CN110863174A - 一种无需激活的钛基吸氢材料及其制备方法 - Google Patents

一种无需激活的钛基吸氢材料及其制备方法 Download PDF

Info

Publication number
CN110863174A
CN110863174A CN201911139755.9A CN201911139755A CN110863174A CN 110863174 A CN110863174 A CN 110863174A CN 201911139755 A CN201911139755 A CN 201911139755A CN 110863174 A CN110863174 A CN 110863174A
Authority
CN
China
Prior art keywords
layer
purity
foil
sputtering
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911139755.9A
Other languages
English (en)
Inventor
史志胜
熊玉华
崔建东
郭德宇
吴华亭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRIMN Engineering Technology Research Institute Co Ltd
Original Assignee
GRIMN Engineering Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GRIMN Engineering Technology Research Institute Co Ltd filed Critical GRIMN Engineering Technology Research Institute Co Ltd
Priority to CN201911139755.9A priority Critical patent/CN110863174A/zh
Publication of CN110863174A publication Critical patent/CN110863174A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明属于吸气剂材料技术领域的一种无需激活的钛基吸氢材料及其制备方法,所述材料包括吸气层、过渡层和保护层,所述过渡层和保护层依次对称分布在吸气层两侧;吸气层中金属Ti箔的纯度为99.9%以上;过渡层中的Ti的纯度为99.995%以上;保护层为Pd、Ni和Pd‑Ag合金中任意一种,其中Pd的纯度为99.95%以上,Ni的纯度为99.995%以上,Pd‑Ag合金中Ag的重量百分比为25%。本发明的钛基吸氢材料具有无需激活、室温吸氢、吸氢量大、可切割、厚度可调、使用方便等特点,可用于消除高真空电子器件的残余氢气,避免氢气对器件造成危害。

Description

一种无需激活的钛基吸氢材料及其制备方法
技术领域
本发明属于吸气剂材料技术领域,特别涉及一种无需激活的钛基吸氢材料及其制备方法。
背景技术
在科学技术和国防军工事业迅猛发展的今天,保障一些关键器件的使用寿命、性能稳定性和可靠性已经成为提高我国军事国防能力的关键问题。目前真空技术领域涉及到的很多电真空器件对内部的氢气含量十分敏感,例如,有源相控阵雷达T/R组件中的砷化镓(GaAs)器件,内部存在的少量的H2就会导致密封器件退化;红外探测器或太阳能接收器也会因残余H2的存在导致其稳定性严重降低甚至失效等。通过使用能够选择性吸氢的材料可以有效控制器件内部的氢气含量。因此,具有理想H2吸附性能的吸气材料被认为是众多高真空器件内的关键材料。传统的吸气材料往往具有较高的表面活性,在暴露大气的过程中会在表面形成一层钝化膜,阻碍活性气体在吸气材料表面的化学吸附与扩散过程,因此未经激活处理的吸气材料在常温下不能发挥吸气作用,导致其很难直接应用到对温度调节要求较高的真空封装器件中,所以本发明旨在研发出一种不需要激活处理,在室温下就可以选择性吸收氢气的材料。
发明内容
针对上述问题,本发明提出了一种无需激活的钛基吸氢材料及其制备方法,具体技术方案如下:
一种无需激活的钛基吸氢材料,包括吸气层、过渡层和保护层,所述过渡层和保护层依次对称分布在吸气层两侧;吸气层中金属Ti箔的纯度为99.9%以上;过渡层中的Ti的纯度为99.995%以上;保护层为Pd、Ni和Pd-Ag合金中任意一种,其中Pd的纯度为99.95%以上,Ni的纯度为99.995%以上,Pd-Ag合金中Ag的重量百分比为25%。
所述吸气层厚度为100~500μm;所述过渡层为致密结构,厚度为100nm~1μm;所述保护层为致密结构,厚度为50~500nm。
一种无需激活的钛基吸氢材料的制备方法,包括以下步骤:
1)分别用丙酮、无水乙醇、去离子水清洗高纯Ti箔,用高纯氩气吹干;
2)通过离子溅射法将Ti箔表面的氧化层去除,露出Ti箔新鲜金属表面,作为吸气层;
3)在吸气层上磁控溅射沉积Ti薄膜作为过渡层;
4)在过渡层上磁控溅射沉积Pd薄膜、Ni薄膜或Pd-Ag合金膜作为保护层;
5)将钛箔翻面,重复步骤2)~步骤4)。
所述步骤2)中镀膜腔室的背底真空抽至5.0×10-6~5.0×10-4Pa,然后向腔室内通入高纯氩气,用离子轰击Ti箔表面。
所述步骤3)中溅射气压为0.2~1.0Pa,溅射功率为100~300W,靶基距为5~8cm,沉积时间为3~30min。
所述步骤4)中溅射气压为0.2~1.0Pa,溅射功率为50~300W,靶基距为5~8cm,沉积时间为30~600s。
本发明的有益效果在于:
1.本发明提供的无需激活的钛基吸氢材料具有无需激活、室温吸氢、吸氢量大、可切割、厚度可调、使用方便等特点,可用于消除高真空电子器件的残余氢气,避免氢气对器件造成危害。
附图说明
图1为本发明的无需激活的钛基吸氢材料的结构示意图。
图2为实施例1~4制得的吸氢材料在室温条件下的静态法吸氢性能测试曲线。
其中:1—吸气层;2—过渡层;3—保护层
具体实施方式
一种无需激活的钛基吸氢材料,如图1所示,包括吸气层1、过渡层2和保护层3,所述过渡层和保护层依次对称分布在吸气层两侧;吸氢材料的两面均为多层结构,不区分正反面。吸气层中金属Ti箔的纯度为99.9%以上;过渡层中的Ti的纯度为99.995%以上;保护层为Pd、Ni和Pd-Ag合金中任意一种,其中Pd的纯度为99.95%以上,Ni的纯度为99.995%以上,Pd-Ag合金中Ag的重量百分比为25%。
吸气层厚度为100~500μm;过渡层为致密结构,厚度为100nm~1μm;保护层为致密结构,厚度为50~500nm。
一种无需激活的钛基吸氢材料的制备方法,包括以下步骤:
1)分别用丙酮、无水乙醇、去离子水清洗高纯Ti箔,用高纯氩气吹干;
2)通过离子溅射法将Ti箔表面的氧化层去除,露出Ti箔新鲜金属表面,作为吸气层;镀膜腔室的背底真空抽至5.0×10-6~5.0×10-4Pa,然后向腔室内通入高纯氩气,用离子轰击Ti箔表面。
3)在吸气层上磁控溅射沉积Ti薄膜作为过渡层;溅射气压为0.2~1.0Pa,溅射功率为100~300W,靶基距为5~8cm,沉积时间为3~30min。
4)在过渡层上磁控溅射沉积Pd薄膜、Ni薄膜或Pd-Ag合金膜作为保护层;溅射气压为0.2~1.0Pa,溅射功率为50~300W,靶基距为5~8cm,沉积时间为30~600s。
5)将钛箔翻面,重复步骤2)~步骤4)。
以下结合附图和具体实施例对本发明作进一步的详细说明:
实施例1
采用下述步骤利用磁控溅射法制备保护层为Pd膜的双面三层结构的选择性吸氢材料:
1)依次用丙酮、无水乙醇、各超声清洗Ti箔5~15min,用高纯氩气吹干;
2)采用反溅射法去除金属表面氧化层,将清洗后的Ti箔放入镀膜腔室内,开启机械泵及分子泵将背底真空抽至5.0×10-6~5.0×10-4Pa,向腔室内通入纯度99.99999%的高纯氩气,调节溅射气压为0.5Pa,时间为30min;
3)采用磁控溅射法制备薄膜,将经过反溅射去除氧化层的Ti箔通过进样室放入镀膜腔室内,并将Ti金属靶材、Pd金属靶材安装在对应的靶位上;将背底真空继续抽至5.0×10-6~5.0×10-4Pa,向腔室内通入纯度99.99999%的高纯氩气,调节溅射气压为3Pa,预溅射15min,以确保Ti靶材表面的氧化层已被去除;调节溅射气压为0.2Pa,溅射功率为250W,靶基距为7cm,沉积时间为20min,形成致密的Ti薄膜过渡层;
4)溅射气压依旧为0.2Pa,Pd靶材预溅2min;调节溅射功率为150W,靶基距为6cm,沉积时间为150s,形成致密的Pd薄膜保护层;
5)将Ti箔翻面,重复步骤2)~步骤4)。
实施例1制得的析氢材料Ti薄膜过渡层的厚度为500nm,为致密结构;Pd保护层的厚度为200nm,为致密结构。如图2所示实施例1制备的吸氢材料在室温条件下的静态法吸氢性能测试曲线。
实施例2
采用下述步骤利用磁控溅射法制备仅含吸气层和过渡层的双层结构的吸氢材料:
1)依次用丙酮、无水乙醇、各超声清洗Ti箔5~15min,用高纯氩气吹干;
2)采用反溅射法去除金属表面氧化层,将清洗后的Ti箔放入镀膜腔室内,开启机械泵及分子泵将背底真空抽至5.0×10-6~5.0×10-4Pa,向腔室内通入纯度99.99999%的高纯氩气,调节溅射气压为0.5Pa,时间为30min;
3)采用磁控溅射法制备薄膜,将经过反溅射去除氧化层的Ti箔通过进样室放入镀膜腔室内,并将Ti金属靶材安装在对应的靶位上;将背底真空继续抽至5.0×10-6~5.0×10-4Pa,向腔室内通入纯度99.99999%的高纯氩气,调节溅射气压为3Pa,预溅射15min,以确保Ti靶材表面的氧化层已被去除;调节溅射气压为0.2Pa,溅射功率为250W,靶基距为7cm,沉积时间为20min,形成致密的Ti薄膜过渡层;
4)将Ti箔翻面,重复步骤2)~步骤3)。
实施例2制得的Ti薄膜过渡层的厚度为500nm,为致密结构。如图2所示实施例2制备的吸氢材料在室温条件下的静态法吸氢性能测试曲线。
实施例3
采用下述步骤利用磁控溅射法制备保护层为Pd膜的选择性吸氢材料:
1)依次用丙酮、无水乙醇、各超声清洗Ti箔5~15min,用高纯氩气吹干;
2)采用反溅射法去除金属表面氧化层,将清洗后的Ti箔放入镀膜腔室内,开启机械泵及分子泵将背底真空抽至5.0×10-6~5.0×10-4Pa,向腔室内通入纯度99.99999%的高纯氩气,调节溅射气压为0.5Pa,时间为30min;
3)采用磁控溅射法制备薄膜,将经过反溅射去除氧化层的Ti箔通过进样室放入镀膜腔室内,并将Pd金属靶材安装在对应的靶位上;将背底真空继续抽至5.0×10-6~5.0×10-4Pa,向腔室内通入纯度99.99999%的高纯氩气,调节溅射气压为0.2Pa,Pd靶材预溅2min;溅射气压不变,调节溅射功率为150W,靶基距为6cm,沉积时间为150s,形成致密的Pd薄膜保护层;
4)将Ti箔翻面,重复步骤2)~步骤3)。
实施例3制得的Pd保护层的厚度为200nm,为致密结构。如图2所示实施例3制备的吸氢材料在室温条件下的静态法吸氢性能测试曲线。
实施例4
采用下述步骤利用磁控溅射法制备保护层为Pd膜的单面三层结构的选择性吸氢材料:
1)依次用丙酮、无水乙醇、各超声清洗Ti箔5~15min,用高纯氩气吹干;
2)采用反溅射法去除金属表面氧化层,将清洗后的Ti箔放入镀膜腔室内,开启机械泵及分子泵将背底真空抽至5.0×10-6~5.0×10-4Pa,向腔室内通入纯度99.99999%的高纯氩气,调节溅射气压为0.5Pa,时间为30min;
3)采用磁控溅射法制备薄膜,将经过反溅射去除氧化层的Ti箔通过进样室放入镀膜腔室内,并将Ti金属靶材、Pd金属靶材安装在对应的靶位上;将背底真空继续抽至5.0×10-6~5.0×10-4Pa,向腔室内通入纯度99.99999%的高纯氩气,调节溅射气压为3Pa,预溅射15min,以确保Ti靶材表面的氧化层已被去除;调节溅射气压为0.2Pa,溅射功率为250W,靶基距为7cm,沉积时间为20min,形成致密的Ti薄膜过渡层;
4)溅射气压依旧为0.2Pa,Pd靶材预溅2min;调节溅射功率为150W,靶基距为6cm,沉积时间为150s,形成致密的Pd薄膜保护层。
实施例4制得的Ti薄膜过渡层的厚度为500nm,为致密结构;Pd保护层的厚度为200nm,为致密结构。如图2所示实施例4制备的吸氢材料在室温条件下的静态法吸氢性能测试曲线。

Claims (6)

1.一种无需激活的钛基吸氢材料,其特征在于,包括吸气层、过渡层和保护层,所述过渡层和保护层依次对称分布在吸气层两侧;吸气层中金属Ti箔的纯度为99.9%以上;过渡层中的Ti的纯度为99.995%以上;保护层为Pd、Ni和Pd-Ag合金中任意一种,其中Pd的纯度为99.95%以上,Ni的纯度为99.995%以上,Pd-Ag合金中Ag的重量百分比为25%。
2.根据权利要求1所述的无需激活的钛基吸氢材料,其特征在于,所述吸气层厚度为100~500μm;所述过渡层为致密结构,厚度为100nm~1μm;所述保护层为致密结构,厚度为50~500nm。
3.权利要求1或2所述无需激活的钛基吸氢材料的制备方法,其特征在于,包括以下步骤:
1)分别用丙酮、无水乙醇、去离子水清洗高纯Ti箔,用高纯氩气吹干;
2)通过离子溅射法将Ti箔表面的氧化层去除,露出Ti箔新鲜金属表面,作为吸气层;
3)在吸气层上磁控溅射沉积Ti薄膜作为过渡层;
4)在过渡层上磁控溅射沉积Pd薄膜、Ni薄膜或Pd-Ag合金膜作为保护层;
5)将钛箔翻面,重复步骤2)~步骤4)。
4.根据权利要求3所述的制备方法,其特征在于,所述步骤2)中镀膜腔室的背底真空抽至5.0×10-6~5.0×10-4Pa,然后向腔室内通入高纯氩气,用离子轰击Ti箔表面。
5.根据权利要求3所述的制备方法,其特征在于,所述步骤3)中溅射气压为0.2~1.0Pa,溅射功率为100~300W,靶基距为5~8cm,沉积时间为3~30min。
6.根据权利要求3所述的制备方法,其特征在于,所述步骤4)中溅射气压为0.2~1.0Pa,溅射功率为50~300W,靶基距为5~8cm,沉积时间为30~600s。
CN201911139755.9A 2019-11-20 2019-11-20 一种无需激活的钛基吸氢材料及其制备方法 Pending CN110863174A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911139755.9A CN110863174A (zh) 2019-11-20 2019-11-20 一种无需激活的钛基吸氢材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911139755.9A CN110863174A (zh) 2019-11-20 2019-11-20 一种无需激活的钛基吸氢材料及其制备方法

Publications (1)

Publication Number Publication Date
CN110863174A true CN110863174A (zh) 2020-03-06

Family

ID=69655669

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911139755.9A Pending CN110863174A (zh) 2019-11-20 2019-11-20 一种无需激活的钛基吸氢材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110863174A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111892014A (zh) * 2020-07-30 2020-11-06 钢铁研究总院 一种吸气薄膜及其制备方法
CN114182205A (zh) * 2021-12-10 2022-03-15 中国工程物理研究院材料研究所 一种纳米多层结构金属吸氢薄膜及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101163586A (zh) * 2005-02-17 2008-04-16 泽斯吸气剂公司 柔性多层吸气器
CN102438938A (zh) * 2009-05-25 2012-05-02 工程吸气公司 多层复合吸气剂材料
CN103849835A (zh) * 2012-11-29 2014-06-11 北京有色金属研究总院 带有保护层的Zr-Co-Re薄膜吸气剂及其制备方法
WO2015081781A1 (zh) * 2013-12-05 2015-06-11 中盈长江国际新能源投资有限公司 镁基储氢薄膜及其制备方法
CN108149211A (zh) * 2017-12-29 2018-06-12 华南理工大学 一种Mg-TM超多层复合储氢薄膜及其制备方法
CN110023623A (zh) * 2016-11-28 2019-07-16 大学共同利用机关法人高能量加速器研究机构 非蒸散型吸气剂涂敷部件、容器、制法、装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101163586A (zh) * 2005-02-17 2008-04-16 泽斯吸气剂公司 柔性多层吸气器
CN102438938A (zh) * 2009-05-25 2012-05-02 工程吸气公司 多层复合吸气剂材料
CN103849835A (zh) * 2012-11-29 2014-06-11 北京有色金属研究总院 带有保护层的Zr-Co-Re薄膜吸气剂及其制备方法
WO2015081781A1 (zh) * 2013-12-05 2015-06-11 中盈长江国际新能源投资有限公司 镁基储氢薄膜及其制备方法
CN110023623A (zh) * 2016-11-28 2019-07-16 大学共同利用机关法人高能量加速器研究机构 非蒸散型吸气剂涂敷部件、容器、制法、装置
CN108149211A (zh) * 2017-12-29 2018-06-12 华南理工大学 一种Mg-TM超多层复合储氢薄膜及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111892014A (zh) * 2020-07-30 2020-11-06 钢铁研究总院 一种吸气薄膜及其制备方法
CN111892014B (zh) * 2020-07-30 2023-10-31 钢铁研究总院 一种吸气薄膜及其制备方法
CN114182205A (zh) * 2021-12-10 2022-03-15 中国工程物理研究院材料研究所 一种纳米多层结构金属吸氢薄膜及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN108531877B (zh) 一种TiZrVHf四元吸气剂薄膜
CN110863174A (zh) 一种无需激活的钛基吸氢材料及其制备方法
CN103849835A (zh) 带有保护层的Zr-Co-Re薄膜吸气剂及其制备方法
CN109536908A (zh) 一种Pd/Zr-Co-Ce/Ti薄膜吸气剂及其制备
EP2598667A1 (en) Self-passivating mechanically stable hermetic thin film
JP2011523977A (ja) 無機傾斜バリア膜及びそれらの製造方法
JPH04313317A (ja) 極低温における真空包被体、特に高エネルギー加速器から水素の除去のための装置および方法
US9200359B2 (en) Thin-layered structure
JP2009522104A (ja) 薄膜ゲッタ装置に関する改善
CN102851645A (zh) 一种低残余应力的铜薄膜制备方法
JPH08203830A (ja) 高温超高真空用真空処理チャンバ
KR102279327B1 (ko) 비증발형 게터 코팅 부품, 용기, 제법, 장치
EP2774166B1 (en) Improved composite getters
CN110318027A (zh) 一种在银片表面制备低反射银-钼合金膜的方法
CN101492807B (zh) 一种自吸气真空镀膜方法
US8512860B2 (en) Housing and method for making the same
US6361618B1 (en) Methods and apparatus for forming and maintaining high vacuum environments
CN110777369A (zh) 一种主动式封装吸氢材料及其制备方法
JP7195504B2 (ja) 真空部品、これを用いた真空排気方法
US8512859B2 (en) Housing and method for making the same
CN114182205A (zh) 一种纳米多层结构金属吸氢薄膜及其制备方法和应用
CN112382718A (zh) 一种C轴垂直择优取向AlN压电薄膜及其制备方法
JP2010194393A (ja) 水素貯蔵複合材料
CN110699649A (zh) 一种用于电子封装的吸氢材料及其制备方法
CN108300970A (zh) 一种梯度钯钇透氢复合薄膜材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200306