CN110699649A - 一种用于电子封装的吸氢材料及其制备方法 - Google Patents

一种用于电子封装的吸氢材料及其制备方法 Download PDF

Info

Publication number
CN110699649A
CN110699649A CN201911091717.0A CN201911091717A CN110699649A CN 110699649 A CN110699649 A CN 110699649A CN 201911091717 A CN201911091717 A CN 201911091717A CN 110699649 A CN110699649 A CN 110699649A
Authority
CN
China
Prior art keywords
hydrogen
substrate
sputtering
electronic packaging
absorbing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911091717.0A
Other languages
English (en)
Inventor
董一鸣
敖冬飞
刘雷
包雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clp Guoji Nanfang Group Co Ltd
Original Assignee
Clp Guoji Nanfang Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clp Guoji Nanfang Group Co Ltd filed Critical Clp Guoji Nanfang Group Co Ltd
Priority to CN201911091717.0A priority Critical patent/CN110699649A/zh
Publication of CN110699649A publication Critical patent/CN110699649A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种用于电子封装的吸氢材料及其制备方法,主要针对于密封电子器件、组件内部氢含量的控制,吸氢材料包括发挥储氢作用的Ti基体和结合在Ti基体上的起催化裂解渗透作用的Pd膜;制备方法包括对储氢Ti基体的前处理、磁控溅射Pd膜层两个过程。本发明可以在各类密封电子器件、组件中应用,吸收密封器件组件中的氢,从而防止密封器件中的芯片等受到氢影响而导致的失效,生产效率和可靠性高,且无需对封装壳体、封装的元器件进行额外除氢处理。

Description

一种用于电子封装的吸氢材料及其制备方法
技术领域
本发明涉及电子封装用吸气材料,特别是一种用于电子封装的吸氢材料及其制备方法。
背景技术
密封电子器件组件内的气体组成和含量对器件本身的性能、寿命及可靠性都有极大影响,容易造成电子器件组件性能降低和寿命减短等严重后果。其中氢造成的失效主要表现为:(1)加速电子器件腐蚀;(2)造成电子元器件氧化、短路、烧毁失效;(3)GaAs芯片氢中毒,芯片和器件的功能严重退化。因此,对密封电子器件组件中氢含量的严格控制是十分必要的。
密封电子器件组件中的氢含量主要来源是金属外壳、内部元件、吸波材料等,具体表现为:(1)外壳材料在制造过程中本身会引入氢;(2)退火、烧结等工艺过程可能在氢气氛中进行从而引入氢;(3)金属外壳电镀过程也会引入氢;(4)芯片等焊接过程同样可能在氢气保护下进行;(5)内部元件如钽电容、环形器等等,都含有氢。这些引入氢的过程不能完全避免,随着器件的使用,外壳、各封装元件中的氢会缓慢释放,由于在密封外壳环境下,这些氢无法释放到器件组件外部,所以氢在密封腔体内部聚集,易造成器件功能失效。所以需要采取一定措施来降低密封电子器件组件中的氢含量。
目前常见的方法是在器件组件密封前在氮气气氛下进行长时间的烘烤,从而排除封装材料中吸附的氢气。长期的高温烘烤,一方面对设备有较高要求,同时也增加了生产周期;另一方面,有研究人员发现,镀金壳体经长时间高温烘烤,镀层底部的镍会扩散至顶部金层表面从而发生氧化,造成组装过程的可焊性降低。同时,对于环形器、钽电容等需封装的元件无法进行高温烘烤除氢,在使用过程中极易造成密封电子器件组件氢含量超标失效。
发明内容
本发明的目的在于提供一种用于电子封装的吸氢材料及其制备方法。
实现本发明目的的技术解决方案为:一种用于电子封装的吸氢材料,包括储氢基体和结合在储氢基体表面的起催化裂解渗透作用的Pd膜,其中储氢基体为Ti基体。
进一步的,Ti基体为厚度0.1~0.5mm的Ti片,纯度大于99%。
进一步的,Pd膜厚度为纯度大于99.99%。
本发明还提供一种用于电子封装的吸氢材料制备方法,包括以下步骤:
1)定制基片:采用纯度大于99%的纯钛,厚度为0.1~0.5mm规格的薄片,以此作为溅射基片;
2)对Ti基体进行除油、蚀刻和粗化的前处理;
3)对基片进行加热,温度范围为150~350℃之间;
4)氩气分压:溅射气体为氩气,压力在0.01~1Pa范围内;
5)预溅射:溅射前进行预溅射,去除靶材表面氧化膜;
6)溅射:溅射过程中基片可在±15°的范围内摆动,溅射厚度为
Figure BDA0002267037440000021
进一步的,基片除油的具体工艺为:先用碱性超声除油清洗2~10min,自来水清洗1~3min,去离子水清洗1~3min。
进一步的,蚀刻和粗化的具体工艺为:将清洗干净后的钛基片放入100~800ml/L的氢氟酸溶液中清洗1~4min,去除钛基片表面氧化物,同时对表面进行蚀刻和粗化,去离子水清洗1~3min,放入烘箱烘干。
进一步的,基片加热前进行抽真空,真空控制在2×10-4Pa以下。
进一步的,溅射气体为99.999%高纯氩气。
进一步的,氩气分压的气体流量为30sccm,溅射功率约为100W。
进一步的,预溅射时间为2~10min。
与现有技术相比,本发明的显著优点为:(1)本发明可以在各类密封电子器件组件中应用,吸收密封器件组件中的氢,从而防止密封器件组件中的芯片等受到氢的影响而导致失效;(2)该方法生产效率高、可靠性高,且无需对封装壳体、封装的元器件进行额外的烘烤;(3)本发明设计的用于密封电子器件组件的吸氢材料,能够在-65℃~+250℃范围内具有良好的吸氢能力,最大吸收氢气的质量约为吸氢材料质量的1.8%,且在该温度范围内不会出现已吸收的氢再次释放出来的现象。
附图说明
图1是本发明中吸氢材料的结构图。
图2是本发明中吸氢材料的吸氢原理图。
图3是本发明中磁控溅射工艺流程图。
图4是本发明中实验用可伐外壳结构图。
具体实施方式
Ti及其合金做为一种储氢材料可用于吸氢,但其在约400℃的高温才可以固溶氢,不能用于密封电子器件组件的吸氢。Pd可吸收氢气并将其裂解为氢原子,氢原子在其原子间隙中可自由通行,但这一过程为可逆过程,在较低温度即可双向进行,其吸附的氢会释放出来,故不可单独用于密封电子器件组件的吸氢。
本发明提出一种用于电子封装的吸氢材料及其制备方法,适用于各类密封电子器件、组件内部氢含量的控制。
如图1所示,吸氢材料包括发挥储氢作用的Ti基体和结合在Ti基体上的起催化裂解渗透作用的Pd膜。
Ti基体是尺寸规格为厚度0.1~0.5mm的Ti片,纯度大于99%。结合在Ti基体表面的Pd膜厚度为
Figure BDA0002267037440000031
Pd钯纯度大于99.99%。
本发明还提供一种用于电子封装的吸氢材料制备方法,包括对储氢Ti基体的前处理、磁控溅射Pd膜层两个过程;将纯Ti金属作为储氢基体,在基体上通过磁控溅射制一层Pd膜作为催化层。如图3所示,具体的制备工艺如下:
1)定制基片:采用纯度大于99%的纯钛,厚度为0.1~0.5mm规格的薄片,以此作为溅射基片;
2)基片清洗:先用碱性超声除油清洗2~10min,自来水清洗1~3min,去离子水清洗1~3min;
3)表面蚀刻:将除油清洗干净后的钛基片放入100~800ml/L的氢氟酸溶液中清洗1~4min,以去除钛基片表面氧化物,同时对表面进行蚀刻和粗化,去离子水清洗1~3min,放入烘箱烘干;
4)抽真空:真空需控制在2×10-4Pa以下,以保证薄膜纯度;
5)加热基片:为除去基片表面水分,提高膜与基片的结合力,需对基片进行加热,温度范围为150~350℃之间;
6)氩气分压:溅射气体为99.999%高纯氩气,压力在0.01~1Pa范围内,气体流量为30sccm,溅射功率约为100W;
7)预溅射:靶材选用纯度为99.99%的纯钯,溅射前进行2~10min的预溅射,以去除靶材表面氧化膜,避免影响薄膜质量;
8)溅射:溅射过程中基片可在±15°的范围内摆动以保证薄膜的均匀性,溅射厚度为
Figure BDA0002267037440000032
本发明的吸氢材料能够在-65℃~+250℃范围内具有良好的吸氢能力,最大吸收氢气的质量约为吸氢材料质量的1.8%,且在该温度范围内不会出现已吸收的氢再次释放出来的现象。如图2所示,本发明的吸氢原理如下:
1)膜层外部氢分子运动到吸氢材料表面吸附于Pd膜表面;
2)由于Pd的4d电子层为缺电子状态,能与氢形成不稳定的化学键,氢分子解离为两个氢原子,该过程遵循n=0.5的Sieverts定律;
3)随着氢分子在Pd表层的吸附和解离,同时Pd膜层两侧具有一定的氢浓度(氢分压)差。氢原子从氢浓度高的一侧向浓度低的一侧(Ti基体侧)扩散,该过程遵循n=1的Fick定律;
4)透过钯钛界面的氢原子向Ti基体内部渗透,并和Ti基体发生固溶。
气态氢分子在Ti基体表面裂解能较高,所以钛在约400℃的条件下才可吸收固溶氢原子。通过Pd对氢分子的解离作用,氢原子在常温即可透过钯钛界面向钛基体固溶渗透。
本发明将纯Ti金属作为储氢基体,在基体上通过磁控溅射制一层Pd膜作为催化层,制得的吸氢材料能够有效的消除密封电子器件、组件中的氢,从而防止氢中毒引起的各类失效。
下面结合实施例对本发明进行详细说明。
实施例
一种用于电子封装的吸氢材料,结构如图1所示。采用纯度大于99%的钛片作为溅射基片,厚度为0.2mm。溅射钯层厚度为按照上述的制备方法进行制备,溅射时真空需控制在2×10-4Pa以下。
本发明制定的Ti基材厚度,Pd催化层厚度,溅射工艺参数,是在众多试验后得出的综合考虑效率和效果的较优参数,能保证密封电子器件组件内部气氛中的氢被有效吸收。
将本发明的吸氢材料和常见控氢方法进行除氢效果的对比。选用的实验用可伐封装外壳如图4所示,1#外壳样品镀金前后均不进行高温烘烤除氢处理。2#外壳样品使用常见的高温烘烤的控氢方法,镀前不进行除氢处理,镀金后在250℃氮气气氛下烘烤48h进行除氢,然后进行封帽。3#外壳样品使用本发明中吸氢材料,外壳镀金前后均不进行除氢处理,将吸氢材料置于镀金外壳中,然后进行封帽。三种样品均在封帽后在250℃的烘箱内进行48h的高温储存激发后,按GJB548B-2005方法1018.1检测管壳内部气氛。4#和5#外壳样品镀金前后均不进行高温烘烤除氢处理,其中A腔不放置吸氢材料,B腔放置吸氢材料,封帽后在100℃的烘箱内进行1000h的高温储存激发后,检测管壳内部气氛。
表1.可伐外壳不同方法控氢后气氛含量检测结果(250℃,48h激发)
内部气氛检测结果如表1、表2所示,1#样品为未进行除氢处理的外壳气氛检测结果,氢含量大于5%;2#样品为高温烘烤控氢方法后外壳的气氛检测结果,氢含量约1.6%;3#样品为未进行除氢处理的外壳使用本发明方法吸氢材料的气氛检测结果,氢含量小于100ppm。4#和5#A腔未放置吸氢材料,氢含量接近4%;4#和5#B腔放置吸氢材料,氢含量未检出。
表2.可伐外壳气氛含量检测结果(100℃,1000h激发)
Figure BDA0002267037440000052
通过对比可以发现,本发明方法所制备的吸氢材料,其控氢效果要远远优于常见的控氢方法。

Claims (10)

1.一种用于电子封装的吸氢材料,其特征在于,包括储氢基体和结合在储氢基体表面的起催化裂解渗透作用的Pd膜,其中储氢基体为Ti基体。
2.根据权利要求1所述的用于电子封装的吸氢材料,其特征在于,Ti基体为厚度0.1~0.5mm的Ti片,纯度大于99%。
3.根据权利要求1所述的用于电子封装的吸氢材料,其特征在于,Pd膜厚度为10~
Figure FDA0002267037430000011
纯度大于99.99%。
4.一种用于电子封装的吸氢材料制备方法,其特征在于,包括以下步骤:
1)定制基片:采用纯度大于99%的纯钛,厚度为0.1~0.5mm规格的薄片,以此作为溅射基片;
2)对Ti基体进行除油、蚀刻和粗化的前处理;
3)对基片进行加热,温度范围为150~350℃之间;
4)氩气分压:溅射气体为氩气,压力在0.01~1Pa范围内;
5)预溅射:溅射前进行预溅射,去除靶材表面氧化膜;
6)溅射:溅射过程中基片可在±15°的范围内摆动,溅射厚度为
Figure 1
5.根据权利要求4所述的用于电子封装的吸氢材料制备方法,其特征在于,基片除油的具体工艺为:先用碱性超声除油清洗2~10min,自来水清洗1~3min,去离子水清洗1~3min。
6.根据权利要求4所述的用于电子封装的吸氢材料制备方法,其特征在于,蚀刻和粗化的具体工艺为:将清洗干净后的钛基片放入100~800ml/L的氢氟酸溶液中清洗1~4min,去除钛基片表面氧化物,同时对表面进行蚀刻和粗化,去离子水清洗1~3min,放入烘箱烘干。
7.根据权利要求4所述的用于电子封装的吸氢材料制备方法,其特征在于,基片加热前进行抽真空,真空控制在2×10-4Pa以下。
8.根据权利要求4所述的用于电子封装的吸氢材料制备方法,其特征在于,溅射气体为99.999%高纯氩气。
9.根据权利要求4所述的用于电子封装的吸氢材料制备方法,其特征在于,氩气分压的气体流量为30sccm,溅射功率约为100W。
10.根据权利要求4所述的用于电子封装的吸氢材料制备方法,其特征在于,预溅射时间为2~10min。
CN201911091717.0A 2019-11-10 2019-11-10 一种用于电子封装的吸氢材料及其制备方法 Pending CN110699649A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911091717.0A CN110699649A (zh) 2019-11-10 2019-11-10 一种用于电子封装的吸氢材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911091717.0A CN110699649A (zh) 2019-11-10 2019-11-10 一种用于电子封装的吸氢材料及其制备方法

Publications (1)

Publication Number Publication Date
CN110699649A true CN110699649A (zh) 2020-01-17

Family

ID=69205536

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911091717.0A Pending CN110699649A (zh) 2019-11-10 2019-11-10 一种用于电子封装的吸氢材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110699649A (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6110808A (en) * 1998-12-04 2000-08-29 Trw Inc. Hydrogen getter for integrated microelectronic assembly
CN1305023A (zh) * 2000-10-19 2001-07-25 太原理工大学 钛合金等离子表面合金化技术
US6423575B1 (en) * 2001-07-27 2002-07-23 Dean Tran Hydrogen gettering structure including silver-doped palladium layer to increase hydrogen gettering of module component and semiconductor device module having such structure, and methods of fabrication
US20030062610A1 (en) * 2001-09-28 2003-04-03 Kovacs Alan L. Multilayer thin film hydrogen getter
CN101163586A (zh) * 2005-02-17 2008-04-16 泽斯吸气剂公司 柔性多层吸气器
CN103668070A (zh) * 2013-12-05 2014-03-26 中盈长江国际新能源投资有限公司 镁基储氢薄膜及其制备方法
CN104069741A (zh) * 2014-07-07 2014-10-01 兰州理工大学 透氢钯复合膜制备中缺陷的修补方法
CN104342617A (zh) * 2013-07-25 2015-02-11 北京大学 一种高容量储氢薄膜及其制备方法
CN108149211A (zh) * 2017-12-29 2018-06-12 华南理工大学 一种Mg-TM超多层复合储氢薄膜及其制备方法
CN109440074A (zh) * 2018-12-06 2019-03-08 电子科技大学 一种高能量输出的氢爆膜桥及其制备方法
CN109536908A (zh) * 2018-12-28 2019-03-29 有研工程技术研究院有限公司 一种Pd/Zr-Co-Ce/Ti薄膜吸气剂及其制备

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6110808A (en) * 1998-12-04 2000-08-29 Trw Inc. Hydrogen getter for integrated microelectronic assembly
US6369442B1 (en) * 1998-12-04 2002-04-09 Trw Inc. Hydrogen getter for integrated microelectronic assembly
US20020063323A1 (en) * 1998-12-04 2002-05-30 Trw Inc. Hydrogen getter for integrated microelectronic assembly
CN1305023A (zh) * 2000-10-19 2001-07-25 太原理工大学 钛合金等离子表面合金化技术
US6423575B1 (en) * 2001-07-27 2002-07-23 Dean Tran Hydrogen gettering structure including silver-doped palladium layer to increase hydrogen gettering of module component and semiconductor device module having such structure, and methods of fabrication
US20030062610A1 (en) * 2001-09-28 2003-04-03 Kovacs Alan L. Multilayer thin film hydrogen getter
CN101163586A (zh) * 2005-02-17 2008-04-16 泽斯吸气剂公司 柔性多层吸气器
CN104342617A (zh) * 2013-07-25 2015-02-11 北京大学 一种高容量储氢薄膜及其制备方法
CN103668070A (zh) * 2013-12-05 2014-03-26 中盈长江国际新能源投资有限公司 镁基储氢薄膜及其制备方法
CN104069741A (zh) * 2014-07-07 2014-10-01 兰州理工大学 透氢钯复合膜制备中缺陷的修补方法
CN108149211A (zh) * 2017-12-29 2018-06-12 华南理工大学 一种Mg-TM超多层复合储氢薄膜及其制备方法
CN109440074A (zh) * 2018-12-06 2019-03-08 电子科技大学 一种高能量输出的氢爆膜桥及其制备方法
CN109536908A (zh) * 2018-12-28 2019-03-29 有研工程技术研究院有限公司 一种Pd/Zr-Co-Ce/Ti薄膜吸气剂及其制备

Similar Documents

Publication Publication Date Title
TWI386317B (zh) 彈性多層式吸氣器
CN109396631B (zh) 一种钨/过渡层/不锈钢的热等静压扩散连接方法
CN103849835A (zh) 带有保护层的Zr-Co-Re薄膜吸气剂及其制备方法
TW586135B (en) Composite materials capable of hydrogen sorption independently from activating treatments and methods for the production thereof
JPH04313317A (ja) 極低温における真空包被体、特に高エネルギー加速器から水素の除去のための装置および方法
US8363384B2 (en) Metal getter systems
CN100451171C (zh) 提高金属焊接性能的表面处理方法及用该方法处理的工件
CN109536908A (zh) 一种Pd/Zr-Co-Ce/Ti薄膜吸气剂及其制备
CN107098603B (zh) 一种真空玻璃内置吸气剂的激活方法
US9200359B2 (en) Thin-layered structure
CN103801252A (zh) 一种带有保护层的吸气剂及其制备方法
CN114520198B (zh) 用于氢敏感混合集成电路的吸氢器件及其制备方法
WO2020255974A1 (ja) ガラスパネルユニット、ガラスパネルユニットの製造方法、複合ゲッタ材、及びゲッタペースト
CN110777369A (zh) 一种主动式封装吸氢材料及其制备方法
CN110699649A (zh) 一种用于电子封装的吸氢材料及其制备方法
CN104871284A (zh) 暴露于反应性气体之后可再活化的非蒸散型吸气剂合金
CN114749144A (zh) 用于维持高真空环境的可再生复合吸气剂及其制作方法
CN109267126B (zh) 一种钛合金封装外壳及其制造方法
CN110863174A (zh) 一种无需激活的钛基吸氢材料及其制备方法
KR20140096047A (ko) 개선된 복합 게터
Manini et al. NEG pumps: Sorption mechanisms and applications
Wu et al. Multilayer thin film getter for sustainable vacuum in MEMS packaging
JP2008064135A (ja) 断熱体
JP6021276B2 (ja) クライオ吸着パネル及びその製造方法、並びにそれを用いた真空装置
WO2022195734A1 (ja) ガス捕捉材及び真空断熱部材製造用キット

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200117

RJ01 Rejection of invention patent application after publication