/DC电路调制增益图。
[具体实施方式]
如图1所示,本发明实施例双向小功率直流充电机由三部分组成:交流插头及电缆线10、双向小功率直流充电机主体20和直流充电枪头及电缆线30。交流插头及电缆线10和直流充电枪头及电缆线30分别于双向小功率直流充电机主体的交流侧端口和直流侧端口相连。当双向小功率直流充电机正向工作时,可以通过交流插头及电缆线10获取单相交流电经过双向小功率直流充电机的功率转换电路转变为直流电通过直流充电枪头及电缆线30给电动汽车的动力电池充电。当双向小功率直流充电机反向工作时,可以通过直流枪头及电缆线30获取动力电池直流电经过双向小功率直流充电机的功率转换电路转变为交流电通过交流插头及电缆线10给交流侧的用电设备供电。
如图2所示,本发明实施例的双向小功率直流充电机电路主要由两级电路组成,一级为双向AC/DC变换电路,采用全桥开关电路,另一级为双向DC/DC变换电路,采用带高频变压器的双半桥LLC电路。两级电路的直流侧通过母线电容相连。
正向工作时,AC/DC全桥开关电路工作在SPWM整流模式下,将交流端口的单相交流电调制为母线直流电。全桥开关电路的两个半桥交替工作在单极性SPWM调制的工频和高频模式下,使得每个开关管发热均匀,相比于单机倍频SPWM调制方式能减少一半的开关损耗。DC/DC LLC第一半桥作为原边工作在PFM+PWM+Burst工作模式下。在重载情况下DC/DC半桥LLC原边工作在PFM调频模式,调节传输增益,第二半桥作为副边进行同步整流。在轻载或空载模式下,DC/DC LLC第一半桥作为原边工作在PFM调频模式或者PWM脉冲Burst模式下,第二半桥作为副边半桥不进行驱动,利用体二极管进行整流,直流输出侧给动力电池充电。
反向工作时,第二半桥作为原边工作在PFM+PWM+Burst工作模式下,第一半桥工作在整流模式,将动力电池电压转变为直流母线电压。AC/DC全桥开关电路工作在SPWM逆变模式下,将直流母线电压调制为单相交流电输出。全桥开关的两个半桥交替工作在单极性SPWM调制工频和高频模式下。
如图2所示,双向AC/DC全桥电路21的交流侧与交流端子相连,交流侧通过交流电感L1与4个开关管Q1、Q2、Q3、Q4组成的全桥开关电路相连。双向AC/DC全桥电路的直流侧与母线电容C1相连。双向DC/DC双半桥LLC电路22的一侧与直流母线电容C1相连,另一侧与直流端口的电容C3相连。母线电容C1与开关管Q5、Q6组成的第一半桥电路220相连,第一半桥电路220的中点通过谐振部件221与高频变压器T1的第一绕组串连。谐振部件221由谐振电感Lr和谐振电容Cr组成。高频变压器T1的第二绕组通过隔直电容C2与第二半桥电路224的中点相连。第二半桥电路224由开关管Q7、Q8组成。第二半桥电路的直流端与直流端口电容C3相连。
正向工作时,双向AC/DC全桥电路21工作在SPWM整流模式。图3展示了实施例的AC/DC全桥开关管对应交流输入电压的驱动波形。第一半桥的开关管Q1、Q2和第二半桥的Q3、Q4分成两级交替工作在工频和高频模式下。相比于固定两个开关管工作在高频,两个开关管工作在工频,这种交替驱动方式能够让每个开关管的损耗近似相等,有利于热均匀。相比于四个开关管全部工作在高频模式驱动,能够将开关管的开关损耗减少一半。正向工作将交流侧能量转换为直流母线的直流能量。
反向工作时,AC/DC全桥电路21工作在SPWM逆变模式,其发波方式与正向保持一致,也采用工频和高频交替工作模式下。反向工作将直流母线的直流能量逆变为交流侧的单相交流电输出。
正向工作时,双向DC/DC半桥电路22的第一半桥开关220作为输入侧开关,谐振部件221参与谐振。副边的第二半桥开关224工作在整流模式下。隔直电容C2主要用于防止高频变压器偏磁导致的磁饱和。正向工作将直流母线的能量转换为直流端口能量输出给电动汽车动力电池充电。
图4中,展示了在正向工作,且带重载情况下双向DC/DC半桥电路22的第一半桥开关管和第二半桥开关管的驱动波形和原边电流Ip、副边电流Is的波形。此时第二半桥开关管Q7、Q8的驱动跟随第一半桥开关管Q5、Q6进行同步整流。此时的调制为PFM调频调制,开关频率fs调节范围为fmin(最小开关频率)<fs<fmax(最大开关频率),占空比为最大50%不变。
图5中,展示了在正向工作,且带轻载或空载情况下双向DC/DC半桥电路22的第一半桥开关管的两种调制模式。图5中的A)展示了调制为PWM占空比调制。保持开关频率为最大开关频率fmax不变,占空比变化范围Dmin<D<Dmax。在本实施例中取最小占空比Dmin为0.3,最大占空比Dmax为0.5。图5中的B)展示了调制为PWM脉冲Burst调制,图中Burst周期为5个开关周期,Burst脉冲个数为4,因此Burst值为4/5=0.8。在PWM脉冲Burst调制期间,保持开关频率为最大开关频率,保持PWM占空比为最小0.3,调节Burst值范围从最大1到最小0,可以将电路的传输增益调整到0。
图6展示了双向DC/DC双半桥LLC电路的在满载到空载范围的调制方法与增益范围。反向工作的控制方法与正向工作的控制方法保持一致。在不同负载情况下通过输入侧开关的调频PFM控制+PWM占空比控制+PWM脉冲Burst控制,来实现传输增益的变化。输出侧开关在重载时候,驱动跟随输入侧开关同步整流,在轻载或空载时利用体二极管进行整流。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制。本领域的普通技术人员通过本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
本发明以上实施例的双向小功率直流充电机电路可以工作在正向模式下,将单相交流电转变为直流电给动力电池充电;工作在反向模式下,将动力电池直流电转变为单相交流电给交流用电设备供电。双向小功率直流充电机电路的双向AC/DC电路的两个半桥工作在工频和高频交替状态,可以有效减少开关损耗,并且每个开关管发热较低。双向DC/DC电路通过PFM或PWM+Burst调制方式,可以在空载到满载实现传输增益调节。副边开关管在重载时工作在同步整流状态下,可以减少损耗,提高转换效率。

Claims (8)

1.一种双向直流充电机电路,其特征在于,包括与交流侧连接的双向AC/DC变换电路和与直流侧连接的双向DC/DC变换电路,双向AC/DC变换电路与双向DC/DC变换电路通过母线相连;双向AC/DC变换电路包括全桥开关电路,双向DC/DC变换电路包括带高频变压器的双半桥LLC电路;正向工作时,全桥开关电路工作整流模式下,两个半桥交替工作在工频和高频模式,反向工作时,全桥开关电路工作在逆变模式下,两个半桥交替工作在工频和高频模式。
2.根据权利要求1所述的双向直流充电机电路,其特征在于,正向工作时,双半桥LLC电路与母线连接的第一半桥作为原边工作在PFM或PWM+Burst模式下;当双半桥LLC电路的第一半桥工作在PWM+Burst模式时,与所述直流侧连接的第二半桥作为副边不进行驱动,利用开关管的体二极管进行整流;反向工作时,双半桥LLC电路的第二半桥作为原边工作在PFM或PWM+Burst模式下,双半桥LLC电路的第一半桥作为副边不进行驱动,利用开关管的体二极管进行整流。
3.根据权利要求1所述的双向直流充电机电路,其特征在于,正向工作时,全桥开关电路工作SPWM整流模式下,两个半桥交替工作在单极性SPWM调制的工频和高频模式;反向工作时,全桥开关电路工作在SPWM逆变模式下,两个半桥交替工作在单极性SPWM调制的工频和高频模式。
4.根据权利要求2所述的双向直流充电机电路,其特征在于,带高频变压器的双半桥LLC电路包括谐振部件和隔直电容,谐振部件包括谐振电感和谐振电容;双半桥LLC电路第一半桥的中点通过谐振部件与高频变压器的第一绕组串接,双半桥LLC电路第二半桥的中点通过隔直电容与高频变压器的第二绕组串接。
5.根据权利要求1所述的双向直流充电机电路,其特征在于,双向AC/DC变换电路包括电感,全桥开关电路第一半桥的中点通过电感接第一交流端子,全桥开关电路第二半桥的中点接第二交流端子。
6.根据权利要求2所述的双向直流充电机电路,其特征在于,正向重载时,双半桥LLC电路第二半桥的开关管跟随双半桥LLC电路第一半桥的开关管同步整流,采用PFM调频调制,开关频率的调节范围在最小开关频率与最大开关频率之间,占空比固定为最大值。
7.根据权利要求1所述的双向直流充电机电路,其特征在于,正向轻载或空载时,双半桥LLC电路第一半桥的开关管采用PWM占空比调制;保持开关频率为最大开关频率不变,占空比变化范围在最大值与最小值之间调节。
8.根据权利要求2所述的双向直流充电机电路,其特征在于,正向轻载或空载时,双半桥LLC电路第一半桥的开关管采用PWM脉冲Burst调制,在PWM脉冲Burst调制期间,保持开关频率为最大开关频率,保持PWM占空比为最小值。
CN202010031375.XA 2020-01-13 2020-01-13 一种双向直流充电机电路 Pending CN111200309A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010031375.XA CN111200309A (zh) 2020-01-13 2020-01-13 一种双向直流充电机电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010031375.XA CN111200309A (zh) 2020-01-13 2020-01-13 一种双向直流充电机电路

Publications (1)

Publication Number Publication Date
CN111200309A true CN111200309A (zh) 2020-05-26

Family

ID=70747577

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010031375.XA Pending CN111200309A (zh) 2020-01-13 2020-01-13 一种双向直流充电机电路

Country Status (1)

Country Link
CN (1) CN111200309A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112865263A (zh) * 2021-03-15 2021-05-28 阳光电源股份有限公司 一种充放电控制方法及应用装置
CN113424426A (zh) * 2020-10-14 2021-09-21 深圳欣锐科技股份有限公司 双向谐振电路和汽车
EP3934081A1 (en) * 2020-07-03 2022-01-05 Raytheon Systems Limited Bridge rectifier operation and power fator correction circuit
EP4195484A1 (en) * 2021-12-08 2023-06-14 Huawei Digital Power Technologies Co., Ltd. Bidirectional direct current converter and control method thereof
CN116345943A (zh) * 2023-03-09 2023-06-27 深圳市正浩创新科技股份有限公司 Ac/dc变换电路的控制方法、装置及可读存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109980975A (zh) * 2019-03-20 2019-07-05 中山职业技术学院 高频逆变器及其单极正弦脉冲宽度调制方法、计算机可读存储介质
CN110509796A (zh) * 2019-08-30 2019-11-29 深圳市高斯宝电气技术有限公司 一种电动汽车的车载双向充电机电路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109980975A (zh) * 2019-03-20 2019-07-05 中山职业技术学院 高频逆变器及其单极正弦脉冲宽度调制方法、计算机可读存储介质
CN110509796A (zh) * 2019-08-30 2019-11-29 深圳市高斯宝电气技术有限公司 一种电动汽车的车载双向充电机电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
冯兴田 等: ""基于负载匹配的三相交错并联LLC谐振变换器变模式控制策略"", 《电力自动化设备》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3934081A1 (en) * 2020-07-03 2022-01-05 Raytheon Systems Limited Bridge rectifier operation and power fator correction circuit
GB2596801B (en) * 2020-07-03 2023-01-04 Raytheon Systems Ltd Bridge rectifier operation and power factor correction circuit
US11606025B2 (en) 2020-07-03 2023-03-14 Raytheon Systems Limited Bridge rectifier operation and power factor correction circuit
CN113424426A (zh) * 2020-10-14 2021-09-21 深圳欣锐科技股份有限公司 双向谐振电路和汽车
CN112865263A (zh) * 2021-03-15 2021-05-28 阳光电源股份有限公司 一种充放电控制方法及应用装置
EP4195484A1 (en) * 2021-12-08 2023-06-14 Huawei Digital Power Technologies Co., Ltd. Bidirectional direct current converter and control method thereof
CN116345943A (zh) * 2023-03-09 2023-06-27 深圳市正浩创新科技股份有限公司 Ac/dc变换电路的控制方法、装置及可读存储介质

Similar Documents

Publication Publication Date Title
CN111200309A (zh) 一种双向直流充电机电路
CN109560711B (zh) 一种隔离型双向dc-dc变换器及其调制方法
CN108964474B (zh) 一种基于llc谐振变换器的三模态整流拓扑结构
WO2021184603A1 (zh) 一种可预充电的dcdc变换电路
CN111355398B (zh) 一种集成dc/dc转换器的双向车载充电机电路
CN112436728B (zh) 一种双向谐振变换器的高效率控制方法
CN112311245B (zh) 一种双向串联谐振变换器的高频间歇控制***及方法
CN111245078A (zh) 集成dc/dc转换器的双向车载充电机电路
CN114301300A (zh) 一种宽范围双向谐振式软开关直流变换器及其控制方法
CN106300993A (zh) 一种前后桥臂复用高效率全桥移相变换器
CN115694203B (zh) 一种可双向变换的直流隔离型变换器及其控制方法
CN115811241A (zh) 单级无桥交错并联Boost-LLC AC-DC变换器混合控制方法
CN110509796B (zh) 一种电动汽车的车载双向充电机电路
CN217087777U (zh) 一种宽范围谐振式软开关双向直流变换器
CN213846539U (zh) 一种双向串联谐振变换器的高频间歇控制***
CN113765358A (zh) 单级交错并联ac-dc谐振变换电路及其控制方法
CN212381122U (zh) 单级隔离型双向直流变换器
CN110739872A (zh) 一种新型双向高变比swiss整流器
CN114448277B (zh) 一种正反激ac/dc变换电路和控制方法
CN216819713U (zh) 一种宽范围双向谐振式软开关直流变换器
Mary et al. A novel bidirectional CLC-T resonant immittance converter for CC/CV battery charging
CN110336483B (zh) 一种双向逆变器
Wang et al. Optimal design of high-efficiency series resonant capacitor charging power supply
Phetphimoon et al. High-frequency full-bridge power converter in photovoltaic applications using phase-shifted PWM technique
Belizario et al. A review of topologies, principles of operation, and modulation strategies for bidirectional LLC resonant converters

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20210916

Address after: 518000 101, block B, building a, Jingfa zhizaoyuan, Xiawei community, Xixiang street, Bao'an District, Shenzhen, Guangdong Province

Applicant after: Shenzhen Energy Efficiency Electrical Technology Co.,Ltd.

Address before: 518000 south of Baotian 1st Road, Xixiang street, Bao'an District, Shenzhen City, Guangdong Province

Applicant before: GOSPOWER DIGITAL TECHNOLOGY (SHENZHEN) Co.,Ltd.

TA01 Transfer of patent application right
RJ01 Rejection of invention patent application after publication

Application publication date: 20200526

RJ01 Rejection of invention patent application after publication