CN110938764B - 一种碳纳米管/铝复合材料及其制备方法 - Google Patents

一种碳纳米管/铝复合材料及其制备方法 Download PDF

Info

Publication number
CN110938764B
CN110938764B CN201911342182.XA CN201911342182A CN110938764B CN 110938764 B CN110938764 B CN 110938764B CN 201911342182 A CN201911342182 A CN 201911342182A CN 110938764 B CN110938764 B CN 110938764B
Authority
CN
China
Prior art keywords
carbon nanotube
walled carbon
composite material
aluminum
aluminum composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911342182.XA
Other languages
English (en)
Other versions
CN110938764A (zh
Inventor
吴少军
薛祥
侯红亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201911342182.XA priority Critical patent/CN110938764B/zh
Publication of CN110938764A publication Critical patent/CN110938764A/zh
Application granted granted Critical
Publication of CN110938764B publication Critical patent/CN110938764B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0084Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ carbon or graphite as the main non-metallic constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides

Abstract

本发明涉及一种高力学强度高导电性碳纳米管/铝复合材料的制备方法,包括如下步骤:步骤一:取管径为6nm以下的单壁碳纳米管,用刻蚀剂在高温下刻蚀碳纳米管的帽端,得到末端开口的单壁碳纳米管;步骤二:通过控制球磨时间或碳纳米管生长时间,得到长径比为250左右的末端开口单壁碳纳米管。通过在单壁碳纳米管表面镀覆一层与铝基体润湿性优异的硼化物或稀土镀层,提高了其与铝基体的相容性,使之在铝基体中分布均匀,同时,高温退火处理增加了金属原子等在碳管间扩散,这些处理有效提高了碳纳米管铝复合材料的总体力学性能和导电性。

Description

一种碳纳米管/铝复合材料及其制备方法
技术领域
本发明属于一种金属/无机复合材料的制备方法,特别涉及一种高力学强度高导电性碳纳米管/铝复合材料及其制备方法。
背景技术
碳纳米管具有良好的导电和力学性能,将碳纳米管与铝复合既可提高铝的力学性能,弥补铝线力学性能较差的缺点,又可从理论上将碳纳米管/铝复合材料的导电性得到提升,目前,不少研究者通过不同的制备工艺如粉末冶金等制备得到了碳纳米管/铝复合材料,材料的拉伸强度得以提高,但是其导电性往往降低或没有得到明显地提高,碳纳米管/铝复合材料的整体性能仍需进一步优化提升。
发明内容
本发明主要针对碳纳米管/铝复合材料的整体性能较差的问题,进而提供一种碳纳米管/铝复合材料及其制备方法。
本发明涉及一种高力学强度高导电性碳纳米管/铝复合材料的制备方法,包括如下步骤:
步骤一:取管径为6nm以下的单壁碳纳米管,用刻蚀剂在高温下刻蚀碳纳米管的帽端,得到末端开口的单壁碳纳米管;
步骤二:通过控制球磨时间或碳纳米管生长时间,得到长径比为250-280的末端开口的单壁碳纳米管;
步骤三:通过化学镀、化学气相沉积或物理气相沉积法,在上述单壁碳纳米管管壁镀覆硼化物、稀土元素或稀土化合物,得到具有厚度为1-30nm的镀层的单壁碳纳米管;
步骤四:称取具有镀层的单壁碳纳米管加入乙醇溶液中超声分散,再加入铝粉并搅拌均匀,单壁碳纳米管与铝粉的质量比为1:(5-10),待乙醇蒸发完全后将该复合粉体热压挤出,得到单壁碳纳米管/镀层/铝复合材料;
步骤五:将挤出的复合材料经过550-600℃的高温退火处理,得到单壁碳纳米管/镀层/铝复合材料。
进一步地,步骤一中,所述管径为6nm以下的单壁碳纳米管采用电弧法、激光烧蚀法或化学气相沉积法制得。
进一步地,步骤一中,所述刻蚀剂为O2或CO2
进一步地,步骤三中,所述硼化物为碱金属硼酸盐、硼酸酯类或硼酸、氟硼酸或碳化硼。
进一步地,所述碱金属硼酸盐为硼酸铝、1硼酸镁、硼酸钠,碳化硼;硼酸酯类为硼酸三异丙酯、硼酸三丙酯、硼酸三乙酯或硼酸三丁酯。
进一步地,步骤三中,稀土元素为钕、镧、铈或钐。
进一步地,步骤三中,稀土化合物为氧化钕、氢氧化钕、氢氧化镧、氧化铈或氧化钐。
进一步地,步骤四中,所述具有镀层的单壁碳纳米管在单壁碳纳米管/镀层/铝复合材料中的体积分数在0-99.99%。
本发明还涉及一种根据上述方法制备得到的碳纳米管/铝复合材料。
本发明具有如下有益效果:
1、高力学强度:通过在单壁碳纳米管表面镀覆一层与铝基体润湿性优异的硼化物或稀土镀层,提高了其与铝基体的相容性,使之在铝基体中分布均匀,同时,高温退火处理增加了金属原子等在碳管间扩散,这些处理有效提高了碳纳米管铝复合材料的总体力学性能;
2、高导电性:小管径的单壁碳纳米管的使用以及合理控制碳纳米管的长径比,在铝基体中有效形成了分布均匀的单壁碳纳米管导电网络,同时将单壁碳纳米管作两端开口处理,显著提升了其电子传输能力,从而得到了本发明中的高导电性的碳纳米管铝复合材料;
3、多效性:通过在单壁碳纳米管管壁镀覆一层硼化物或稀土等其它镀层,一方面有效提高了碳管在铝基体中的均匀分散;另一方面,硼化物或含稀土元素镀层通过与铝基体中的微量杂质元素反应,起到了净化基体的作用,在协助碳管均匀分散的同时,进一步降低由于杂质元素导致的电阻。
具体实施方法
本发明包括一种高力学强度高导电性碳纳米管/铝复合材料的制备方法,包括如下步骤:
步骤一:取管径为6nm以下的单壁碳纳米管,用刻蚀剂在高温下刻蚀碳纳米管的帽端,得到末端开口的单壁碳纳米管;
步骤二:通过控制球磨时间或碳纳米管生长时间,得到长径比为250-280的末端开口的单壁碳纳米管;
步骤三:通过化学镀、化学气相沉积或物理气相沉积法,在上述单壁碳纳米管管壁镀覆硼化物、稀土元素或稀土化合物,得到具有厚度为1-30nm的镀层的单壁碳纳米管;
步骤四:称取具有镀层的单壁碳纳米管加入乙醇溶液中超声分散,再加入铝粉并搅拌均匀,单壁碳纳米管与铝粉的质量比为1:(5-10),待乙醇蒸发完全后将该复合粉体热压挤出,得到单壁碳纳米管/镀层/铝复合材料;
步骤五:将挤出的复合材料经过550-600℃的高温退火处理,得到单壁碳纳米管/镀层/铝复合材料。
硼化物为碱金属硼酸盐、硼酸酯类或硼酸、氟硼酸或碳化硼。碱金属硼酸盐为硼酸铝、硼酸镁、硼酸钠,碳化硼;硼酸酯类为硼酸三异丙酯、硼酸三丙酯、硼酸三乙酯或硼酸三丁酯。稀土元素为钕、镧、铈或钐。稀土化合物为氧化钕、氢氧化钕、氢氧化镧、氧化铈或氧化钐。
实施例1
本实施例中的的方法,包括如下步骤:
步骤一:以CO为碳源、Fe(CO)5为催化剂,将碳源和催化剂的混合物通入温度为1000℃的管式炉内,炉内气压控制在30-50atm,保温反应1h制备得到纯度为97%、直径约1nm的单壁碳纳米管;取30g的单壁碳纳米管放置于石英管式炉中间,以15ml/min的流速通入O2,并在400℃保温4h,反应结束后降温至室温,得到O2刻蚀端帽的单壁碳纳米管;
步骤二:控制球磨时间,得到长径比为280的单壁碳纳米管;
步骤三:通过磁控溅射,在单壁碳纳米管管壁上镀稀土钐25min,镀覆1nm厚度的稀土钐镀层,得到具有钐镀层的单壁碳纳米管;
步骤四:取20g的具有钐镀层的单壁碳纳米管,加入80ml乙醇溶液中超声分散,再加入160g的铝粉并搅拌均匀,待乙醇蒸发完全后将该复合粉体热压挤出,在600℃的高温下经过高温退火处理,得到单壁碳纳米管/钐/铝复合材料。
本实施例中,管壁包覆了稀土钐镀层的单壁碳纳米管/钐/铝复合材料,其拉伸强度提升到93MPa,电阻率降为2.01×10-8Ω·m。而同等测量条件下的纯铝,其拉伸强度测量值为76MPa,电阻率为2.98×10-8Ω·m。
实施例2
本实施例中的的方法,包括如下步骤:
步骤一:以二氯苯为碳源,二茂铁为催化剂,采用化学气相沉积法制备单壁碳纳米管,使用氩气排出炉内残留空气后通入氢气,其中氩气量为800Sccm,氢气量为2000Sccm;溶有二茂铁的二氯苯溶液通过载气进入炉管内,于1100℃下反应得到反应得到直径为3nm的单壁碳纳米管;取40g的单壁碳纳米管放置于石英管式炉中间,以20ml/min的流速通入CO2,并在800℃保温3h,反应结束后降温至室温,得到CO2刻蚀的单壁碳纳米管;
步骤二:控制球磨时间,得到长径比为250的单壁碳纳米管;
步骤三:通过化学气相沉积30min,在单壁碳纳米管管壁沉积厚度为30nm的B4C层,得到管壁包覆有B4C的单壁碳纳米管;
步骤四:取30g的单壁碳纳米管B4C加入100ml乙醇溶液中超声分散,再加入200g的铝粉并搅拌均匀,待乙醇蒸发完全后将该复合粉体热压挤出,在600℃的高温下经过高温退火处理,得到单壁碳纳米管/B4C/铝复合材料复合材料。
本实施例中,管壁包覆了B4C镀层的单壁碳纳米管/B4C/铝复合材料,其拉伸强度提升到102MPa,电阻率降为1.87×10-8Ω·m。而同等测量条件下的纯铝,其拉伸强度测量值为76MPa,电阻率为2.98×10-8Ω·m。
实施例3
本实施例中的的方法,包括如下步骤:
步骤一:取管径为2nm的单壁碳纳米管,用刻蚀剂O2在高温下刻蚀碳纳米管的帽端,得到末端开口的单壁碳纳米管;
步骤二:通过控制球磨时间或碳纳米管生长时间,得到长径比为260的末端开口的单壁碳纳米管;
步骤三:通过物理气相沉积法,在上述单壁碳纳米管管壁镀覆硼酸三丙酯,得到具有厚度为10nm的镀层的单壁碳纳米管;
步骤四:称取具有镀层的单壁碳纳米管加入乙醇溶液中超声分散,再加入铝粉并搅拌均匀,单壁碳纳米管与铝粉的质量比为1:5,待乙醇蒸发完全后将该复合粉体热压挤出,得到单壁碳纳米管/镀层/铝复合材料;
步骤五:将挤出的复合材料经过550℃的高温退火处理,得到单壁碳纳米管/硼酸三丙酯/铝复合材料。
实施例4
步骤一:取管径为5nm的单壁碳纳米管,用刻蚀剂在高温下刻蚀碳纳米管的帽端,得到末端开口的单壁碳纳米管;
步骤二:通过控制球磨时间或碳纳米管生长时间,得到长径比为270的末端开口的单壁碳纳米管;
步骤三:通过化学镀、化学气相沉积或物理气相沉积法,在上述单壁碳纳米管管壁镀覆硼酸镁,得到具有厚度为20nm的镀层的单壁碳纳米管;
步骤四:称取具有镀层的单壁碳纳米管加入乙醇溶液中超声分散,再加入铝粉并搅拌均匀,单壁碳纳米管与铝粉的质量比为1:10,待乙醇蒸发完全后将该复合粉体热压挤出,得到单壁碳纳米管/镀层/铝复合材料;
步骤五:将挤出的复合材料经过600℃的高温退火处理,得到单壁碳纳米管/硼酸镁/铝复合材料。
单壁碳纳米管的导电性受很多因素影响,单壁碳纳米管的直径在6nm以下时,碳纳米管的导电性随着其直径的减小而增大,可作为一维量子导线;相比于碳管末端存在端帽的碳纳米管,末端开口的碳纳米管具有更强的电子传输能力,因此,小管径(<6nm)、两端开口的单壁碳纳米管更有利于明显提升碳纳米管/铝复合材料的导电性能;另外,碳管长径比也影响着其在铝基体中导电网络的形成,若碳管长径比越小则越不易形成导电网络,若碳管长径比越大越易相互缠绕,从而越难在基体中均匀分散形成良好的导电网络,因此通过不同球磨时间等合适方法得到适当长径比的碳纳米管,应能够在铝基体中有效形成导电网络。
另一方面,碳纳米管与金属铝之间的润湿性较差,因而两者间的界面结合力很弱,当两种材料单纯复合在一起时往往存在相分离或铝基体中存在大量的碳纳米管团聚体,这种现象不但不利于提升复合材料的力学性能,而且还会由于电子散射效应的增强使得复合材料的导电性降低,以往解决方法中常用的是在碳管表面镀覆铜、镍等金属层增加润湿性,本发明在碳纳米管表面镀覆一层与铝基体润湿性更好的的硼化物或稀土及化合物,可有效提高镀层与金属铝之间的相容性,从而使得碳纳米管均匀分散于铝基体中。
上述内容仅为本发明的较佳实施例,并非用于限制本发明的实施方案,本领域普通技术人员根据本发明的主要构思和精神,可以十分方便地进行相应的变通或修改,故本发明的保护范围应以权利要求书所要求的保护范围为准。

Claims (8)

1.一种高力学强度高导电性碳纳米管/铝复合材料的制备方法,其特征在于,包括如下步骤:
步骤一:取管径为6nm以下的单壁碳纳米管,用刻蚀剂在高温下刻蚀碳纳米管的帽端,得到末端开口的单壁碳纳米管;
步骤二:通过控制球磨时间或碳纳米管生长时间,得到长径比为250-280的末端开口的单壁碳纳米管;
步骤三:通过化学镀、化学气相沉积或物理气相沉积法,在上述单壁碳纳米管管壁镀覆硼化物、稀土元素或稀土化合物,得到具有厚度为1-30nm的镀层的单壁碳纳米管;
步骤四:称取具有镀层的单壁碳纳米管加入乙醇溶液中超声分散,再加入铝粉并搅拌均匀,单壁碳纳米管与铝粉的质量比为1:(5-10),待乙醇蒸发完全后将该复合粉体热压挤出,得到单壁碳纳米管/镀层/铝复合材料;
步骤五:将挤出的复合材料经过550-600℃的高温退火处理,得到单壁碳纳米管/镀层/铝复合材料。
2.根据权利要求1所述的碳纳米管/铝复合材料的制备方法,其特征在于,步骤一中,所述管径为6nm以下的单壁碳纳米管采用电弧法、激光烧蚀法或化学气相沉积法制得。
3.根据权利要求1所述的碳纳米管/铝复合材料的制备方法,其特征在于,步骤一中,所述刻蚀剂为O2或CO2
4.根据权利要求1所述的碳纳米管/铝复合材料的制备方法,其特征在于,步骤三中,所述硼化物为碳化硼。
5.根据权利要求1所述的碳纳米管/铝复合材料的制备方法,其特征在于,步骤三中,稀土元素为钕、镧、铈或钐。
6.根据权利要求1所述的碳纳米管/铝复合材料的制备方法,其特征在于,步骤三中,稀土化合物为氧化钕、氢氧化钕、氢氧化镧、氧化铈或氧化钐。
7.根据权利要求1所述的碳纳米管/铝复合材料的制备方法,其特征在于,步骤四中,所述具有镀层的单壁碳纳米管在单壁碳纳米管/镀层/铝复合材料中的体积分数在0-99.99%。
8.一种根据上述权利要求1至7任一项所述方法制备的碳纳米管/铝复合材料。
CN201911342182.XA 2019-12-23 2019-12-23 一种碳纳米管/铝复合材料及其制备方法 Active CN110938764B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911342182.XA CN110938764B (zh) 2019-12-23 2019-12-23 一种碳纳米管/铝复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911342182.XA CN110938764B (zh) 2019-12-23 2019-12-23 一种碳纳米管/铝复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110938764A CN110938764A (zh) 2020-03-31
CN110938764B true CN110938764B (zh) 2020-09-01

Family

ID=69912931

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911342182.XA Active CN110938764B (zh) 2019-12-23 2019-12-23 一种碳纳米管/铝复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110938764B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111733347A (zh) * 2020-04-03 2020-10-02 广西大学 一种制备无机富勒烯增强铝基纳米复合材料的合成方法
CN112501468B (zh) * 2020-05-22 2022-04-22 武汉南瑞电力工程技术装备有限公司 一种碳纳米管增强铝基复合材料的熔炼工艺
CN112723339A (zh) * 2020-12-11 2021-04-30 深圳市德方纳米科技股份有限公司 阵列型掺杂多壁碳纳米管及其制备方法和电极材料

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004123770A (ja) * 2002-09-30 2004-04-22 Bridgestone Corp ゴム−カーボンナノチューブ複合体及びその製造方法
KR101491216B1 (ko) * 2012-12-13 2015-02-11 현대자동차주식회사 고탄성 알루미늄합금 및 그 제조방법
WO2016145201A1 (en) * 2015-03-10 2016-09-15 Massachusetts Institute Of Technology Metal-nanostructure composites
CN107012349B (zh) * 2016-01-28 2018-10-09 香港理工大学 一种碳纳米管增强泡沫铝基复合材料的制备方法
CN105734322B (zh) * 2016-03-02 2017-05-31 昆明理工大学 一种碳纳米管增强铝基复合材料的制备方法
CN110129606B (zh) * 2019-05-23 2021-02-09 昆明理工大学 一种定向排列碳纳米管增强铝基复合线材的制备方法

Also Published As

Publication number Publication date
CN110938764A (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
CN110938764B (zh) 一种碳纳米管/铝复合材料及其制备方法
CN108658615B (zh) 一种高导热石墨烯基复合薄膜及其制备方法
CA2731963C (en) Method for producing a coating containing carbon nanotubes, fullerenes and/or graphenes
JP5551173B2 (ja) テープ材料上の金属/cnt−及び/又はフラーレン複合体コーティング
CN102719693A (zh) 石墨烯与碳纳米管混杂增强金属基复合材料及其制备方法
KR101591454B1 (ko) 금속 및 산화물로 하이브리드 코팅된 나노카본의 제조방법
JP2015203155A (ja) ナノカーボン強化アルミニウム複合材およびその製造方法
US20090035555A1 (en) Electrically conductive transparent coatings comprising organized assemblies of carbon and non-carbon compounds
KR101301541B1 (ko) 그라펜이 분산된 비극성 폴리올레핀 복합재료
Park et al. Enhanced thermal conductivity of epoxy/three-dimensional carbon hybrid filler composites for effective heat dissipation
CN108573763A (zh) 电线电缆导体、石墨烯包覆金属粉体和导体的制备方法
CN112011705A (zh) 纳米碳增强铜基复合材料批量制备方法
KR20110139588A (ko) 나노카본과 금속 또는 세라믹 복합재료의 제조방법
CN109161709B (zh) 一种裂解碳纳米管增强铜基复合材料的制备方法
CN105645375A (zh) 一种在纳米多孔铜上直接生长多孔碳纳米管的方法
CN107902640A (zh) 一种氮化硼包覆多壁碳纳米管的制备方法
CN107758633B (zh) 一种长直氮化硼纳米线的制备方法
CN109112504B (zh) 一种石墨烯/铜复合材料及其制备和应用
CN106191805A (zh) 一种磁性石墨烯复合薄膜的制备方法
CN105645376A (zh) 一种在纳米多孔铜上直接生长多孔碳纳米管-石墨烯杂化体的方法
CN109513926B (zh) 一种具有层级结构的CNT-GO/Cu复合材料的制备方法
CN116727676A (zh) 一种氮掺杂碳纳米管增强的高导电铜基复合材料的制备方法
JP3834640B2 (ja) 窒化ホウ素ナノチューブの製造方法
CN107224973B (zh) 一种Cu2O/MWCNTs复合材料、制备方法和催化应用
Gromov et al. Use of thin film of a Co 15 Ti 40 N 35 alloy for CVD catalytic growth of carbon nanotubes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant