CN111041449A - 一种特定形貌二硫化钨的制备方法 - Google Patents

一种特定形貌二硫化钨的制备方法 Download PDF

Info

Publication number
CN111041449A
CN111041449A CN201911385340.XA CN201911385340A CN111041449A CN 111041449 A CN111041449 A CN 111041449A CN 201911385340 A CN201911385340 A CN 201911385340A CN 111041449 A CN111041449 A CN 111041449A
Authority
CN
China
Prior art keywords
quartz
substrate
tungsten disulfide
quartz tube
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911385340.XA
Other languages
English (en)
Other versions
CN111041449B (zh
Inventor
董孟孟
吕燕飞
赵士超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Dragon Totem Technology Achievement Transformation Co ltd
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201911385340.XA priority Critical patent/CN111041449B/zh
Publication of CN111041449A publication Critical patent/CN111041449A/zh
Application granted granted Critical
Publication of CN111041449B publication Critical patent/CN111041449B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Catalysts (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种特定形貌二硫化钨的制备方法,本方法以氩气和氢气为载气,金属钯作为催化剂,在高温下通过CVD法合成具有三角形框架结构的二硫化钨。与现有的CVD法合成的三角形、六边形实心连续薄膜相比,该方法得到的二硫化钨薄膜中的边缘原子在总原子数中的占比增大,提高二硫化钨用作催化剂材料时的催化活性。

Description

一种特定形貌二硫化钨的制备方法
技术领域
本发明属于材料技术领域,具体涉及一种中空的三角形边框结构形貌的二硫化钨的制备方法。
背景技术
二维二硫化钨可以通过化学气相沉积法(CVD)合成,这种方法是前驱物在高温下发生化学反应,然后在基底表面沉积生长出硫化钨单分子层或多分子层厚薄膜材料。该方法合成的二硫化钨为分散在基底表面、相互分离的具有三角形或六边形形貌的单晶晶畴或多个晶畴间互联形成的薄膜,晶畴或薄膜是连续的、非空心的平面。
硫能与除金以外的大多数金属在高温下发生反应,生成金属硫化物,所以,在硫化物的制备过程中几乎不使用金属催化剂。二硫化钨的生长通常用氩气与氢气的混合气体作为载气,氢气对二硫化钨合成的影响机理有待进一步探究。
二硫化钨(WS2)禁带宽度随材料的厚度发生变换,单分子层的禁带宽度约2.0eV,块体材料的禁带宽度约1.3eV,二硫化钨的禁带宽度处在可见光能量范围内时,可用作光电导探测器和光催化材料。作为催化剂材料使用时,起到催化活性作用的位点主要是二硫化钨材料的边缘部分。为了提高催化性能,需要降低材料的尺寸或引入缺陷。
发明内容
本发明提出了一种以氩气和氢气为载气,金属钯作为催化剂,在高温下通过CVD法合成具有三角形框架结构的二硫化钨。与现有的CVD法合成的三角形、六边形实心连续薄膜相比,该方法得到的二硫化钨薄膜中的边缘原子在总原子数中的占比增大,提高二硫化钨用作催化剂材料时的催化活性。另外,以该产物为模板,继续沉积生长其它材料,可以用于合成特殊结构的电子器件。
本发明一种特定形貌二硫化钨的制备方法的具体步骤是:
步骤(1).取WS2固体粉末1~5g,放入石英舟中,然后将装有WS2固体粉末的石英舟放入管式电炉中的石英管(直径1英寸)内。石英舟放置在石英管的中间位置。
步骤(2).将基底(尺寸为2.5~3.5cm×1.5~2.0cm),用去离子水清洗后氮气吹干,将0.05-0.2mol/l的氯化钯(PdCl2)盐酸溶液,喷雾至基底表面,再通过加热板加热至80-100℃,使PdCl2喷雾液滴干燥。然后将基底放置在石英管中,位置在载气流向下游方向距石英舟20~25cm处;
步骤(3).开启机械泵抽真空,同时向石英管中输入载气氩氢混合气(5%H2),载气流量为20~50sccm。管内真空度为100~600Pa。
步骤(4).将石英管升温至900~1000℃,升温速率为20~30℃/min。温度升至900~1000℃后保温,保温时间为30min~300min。
步骤(5).石英管停止加热,将石英管快速冷却到室温,冷却速率为10~100℃/min,然后取出基底,在基底上获得框架结构硫化钨。
上述步骤(1)所述石英管为石英管或刚玉管,石英舟为石英舟或刚玉舟。
上述步骤(2)所述基底为表面生长有氧化层的硅片或蓝宝石。
有益效果:本发明将金属钯和氢气应用到化学气相沉积法制备二硫化钨,产物形貌为三角形框架结构,使二硫化钨薄膜中的边缘原子在总原子数中的占比增大,提高二硫化钨用作催化剂材料时的催化活性。三角形框架结构二硫化钨薄膜的形成,与金属钯和氢气有关。与金作为催化剂不同,以金作为催化剂无法合成框架结构的二硫化钨。
附图说明
图1为三角形框架结构的二硫化钨薄膜单晶晶畴的扫描电子显微镜照片;
图2为三角形框架结构的二硫化钨薄膜单晶晶畴的光学显微镜照片;
图3为三角形框架结构的二硫化钨薄膜多个晶畴的光学显微镜照片。
具体实施方式
实施例1:
步骤(1).取WS2固体粉末1g,放入石英舟中,然后将装有WS2固体粉末的石英舟放入管式电炉中的石英管(直径1英寸)内。石英舟放置在石英管的中间位置。
步骤(2).将基底尺寸为2.5cm×1.5cm,用去离子水清洗后氮气吹干,将0.05mol/l的氯化钯(PdCl2)的盐酸溶液,喷雾至硅片基底表面,再通过加热板加热至80℃,使PdCl2喷雾液滴干燥。然后将基底放置在石英管中,位于载气下游,所述基底为表面生长有氧化层的蓝宝石。
步骤(3).开启机械泵抽真空,同时向石英管中输入载气氩氢混合气(5%H2),载气流量为20sccm。管内真空度为100Pa。
步骤(4).将石英管升温至900℃,升温速率为20℃/min。温度升至900℃后保温,保温时间为30min。
步骤(5).石英管停止加热,将石英管快速冷却到室温,冷却速率为10℃/min,然后取出基底,在基底上获得框架结构硫化钨,如图1、图2、图3所示;
实施例2:
步骤(1).取WS2固体粉末5g,放入刚玉舟中,然后将装有WS2固体粉末的刚玉舟放入管式电炉中的石英管(直径1英寸)内。刚玉舟放置在石英管的中间位置。
步骤(2).将基底(尺寸为2.5cm×2.0cm,用去离子水清洗后氮气吹干,将0.2mol/l的氯化钯(PdCl2)的盐酸溶液,喷雾至硅片基底表面,再通过加热板加热至100℃,使PdCl2喷雾液滴干燥。然后将基底放置在石英管中,位于载气下游。
步骤(3).开启机械泵抽真空,同时向石英管中输入载气氩氢混合气(5%H2),载气流量为50sccm。管内真空度为600Pa。
步骤(4).将石英管升温至1000℃,升温速率为30℃/min。温度升至1000℃后保温,保温时间为300min。
步骤(5).石英管停止加热,将石英管快速冷却到室温,冷却速率为100℃/min,然后取出基底,在基底上获得框架结构硫化钨。
实施例3:
步骤(1).取WS2固体粉末3g,放入石英舟中,然后将装有WS2固体粉末的石英舟放入管式电炉中的石英管(直径1英寸)内。石英舟放置在石英管的中间位置。
步骤(2).将基底尺寸为3.5cm×2.0cm,用去离子水清洗后氮气吹干,将0.1mol/l的氯化钯(PdCl2)的盐酸溶液,喷雾至硅片基底表面,再通过加热板加热至95℃,使PdCl2喷雾液滴干燥。然后将基底放置在石英管中,位于载气下游,所述基底为表面生长有氧化层的硅片。
步骤(3).开启机械泵抽真空,同时向石英管中输入载气氩氢混合气(5%H2),载气流量为30sccm。管内真空度为450Pa。
步骤(4).将石英管升温至950℃,升温速率为25℃/min。温度升至950℃后保温,保温时间为100min。
步骤(5).石英管停止加热,将石英管快速冷却到室温,冷却速率为50℃/min,然后取出基底,在基底上获得框架结构硫化钨。

Claims (5)

1.一种特定形貌二硫化钨的制备方法,其特征在于,该方法具体包括以下步骤:
步骤(1).取WS2固体粉末1~5g,放入石英舟中,然后将装有WS2固体粉末的石英舟放入管式电炉中的石英管内;石英舟放置在石英管的中间位置;
步骤(2).将基底用去离子水清洗后氮气吹干,将浓度为0.05~0.2mol/l的氯化钯盐酸溶液,喷雾至基底表面,再通过加热板加热至80~100℃,使PdCl2喷雾液滴干燥;然后将基底放置在石英管中,位置在载气流向下游方向距石英舟20~25cm处;
步骤(3).开启机械泵抽真空,同时向石英管中输入载气氩氢混合气,其中H2的体积含量为5%,载气流量为20~50sccm;管内真空度为100~600Pa;
步骤(4).将石英管升温至900~1000℃,升温速率为20~30℃/min;温度升至900~1000℃后保温,保温时间为30min~300min;
步骤(5).石英管停止加热,将石英管快速冷却到室温,冷却速率为10~100℃/min,然后取出基底,在基底上获得框架结构硫化钨。
2.如权利要求1所述一种特定形貌二硫化钨的制备方法,其特征在于:步骤(1)所述石英管为石英管或刚玉管,石英舟为石英舟或刚玉舟。
3.如权利要求1所述一种特定形貌二硫化钨的制备方法,其特征在于:步骤(2)所述基底为表面生长有氧化层的硅片或蓝宝石。
4.如权利要求1所述一种特定形貌二硫化钨的制备方法,其特征在于:所述的石英管直径为1英寸。
5.如权利要求1所述一种特定形貌二硫化钨的制备方法,其特征在于:所述的基底尺寸为2.5~3.5cm×1.5~2.0cm。
CN201911385340.XA 2019-12-28 2019-12-28 一种特定形貌二硫化钨的制备方法 Active CN111041449B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911385340.XA CN111041449B (zh) 2019-12-28 2019-12-28 一种特定形貌二硫化钨的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911385340.XA CN111041449B (zh) 2019-12-28 2019-12-28 一种特定形貌二硫化钨的制备方法

Publications (2)

Publication Number Publication Date
CN111041449A true CN111041449A (zh) 2020-04-21
CN111041449B CN111041449B (zh) 2021-10-08

Family

ID=70240960

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911385340.XA Active CN111041449B (zh) 2019-12-28 2019-12-28 一种特定形貌二硫化钨的制备方法

Country Status (1)

Country Link
CN (1) CN111041449B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1060141A1 (en) * 1998-03-03 2000-12-20 PPG Industries Ohio, Inc. Impregnated glass fiber strands and products including the same
US20080170984A1 (en) * 2005-04-07 2008-07-17 Reshef Tenne Process And Apparatus For Producing Inorganic Fullerene-Like Nanoparticles
CN103480856A (zh) * 2013-09-09 2014-01-01 南京邮电大学 一种使用二维过渡金属硫族化合物纳米片和金属制备纳米复合材料的方法
CN104445419A (zh) * 2014-12-02 2015-03-25 湖南省华京粉体材料有限公司 一种碳刷用二硫化钨复合材料的制备方法
CN106711225A (zh) * 2016-11-17 2017-05-24 北京交通大学 一种硫化物场效应晶体管及其制备方法
CN107146815A (zh) * 2017-03-21 2017-09-08 广东工业大学 一种肖特基栅场效应晶体管及其制备方法与应用
CN107557754A (zh) * 2017-07-21 2018-01-09 杭州电子科技大学 一种二硫化钨薄膜的制备方法
CN107849642A (zh) * 2015-06-01 2018-03-27 耶达研究及发展有限公司 金属合金复合材料
CN110373718A (zh) * 2019-05-30 2019-10-25 杭州电子科技大学 一种二维二硫化钨薄膜的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1060141A1 (en) * 1998-03-03 2000-12-20 PPG Industries Ohio, Inc. Impregnated glass fiber strands and products including the same
JP2004156197A (ja) * 1998-03-03 2004-06-03 Ppg Ind Ohio Inc 含浸ガラス繊維ストランドおよびそれを含む製品
US20080170984A1 (en) * 2005-04-07 2008-07-17 Reshef Tenne Process And Apparatus For Producing Inorganic Fullerene-Like Nanoparticles
CN103480856A (zh) * 2013-09-09 2014-01-01 南京邮电大学 一种使用二维过渡金属硫族化合物纳米片和金属制备纳米复合材料的方法
CN104445419A (zh) * 2014-12-02 2015-03-25 湖南省华京粉体材料有限公司 一种碳刷用二硫化钨复合材料的制备方法
CN107849642A (zh) * 2015-06-01 2018-03-27 耶达研究及发展有限公司 金属合金复合材料
CN106711225A (zh) * 2016-11-17 2017-05-24 北京交通大学 一种硫化物场效应晶体管及其制备方法
CN107146815A (zh) * 2017-03-21 2017-09-08 广东工业大学 一种肖特基栅场效应晶体管及其制备方法与应用
CN107557754A (zh) * 2017-07-21 2018-01-09 杭州电子科技大学 一种二硫化钨薄膜的制备方法
CN110373718A (zh) * 2019-05-30 2019-10-25 杭州电子科技大学 一种二维二硫化钨薄膜的制备方法

Also Published As

Publication number Publication date
CN111041449B (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
Yu et al. Synthesis of high quality two-dimensional materials via chemical vapor deposition
Wang et al. Asynchronous-pulse ultrasonic spray pyrolysis deposition of CuxS (x= 1, 2) thin films
JP5397794B1 (ja) 酸化物結晶薄膜の製造方法
Kente et al. Gallium nitride nanostructures: Synthesis, characterization and applications
CN110551986B (zh) 用于原子层过渡金属二硫属化物的直接图形化生长的方法
Gao et al. ZnO nanorods/plates on Si substrate grown by low-temperature hydrothermal reaction
Xu et al. Synthesis and characterization of high purity GaN nanowires
CN1929912A (zh) 包含氧化物纳米材料的光催化剂
JP2015017027A (ja) 半導体装置及びその製造方法、並びに結晶及びその製造方法
Byrne et al. A novel, substrate independent three-step process for the growth of uniform ZnO nanorod arrays
CN112663144A (zh) 二维In2S3/SnS异质结晶体材料的制备方法
JP6233959B2 (ja) 酸化物結晶薄膜の製造方法
CN111268656A (zh) 氮化硼纳米管的制备方法
Li et al. Low-temperature hydrothermal growth of oriented [0001] ZnO film
Yang et al. Synthesis of single crystalline GaN nanoribbons on sapphire (0001) substrates
CN111041449B (zh) 一种特定形貌二硫化钨的制备方法
CN103160929A (zh) 一种单晶ain纳米锥和纳米片的制备方法
Kim et al. Influence of ambient gases on the morphology and photoluminescence of ZnO nanostructures synthesized with nickel oxide catalyst
Park et al. The epitaxial growth of ZnO nanowires for optical devices by a modified thermal evaporation method
Zervos et al. A systematic study of the nitridation of SnO2 nanowires grown by the vapor liquid solid mechanism
TW200912028A (en) Method and apparatus for depositing nitride film
CN103801285A (zh) 一种具有可见光响应能力核壳结构光催化材料及制备方法
CN114182230A (zh) 一种制备二维碲烯薄膜的化学气相沉积方法
CN109504951B (zh) 一种生长混合相锌镁氧三元氧化物纳米线网的方法
Mousavi et al. Comparison of structural and photoluminescence properties of zinc oxide nanowires grown by vapor–solid and vapor–liquid–solid methods

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220630

Address after: Room 2202, 22 / F, Wantong building, No. 3002, Sungang East Road, Sungang street, Luohu District, Shenzhen City, Guangdong Province

Patentee after: Shenzhen dragon totem technology achievement transformation Co.,Ltd.

Address before: 310018 No. 2 street, Xiasha Higher Education Zone, Hangzhou, Zhejiang

Patentee before: HANGZHOU DIANZI University