CN111086990A - 一种硅碳微球的制备方法 - Google Patents

一种硅碳微球的制备方法 Download PDF

Info

Publication number
CN111086990A
CN111086990A CN201911406643.5A CN201911406643A CN111086990A CN 111086990 A CN111086990 A CN 111086990A CN 201911406643 A CN201911406643 A CN 201911406643A CN 111086990 A CN111086990 A CN 111086990A
Authority
CN
China
Prior art keywords
silicon
carbon
carbon microspheres
ammonium persulfate
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911406643.5A
Other languages
English (en)
Inventor
秦学
吕军
张静
周玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Jinyi New Energy Technology Co ltd
Original Assignee
Jiangsu Jinyi New Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Jinyi New Energy Technology Co ltd filed Critical Jiangsu Jinyi New Energy Technology Co ltd
Priority to CN201911406643.5A priority Critical patent/CN111086990A/zh
Publication of CN111086990A publication Critical patent/CN111086990A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了一种硅碳微球的制备方法,属于无机化学材料的合成技术领域,具体包括一下步骤:(一)苯胺溶解在无水乙醇中成0.1‑1mol·L‑1的溶液,再向其中加入硅粉,搅拌30‑90分钟;(二)将过硫酸铵溶解在相同体积的水中,在冰水浴的条件下将配制好的过硫酸铵溶液缓慢滴加到上述混合溶液中,冰水浴反应6‑12h,水洗数次,乙醇洗数次,放入烘箱中干燥,即得到了深绿色的产物硅@聚苯胺,作为硅碳微球的前驱体;(三)取前驱体在惰性气体气氛下,在600‑900℃,并保持1‑6h,后冷却至室温,得到硅碳微球,本发明工艺简单,具有良好的重现性,其制备的硅碳微球直径在50~200nm,具有较高的稳定性,且本发明硅碳微球作为锂离子电池电极材料,超级电容器电极材料具有广泛应用前景。

Description

一种硅碳微球的制备方法
技术领域
本发明涉及无机化学材料的合成,具体涉及一种硅碳微球制备方法。
背景技术
硅碳微球具有良好的化学稳定性、热稳定性和优良的导电性等特性,是一种具有广泛应用前景的硅碳材料。
随着时代的发展,为了满足日益增长的能源需求 ,高性能化学电源成为研究热点。锂离子电池因其具有较高的容量和稳定的循环寿命,被认为是克满足能源需求的新型电源.锂离子电池中,负极材料传统为碳材料,理论比容量仅有372 mAh· g-1,不能满足高容量的需求。另一方面,硅的理论比容量可达4 200 mAh· g-1且硅较低的脱嵌锂电位(<0.5 V vs. Li/Li+),使得硅材料成为最为热点的新型锂离子负极材料。但是,由于硅材料本身具有较低的导电性和在充放电过程中严重的体积膨胀,硅颗粒发生粉碎,循环寿命较低,严重阻碍了其的商业应用。采用碳材料封装硅颗粒等方法可改善结构和电学性能结构。通过硅碳复合,锂离子电池可获得更高的比容量、更长的循环稳定性和更好的导电性。
对于碳微球的制备,目前主要是采用水热法,静电纺丝,CVD法等,这些方法的制备工艺都比较复杂繁琐,影响因素较多,条件控制的难度也较大。为此,许多新的简单实用的方法正在被开发。文献[1]以蔗糖、草酸等为原料,采用一步水热法制备了硅纳米颗粒镶嵌于多孔碳微球中的复合材料。文献[2]通过化学气相沉积(CVD)方法生产碳涂层,其中选择乙炔作为碳前体。该材料以CaCO3作为模板, 经CVD在硅@CaCO3微球上沉积一层无定形碳,然后用稀盐酸刻蚀掉CaCO3模板,便得到具有中空结构的硅碳复合材料。文献[3]将纳米硅颗粒均匀溶解在柠檬酸的乙醇溶液中,400℃下通过喷雾干燥法制得无定形碳包覆硅的核壳复合结构。文献[4]以聚丙烯腈为碳源,采用静电纺丝工艺制备了核壳结构的硅/碳纳米纤维复合电极材料, 碳纳米纤维形成的碳壳将硅纳米颗粒包裹在核心。文献[5]以聚乙烯醇 (PVA) 为碳源, 采用惰性气氛下高温热解法对硅纳米颗粒进行碳包覆, 得到碳壳层厚度为5~10 nm厚的硅碳复合材料。文献[6]采用高能球磨法将石墨和硅粉混合制得硅/石墨复合材料。文献[7]采用溶胶–凝胶法在硅纳米颗粒表面包覆一层SiO2壳层, 以蔗糖为碳源进行热解碳包覆, 将SiO2用HF刻蚀后得到蛋黄–壳结构复合材料。文献[8]利用化学合成法得到酚醛聚合物–硅复合材料, 然后在惰性气氛下碳化得到Si/SiOx/碳纤维复合材料。文献[9]以聚多巴胺为碳源合成出蛋黄–壳复合材料 。文献[10]通过将硅纳米颗粒和氧化石墨烯混合液冻干后, 在含有10% (体积分数) H2的Ar气氛下热还原制备硅/石墨烯复合材料。文献[11]先将聚苯胺接枝到硅纳米颗粒表面, 随后利用聚苯胺与石墨烯间的π–π作用和静电引力, 在颗粒表面自组装包覆石墨烯后, 经高温碳化得到Si@C/G复合材料。
到目前为止,以苯胺为原料,利用醇溶剂法合成硅碳微球的方法的文献和专利还未见公开报道。
参考文献:
[1]Jeong M G, Du H L, Islam M, et al. Self-Rearrangement of SiliconNanoparticles Embedded in Micro-Carbon Sphere Framework for High-Energy andLong-Life Lithium-Ion Batteries[J]. Nano Letters, 2017, 17(9):5600-5606.
[2]ZHANG L, RANJUSHA R, GUO H P, et al.A green and facile way to preparegranadilla-like silicon-based anode materials for Li-ion batteries[J].Advanced Functional Materials, 2016, 26 (3) :440-446.
[3]NG S H, WANG J, WEXLER D, et al.Highly reversible lithium storage inspheroidal carbon-coated silicon nanocomposites as anodes for lithium-ionbatteries[J].Angewandte Chemie, 2006, 45 (41) :6896-6899.
[4]HWANG T H, LEE Y M, KONG B S, et a1.Electrospun core shell fibers forrobust silicon nanoparticle based lithium ion battery anodes[J].Nano Lett,2012, 12:802.
[5]HWA Y, KIM W S, HONG S H, et al.High capacity and rate capability ofcore–shell structured nano-Si/C anode for Li-ion batteries[J].ElectrochimActa, 2012, 71 (3) :201–205.
[6]ZUO P J, WANG Z B, YIN G P, et al.Electrochemical investigation ofsilicon/carbon composite as anode material for lithium ion batteries[J].JMater Sci, 2008, 43 (9) :3149–3152.
[7]ZHOU X Y, TANG J J, YANG J, et al.Silicon@carbon hollow core–shellheterostructures novel anode materials for lithium ion batteries[J].Electrochim Acta, 2013, 87 (1) :663–668.
[8]GOMEZ-CAMER J L, MORALES J, SANCHEZ L.Anchoring Si nanoparticles tocarbon nanofibers:an efficient procedure for improving Si performance in Libatteries[J].J Mater Chem, 2011, 21 (3) :811–818.
[9]LIU N, WU H, MCDOWELL M T, et al.A Yolk-shell design for stabilizedand scalable Li-ion battery alloy anodes[J].Nano Lett, 2012, 12 (6) :3315–3321.
[10]CHABOT V, FENG K, PARK H W, et al.Graphene wrapped siliconnanocomposites for enhanced electrochemical performance in lithium ionbatteries[J].Electrochim Acta, 2014, 130 (4) :127–134.
[11]Li Z F, Zhang H, Liu Q, et al.Novel pyrolyzed polyaniline-graftedsilicon nanoparticles encapsulated in graphene sheets as Li-Ion batteryanodes[J].ACS Appl Mater Interface, 2014, 6 (8) :5996–6002。
发明内容
本发明所要解决的技术问题是,针对以上现有技术存在的缺点,提供一种醇溶剂法制备硅碳微球的方法,该方法简便易行,可以在较为温和的反应条件下,可以制备出球径50-200nm的硅碳微球。
本发明解决以上技术问题的技术方案是:一种硅碳微球的制备方法,具体包括以下步骤:
步骤一:将苯胺溶解在一定体积的无水乙醇中配置成0.1-1 mol·L-1的溶液,再向其中加入硅粉,搅拌30-90分钟,得到混合溶液;
步骤二:将过硫酸铵溶解在与步骤一中无水乙醇体积相同的水中,在冰水浴的条件下将配制好的过硫酸铵溶液缓慢滴加到步骤一得到的混合溶液中,冰水浴反应6-12h,反应结束后,水洗数次,乙醇洗数次,放入60℃烘箱中干燥,即得到了深绿色的产物硅@聚苯胺,作为硅碳微球的前驱体;
步骤三:取前驱体在N2或者其他惰性气体气氛下,在600-900 ℃,并保持1-6h,后冷却至室温,得到硅碳微球。
前述的步骤一中的硅粉,其质量与单体苯胺的质量比为1:0.5-10。
前述的苯胺与过硫酸铵的摩尔比为1:1.5。
本发明的有益效果是:本发明采用将苯胺作为碳源,在乙醇溶液中,首次制备出硅碳微球,并且本发明的制备方法具有反应条件温和,工艺简单,且具有良好的重现性。制备的硅碳微球直径在50~200nm。本发明的硅碳微球作为锂离子电池电极材料,超级电容器电极材料方面具有广泛应用前景。
附图说明
图1为本发明实施例1制成的硅碳微球的TEM图;
图2为本发明实施例2制成的硅碳微球的TEM图;
图3为本发明实施例3制成的硅碳微球的TEM图;
图4为本发明实施例4制成的硅碳微球的TEM图。
具体实施方式
实施例1
本实施例提供一种硅碳微球的制备方法,具体包括以下步骤:
步骤一:将9.3g苯胺溶解在100mL乙醇中,再向其中加入0.93g硅粉,(硅粉的质量与单体苯胺的质量比为1:10),搅拌60分钟;
步骤二:然后将42g过硫酸铵溶解在100mL水中,在冰水浴的条件下将配制好的过硫酸铵溶液缓慢滴加到上述混合溶液中,冰水浴反应8h,反应结束后,水洗3次,乙醇洗2次,放入60℃烘箱中干燥。即得到了深绿色的产物硅@聚苯胺前驱体;
步骤三:将前驱体在氮气气氛下在900℃下煅烧2h,最终得到硅碳微球,其TEM图见图1。
实施例2
步骤一:将1.86g苯胺溶解在50mL乙醇中,再向其中加入0.37g硅((硅粉的质量与单体苯胺的质量比为1:5),搅拌30分钟;
步骤二:然后将8.5g过硫酸铵溶解在50mL水中,在冰水浴的条件下将配制好的过硫酸铵溶液缓慢滴加到上述混合溶液中,冰水浴反应10h,反应结束后,水洗3次,乙醇洗2次,放入60℃烘箱中干燥。即得到了深绿色的产物硅@聚苯胺前驱体;
步骤三:将前驱体在氮气气氛下在700℃下煅烧2h,最终得到硅碳微球,其TEM图见图2。
实施例3
步骤一:将18g苯胺溶解在1000mL乙醇中,再向其中加入18g硅粉(硅粉的质量与单体苯胺的质量比为1:1),搅拌30分钟;
步骤二:然后将85g过硫酸铵溶解在1000mL水中,在冰水浴的条件下将配制好的过硫酸铵溶液缓慢滴加到上述混合溶液中,冰水浴反应6h,反应结束后,水洗3次,乙醇洗2次,放入60℃烘箱中干燥。即得到了深绿色的产物硅@聚苯胺前驱体;
步骤三:将前驱体在氮气气氛下在800℃下煅烧2h,最终得到硅碳微球,其TEM图见图3。
实施例4
步骤一:将1.50g苯胺溶解在160mL乙醇中,再向其中加入3g硅粉((硅粉的质量与单体苯胺的质量比为1:0.5),搅拌90分钟;
步骤二:然后将6.83g过硫酸铵溶解在160mL水中,在冰水浴的条件下将配制好的过硫酸铵溶液缓慢滴加到上述混合溶液中,冰水浴反应12h,反应结束后,水洗3次,乙醇洗2次,放入60℃烘箱中干燥。即得到了深绿色的产物硅@聚苯胺前驱体;
步骤三:将前驱体在氩气气氛下在600℃下煅烧1h,最终得到硅碳微球,其TEM图见图4。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (3)

1.一种硅碳微球的制备方法,其特征在于:具体包括以下步骤:
步骤一:将苯胺溶解在一定体积的无水乙醇中配置成0.1-1 mol·L-1的溶液,再向其中加入硅粉,搅拌30-90分钟,得到混合溶液;
步骤二:将过硫酸铵溶解在与步骤一中无水乙醇体积相同的水中,在冰水浴的条件下将配制好的过硫酸铵溶液缓慢滴加到步骤一得到的混合溶液中,冰水浴反应6-12h,反应结束后,水洗数次,乙醇洗数次,放入60℃烘箱中干燥,即得到了深绿色的产物硅@聚苯胺,作为硅碳微球的前驱体;
步骤三:取前驱体在N2或者其他惰性气体气氛下,在600-900 ℃,并保持1-6h,后冷却至室温,得到硅碳微球。
2.根据权利要求1所述是一种硅碳微球的制备方法,其特征在于,所述步骤一中的硅粉,其质量与单体苯胺的质量比为1:0.5-10。
3.根据权利要求1所述是一种硅碳微球的制备方法,其特征在于,所述步骤二中过硫酸铵与苯胺的摩尔比为1.5:1。
CN201911406643.5A 2019-12-31 2019-12-31 一种硅碳微球的制备方法 Pending CN111086990A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911406643.5A CN111086990A (zh) 2019-12-31 2019-12-31 一种硅碳微球的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911406643.5A CN111086990A (zh) 2019-12-31 2019-12-31 一种硅碳微球的制备方法

Publications (1)

Publication Number Publication Date
CN111086990A true CN111086990A (zh) 2020-05-01

Family

ID=70398073

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911406643.5A Pending CN111086990A (zh) 2019-12-31 2019-12-31 一种硅碳微球的制备方法

Country Status (1)

Country Link
CN (1) CN111086990A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102492139A (zh) * 2011-12-06 2012-06-13 天津大学 一种溶液法制备的聚苯胺纳米微球及其方法
CN103208626A (zh) * 2012-01-17 2013-07-17 深圳市沃特玛电池有限公司 一种采用苯胺制备磷酸铁锂/碳复合材料的方法
CN106384825A (zh) * 2016-11-07 2017-02-08 中国科学院化学研究所 一种硅碳复合微球及其制备方法和应用
CN106450251A (zh) * 2016-12-23 2017-02-22 合肥工业大学 一种锂离子电池负极材料及其制备方法
CN108682813A (zh) * 2018-05-10 2018-10-19 厦门大学 一种硅碳复合材料的制备方法及应用
CN109755506A (zh) * 2018-12-18 2019-05-14 宁波革鑫新能源科技有限公司 一种硅碳复合材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102492139A (zh) * 2011-12-06 2012-06-13 天津大学 一种溶液法制备的聚苯胺纳米微球及其方法
CN103208626A (zh) * 2012-01-17 2013-07-17 深圳市沃特玛电池有限公司 一种采用苯胺制备磷酸铁锂/碳复合材料的方法
CN106384825A (zh) * 2016-11-07 2017-02-08 中国科学院化学研究所 一种硅碳复合微球及其制备方法和应用
CN106450251A (zh) * 2016-12-23 2017-02-22 合肥工业大学 一种锂离子电池负极材料及其制备方法
CN108682813A (zh) * 2018-05-10 2018-10-19 厦门大学 一种硅碳复合材料的制备方法及应用
CN109755506A (zh) * 2018-12-18 2019-05-14 宁波革鑫新能源科技有限公司 一种硅碳复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郑鸿宇: "碳硅复合材料的制备及其电化学性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Similar Documents

Publication Publication Date Title
WO2021056981A1 (zh) 一种锂电池硅基复合负极材料的制备方法
WO2018161821A1 (zh) 一种复合物、其制备方法及在锂离子二次电池中的用途
WO2021128603A1 (zh) 一种用于锂离子电池负极的改性一氧化硅材料及其制备方法
CN106099113B (zh) 一种核壳结构硅碳复合材料及其制备方法
JP2022507401A (ja) ケイ素-炭素複合アノード材料
CN106935855B (zh) 一种多孔碳纳米管状材料及其制备方法和应用
CN111180714B (zh) 一种碳/二氧化钼/硅/碳复合材料、包含其的电池负极及锂离子电池
CN108172775A (zh) 一种锂离子电池用磷掺杂硅碳负极材料及其制备方法
CN112125295B (zh) 一种酚醛树脂/蔗糖基硬炭微球材料及其制备方法和钠离子电池
CN107464938B (zh) 一种具有核壳结构的碳化钼/碳复合材料及其制备方法和在锂空气电池中的应用
CN103427069A (zh) 一种锂离子电池复合负极材料及其制备
CN107732164B (zh) 钠离子电池用介孔结晶型Si-无定型SiO2-有序介孔碳复合材料的制备方法和应用
CN110611092B (zh) 一种纳米二氧化硅/多孔碳锂离子电池负极材料的制备方法
Xiao et al. Research progress of nano-silicon-based materials and silicon-carbon composite anode materials for lithium-ion batteries
CN112510185A (zh) 一种硅碳复合负极材料及其制作方法
Yu et al. High performance of porous silicon/carbon/RGO network derived from rice husks as anodes for lithium-ion batteries
KR101631300B1 (ko) 전기영동 증착법을 이용한 니켈/구리 촉매기반 SiO/계 탄소 나노섬유 합성물 제조방법 및 이를 사용하는 이차전지 제조방법
Dong et al. Exploring the practical applications of silicon anodes: a review of silicon-based composites for lithium-ion batteries
CN110571415B (zh) 一种硅碳负极材料和制备方法
CN111430691A (zh) 一种锂离子电池硅基负极材料及其制备方法
US10135065B2 (en) Composite anode material including nickel oxide and the method for preparing the same
CN107611417B (zh) 容量可控型硅基锂离子电池负极材料及其制备方法
CN114275762B (zh) 一种氮掺杂硬碳钠离子电池负极材料及其制备方法
CN111086990A (zh) 一种硅碳微球的制备方法
WO2023005987A1 (zh) 两元补锂添加剂及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200501

RJ01 Rejection of invention patent application after publication