CN110695563A - 覆土罐罐壁板的焊接方法 - Google Patents

覆土罐罐壁板的焊接方法 Download PDF

Info

Publication number
CN110695563A
CN110695563A CN201910970028.0A CN201910970028A CN110695563A CN 110695563 A CN110695563 A CN 110695563A CN 201910970028 A CN201910970028 A CN 201910970028A CN 110695563 A CN110695563 A CN 110695563A
Authority
CN
China
Prior art keywords
welding
groove
tank
wall plate
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910970028.0A
Other languages
English (en)
Inventor
张磊
宁博
陈自振
吴道凡
张坤
李会英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petrochemical Industry's Henan Oil Builds Engineering Co Ltd
Original Assignee
China Petrochemical Industry's Henan Oil Builds Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petrochemical Industry's Henan Oil Builds Engineering Co Ltd filed Critical China Petrochemical Industry's Henan Oil Builds Engineering Co Ltd
Priority to CN201910970028.0A priority Critical patent/CN110695563A/zh
Publication of CN110695563A publication Critical patent/CN110695563A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/235Preliminary treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Arc Welding In General (AREA)

Abstract

本发明涉及一种覆土罐罐壁板的焊接方法,属于覆土罐技术领域。本发明的覆土罐罐壁板的焊接方法,包括:加工双V型复合坡口;采用混合气体保护焊进行罐壁板的横焊和立上焊;保护气体为二氧化碳与氩气组成的混合气。将该焊接方式与双V型复合坡口、混合气进行结合,能够在保证焊缝质量的前提下,减少焊缝填充量,提高焊接效率,提升30%的综合焊接工效,从而降低了焊接施工成本。下段坡口角度设为42.5°~47.5°,有利于将坡口边缘充分融化,避免出现未熔合,保证焊缝质量,上段坡口面角度设为3.5°~6.5°,有利于减少填充量,降低焊接成本。该混合气有利于获得较大的熔深,保证打底时能够焊透,同时减少焊接飞溅。

Description

覆土罐罐壁板的焊接方法
技术领域
本发明涉及一种覆土罐罐壁板的焊接方法,属于覆土罐技术领域。
背景技术
覆土罐是用于储存原油和成品油的储罐,现在对覆土罐的建造要求越来越高,覆土罐内操作空间狭小受限,在受限空间内,施工难度大,技术要求高,全自动的埋弧横焊和气电立焊由于操作空间受限而无法使用,大多数覆土罐的管壁焊接因条件受限均采用焊条电弧焊焊接,该方法施工措施老旧,在受限空间内焊接,通风不畅,烟尘较大,施焊环境差,需要采用碳弧气刨对背面进行清根,影响施工效率,噪音大,作业环境差,此外,焊材的使用量大,焊接时间长,焊接成本高,施工效率较低,人工成本相对较高。
发明内容
本发明的目的在于提供一种覆土罐罐壁板的焊接方法,该方法用于焊接覆土罐罐壁板,有利于节约焊材,降低成本,保证焊接质量。
本发明的技术方案如下:
(1)在罐壁板上加工双V型复合坡口;
所述双V型复合坡口包括钝边、下段坡口和上段坡口,所述下段坡口与所述上段坡口的交接处为坡口拐点,所述下段坡口的坡口角度为42.5°~47.5°,所述上段坡口的坡口面角度为3.5°~6.5°,所述钝边的长度为0.5~1.5mm,所述坡口拐点距罐壁板底边的距离为4~6mm;
(2)采用混合气体保护焊进行罐壁板的横焊和立上焊;
所述混合气体保护焊采用的保护气体为75vol%~85vol%二氧化碳与15vol%~25vol%氩气组成的混合气。
可以理解的是,在罐壁板上加工出双V型复合坡口后,通过打磨使得坡口切割面平整。使得坡口及距离坡口50mm范围内的罐壁板内外表面无铁锈、毛刺等。
钝边指的是,焊件开坡口时,沿焊件接头坡口根部的端面直边部分。
坡口角度指的是,两坡口时面之间的夹角。
坡口面角度指的是,待加工坡口的端面与坡口面之间的夹角。
下段坡口与钝边相邻,下段坡口和上段坡口相邻。
双V型复合坡口的小端底部指的是临近钝边的一端。
坡口拐点距罐壁板底边中的罐壁板底边指的是,罐壁板上与钝边垂直相连的一边。
本发明的覆土罐罐壁板的焊接方法,采用混合气体保护焊的方式进行罐壁板的横焊和立上焊,将该焊接方式与特定双V型复合坡口(下段坡口的坡口角度为42.5°~47.5°,上段坡口的坡口面角度为3.5°~6.5°,钝边长度为0.5~1.5mm,坡口拐点距罐壁板底边的距离为4~6mm)、特定混合气进行结合,能够在保证焊缝质量的前提下,减少焊缝填充量,提高焊接效率,提升30%的综合焊接工效,从而降低了焊接施工成本。
本发明的覆土罐罐壁板的焊接方法中,下段坡口的坡口角度设置为42.5°~47.5°,有利于混合气体保护焊在进行横焊和立上焊时保证焊枪的导电嘴能伸到坡口底部,可使得焊丝干伸长较短,这样焊接时保护气体能够很好地保护焊丝;且在焊接下段坡口时能够摆动,将坡口边缘充分融化,避免出现未熔合,保证焊缝质量,上段坡口的坡口面角度设置为3.5°~6.5°,减小坡口大小,有利于减少填充量,降低焊接成本。此外,进行罐壁板的横焊和立上焊时,所采用的气体为75vol%~85vol%二氧化碳与15vol%~25vol%氩气组成的混合气,75vol%~85vol%二氧化碳有利于获得较大的熔深,保证打底时能够焊透,15vol%~25vol%氩气有利于减少焊接飞溅。
该方法首先在罐壁板上加工出双V型复合坡口,然后采用混合气体保护焊进行罐壁板的横焊和立上焊。该双V型复合坡口为窄间隙的双V型复合坡口,焊缝中的填充材料少,有利于降低成本,缩短焊接时间,且该双V型复合坡口的坡口具有良好的可焊性,有利于保证焊接质量,此外,该双V型复合坡口的坡口形状易加工;采用的混合气体保护焊能够有效提高焊接效率,飞溅小,电焊工劳动强度较小。该方法大幅提高焊接效率,降低焊接成本,改善作业环境,适用于覆土罐罐壁板的施工,解决覆土罐的焊接问题。
该方法是进行罐壁板的横焊和立上焊,横焊和立上焊的混合气体保护焊设备简单,成本低。
为了进一步保证焊接质量的同时减少焊材用量,降低成本,优选地,步骤(1)中,所述下段坡口的坡口角度为45°,所述上段坡口的坡口面角度为5°,所述钝边的长度为1mm,所述坡口拐点距罐壁板底边的距离为5mm。
优选地,步骤(1)中,所述双V型复合坡口的装配工艺参数为:坡口根部间隙为2~2.5mm,错边小于1.5mm。坡口根部间隙为2~2.5mm,有利于保证根部焊透。错边小于1.5mm,有利于双V型复合坡口的装配。
为了确保加工精度,优选地,步骤(1)中,所述加工双V型复合坡口采用的加工方法为机械式冷加工。
优选地,步骤(1)中,所述罐壁板的厚度为12~30mm。本发明的覆土罐罐壁板的焊接方法适于厚度为12~30mm的罐壁板。
优选地,步骤(2)中,焊接时,从双V型复合坡口的小端底部依次焊接打底层、填充层和盖面层;所述焊接打底层采用的焊接电流为90~130A,所述焊接填充层采用的焊接电流为180~200A,所述焊接盖面层采用的焊接电流为180~200A。在上述焊接电流的条件下,依次焊接打底层、填充层和盖面层的方式,有利于得到良好成型的横焊缝和立焊缝。
优选地,所述焊接的道间温度为150℃以下。
为了保证根部焊透,避免背面使用碳弧气刨清根,提高焊接效率,改善作业环境,缩短施工时间,优选地,所述焊接打底层采用的成型技术为单面焊双面成型技术。
为了进一步保证打底层、填充层和盖面层良好成型,优选地,所述焊接打底层采用的工艺参数为:焊接电流为90~130A,电压为18~20V,焊丝直径为1.2mm,焊接速度为16~22cm/min,送丝速度80~110in/min,焊丝伸长度8~12mm,气体流量为20~30L/min;所述焊接填充层采用的工艺参数为:焊接电流为180~200A,电压为23~26V,焊丝直径为1.2mm,焊接速度为18~22cm/min,送丝速度90~110in/min,焊丝伸长度8~12mm,气体流量为20~30L/min;所述焊接盖面层采用的工艺参数为:焊接电流为180~200A,电压为23~26V,焊丝直径为1.2mm,焊接速度为14~20cm/min,送丝速度80~100in/min,焊丝伸长度8~12mm,气体流量为20~30L/min。
为了进一步在保证熔深的同时降低飞溅,优选地,步骤(2)中,所述混合气体保护焊采用的保护气体为80vol%二氧化碳与20vol%氩气组成的混合气。
附图说明
图1为实施例1的双V型复合坡口的示意图。
具体实施方式
下面结合具体实施方式对本发明作进一步说明。
本发明的实施例的覆土罐罐壁板的焊接方法中,罐壁板可以采用Q245R、Q345R等材质的钢板。罐壁板的厚度为12~30cm。
本发明的实施例的覆土罐罐壁板的焊接方法中,混合气体保护焊的焊丝采用实芯焊丝。
本发明的实施例的覆土罐罐壁板的焊接方法中,采用倒装法组对罐壁板。
本发明的实施例所用的板材和焊材等原料必须有出厂的合格证及材料质量证明书。钢板外观不得有裂纹、夹渣、麻点、机械损伤等缺陷。
一、本发明的覆土罐罐壁板的焊接方法的具体实施例如下:
实施例1
本实施例的覆土罐罐壁板的焊接方法,包括以下步骤:
(1)双V型复合坡口
罐壁板采用的是Q245R材质的钢板,钢板的厚度为20cm。
采用机械式冷切割在罐壁板上加工双V型复合坡口,以确保加工精度。加工后打磨坡口及钢管内外表面距离坡口50mm范围内的铁锈、毛刺等影响焊接质量的表面层。
双V型复合坡口的示意图如图1所示,图1中,下段坡口的坡口角度α为45°,上段坡口的坡口面角度β为5°,钝边P为1mm,坡口拐点距罐壁板底边的距离H为5mm。
(2)双V型复合坡口的装配
采用倒装法组对罐壁板,坡口根部间隙为2.2mm,错边小于1.5mm。
(3)焊接打底层
采用混合气体保护焊焊接打底层,打底层采用单面焊双面成型技术,打底层的焊层厚度为2mm,焊丝采用实芯焊丝,保护气体采用80vol%二氧化碳与20vol%氩气组成的混合气。
焊接打底层采用的工艺参数为:焊接电流为110A,电压为19V,焊丝(牌号为ER50-G)直径为1.2mm,焊接速度为16cm/min,送丝速度80in/min,焊丝伸长度8mm,气体流量为20L/min,焊接电源反接。
(4)焊接填充层
采用混合气体保护焊焊接填充层,填充层的每层厚度为2.2mm,焊丝采用实芯焊丝,保护气体采用80vol%二氧化碳与20vol%氩气组成的混合气。
焊接填充层采用的工艺参数为:焊接电流为190A,电压为24V,焊丝(牌号为ER50-G)直径为1.2mm,焊接速度为18cm/min,送丝速度90in/min,焊丝伸长度8mm,气体流量为20L/min,焊接时道间温度控制在小于150℃,焊接电源反接。
(5)焊接盖面层
采用混合气体保护焊焊接盖面层,盖面层的焊层厚度为2.5mm,焊丝采用实芯焊丝,保护气体采用80vol%二氧化碳与20vol%氩气组成的混合气。
焊接盖面层采用的工艺参数为:焊接电流为190A,电压为24V,焊丝(牌号为ER50-G)直径为1.2mm,焊接速度为14cm/min,送丝速度80in/min,焊丝伸长度8mm,气体流量为20L/min,焊接时道间温度控制在小于150℃,焊接电源反接。
实施例2
本实施例的覆土罐罐壁板的焊接方法,包括以下步骤:
(1)双V型复合坡口
罐壁板同实施例1。
采用机械式冷切割在罐壁板上加工双V型复合坡口,以确保加工精度。加工后打磨坡口及钢管内外表面距离坡口50mm范围内的铁锈、毛刺等影响焊接质量的表面层。
双V型复合坡口中,下段坡口的坡口角度α为42.5°,上段坡口的坡口面角度β为3.5°,钝边P为0.5mm,坡口拐点距罐壁板底边的距离H为4mm。
(2)双V型复合坡口的装配
采用倒装法组对罐壁板,坡口根部间隙为2mm,错边小于1.5mm。
(3)焊接打底层
采用混合气体保护焊焊接打底层,打底层采用单面焊双面成型技术,打底层的焊层厚度为2mm,焊丝采用实芯焊丝,保护气体采用80vol%二氧化碳与20vol%氩气组成的混合气。
焊接打底层采用的工艺参数为:焊接电流为130A,电压为18V,焊丝(牌号为ER50-G)直径为1.2mm,焊接速度为19cm/min,送丝速度100in/min,焊丝伸长度8mm,气体流量为20L/min,焊接电源反接。
(4)焊接填充层
采用混合气体保护焊焊接填充层,填充层的每层厚度为2.5mm,焊丝采用实芯焊丝,保护气体采用80vol%二氧化碳与20vol%氩气组成的混合气。
焊接填充层采用的工艺参数为:焊接电流为180A,电压为26V,焊丝(牌号为ER50-G)直径为1.2mm,焊接速度为20cm/min,送丝速度100in/min,焊丝伸长度12mm,气体流量为30L/min,焊接时道间温度控制在小于150℃,焊接电源反接。
(5)焊接盖面层
采用混合气体保护焊焊接盖面层,盖面层的焊层厚度为2mm,焊丝采用实芯焊丝,保护气体采用80vol%二氧化碳与20vol%氩气组成的混合气。
焊接盖面层采用的工艺参数为:焊接电流为200A,电压为26V,焊丝(牌号为ER50-G)直径为1.2mm,焊接速度为15cm/min,送丝速度90in/min,焊丝伸长度12mm,气体流量为30L/min,焊接时道间温度控制在小于150℃,焊接电源反接。
实施例3
本实施例的覆土罐罐壁板的焊接方法,包括以下步骤:
(1)双V型复合坡口
罐壁板同实施例1。
采用机械式冷切割在罐壁板上加工双V型复合坡口,以确保加工精度。加工后打磨坡口及钢管内外表面距离坡口50mm范围内的铁锈、毛刺等影响焊接质量的表面层。
双V型复合坡口中,下段坡口的坡口角度α为47.5°,上段坡口的坡口面角度β为6.5°,钝边P为1.5mm,坡口拐点距罐壁板底边的距离H为6mm。
(2)双V型复合坡口的装配
采用倒装法组对罐壁板,坡口根部间隙为2.5mm,错边小于1.5mm。
(3)焊接打底层
采用混合气体保护焊焊接打底层,打底层采用单面焊双面成型技术,打底层的焊层厚度为2mm,焊丝采用实芯焊丝,保护气体采用80vol%二氧化碳与20vol%氩气组成的混合气。
焊接打底层采用的工艺参数为:焊接电流为90A,电压为20V,焊丝(牌号为ER50-G)直径为1.2mm,焊接速度为22cm/min,送丝速度110in/min,焊丝伸长度12mm,气体流量为30L/min,焊接电源反接。
(4)焊接填充层
采用混合气体保护焊焊接填充层,填充层的每层厚度为2mm,焊丝采用实芯焊丝,保护气体采用80vol%二氧化碳与20vol%氩气组成的混合气。
焊接填充层采用的工艺参数为:焊接电流为200A,电压为23V,焊丝(牌号为ER50-G)直径为1.2mm,焊接速度为22cm/min,送丝速度110in/min,焊丝伸长度8mm,气体流量为20L/min,焊接时道间温度控制在小于150℃,焊接电源反接。
(5)焊接盖面层
采用混合气体保护焊焊接盖面层,盖面层的焊层厚度为3mm,焊丝采用实芯焊丝,保护气体采用80vol%二氧化碳与20vol%氩气组成的混合气。
焊接盖面层采用的工艺参数为:焊接电流为180A,电压为23V,焊丝(牌号为ER50-G)直径为1.2mm,焊接速度为20cm/min,送丝速度100in/min,焊丝伸长度8mm,气体流量为20L/min,焊接时道间温度控制在小于150℃,焊接电源反接。
二、相关试验例
试验例1
(1)RT射线探伤
利用RT射线对按照实施例1~3的覆土罐罐壁板的焊接方法焊接过的罐壁板进行探伤,均为合格。
(2)拉伸性能
利用实施例1和实施例2的覆土罐罐壁板的焊接方法加工出双V型复合坡口,并进行焊接,利用拉伸试验对焊缝的力学性能进行测试,得到的结果如表1所示。
测试方法为:根据NB/T47014制备拉伸试件,按GB/T 228进行拉伸试验。
表1实施例1和实施例2的覆土罐罐壁板的焊接方法加工出的罐壁板的拉伸性能
由表1可知,利用实施例1和实施例2的覆土罐罐壁板的焊接方法焊接出的覆土罐罐壁板的焊缝能够承受的最大载荷达到129kN以上,抗拉强度达到535MPa以上,焊缝的断裂方式是延伸断裂。
(3)弯曲性能
利用实施例1和实施例2的覆土罐罐壁板的焊接方法加工出双V型复合坡口,并进行焊接,利用弯曲试验对焊缝的力学性能进行测试,得到的结果如表2所示。
弯曲试验测试方法为:根据NB/T47014制备弯曲试件,按GB/T 2653进行弯曲试验。
表2实施例1和实施例2的覆土罐罐壁板的焊接方法加工出的罐壁板的弯曲性能
Figure BDA0002231749220000072
由表2可知,利用实施例1和实施例2的覆土罐罐壁板的焊接方法焊接出的覆土罐罐壁板的面弯和背弯均合格,弯心直接为48mm,弯曲角度为180°。
(4)冲击性能
利用实施例1~实施例3的覆土罐罐壁板的焊接方法加工出双V型复合坡口,并进行焊接,利用冲击试验对焊缝的力学性能进行测试,得到的结果如表3所示。
冲击试验测试方法为:根据NB/T47014制备冲击试件,按GB/T 229进行冲击试验。
表3实施例1~实施例3的覆土罐罐壁板的焊接方法加工出的罐壁板的冲击性能
Figure BDA0002231749220000081
由表3可知,实施例1~实施例3的覆土罐罐壁板的焊接方法焊接出的覆土罐罐壁板的焊缝的冲击吸收功达到了63J以上,热影响区的冲击吸收功达到了119J以上。
(5)焊接工效
对比传统工艺焊接功效和含本申请实施例1的覆土罐罐壁板的焊接方法的新工艺焊接工效,得到的结果如表4所示。
传统工艺焊接采用的是手工焊条电弧焊(SMAW),新工艺焊接罐底板中幅板采用的是本申请实施例1的气保焊与埋弧自动焊(SAM)相结合的方式,焊接罐底板边缘板和大角焊缝采用的是手工焊条电弧焊(SMAW),焊接罐壁板2G、罐壁板3G和罐顶板采用的是本申请实施例1的气保焊,各焊接方法在相同焊接时间8h内的工作量如表4所示。
表4不同焊接方法的焊接工效
Figure BDA0002231749220000082
Figure BDA0002231749220000091
由表4可知,对于罐壁板2G、罐壁板3G的焊接,同样的焊工数量在同样的时间内,采用实施例1的焊接方法能够焊接50m,而采用传统的手工焊条电弧焊只焊接了30m,焊接工效提高了66%;对于罐顶板的焊接,同样的焊工数量在同样的时间内,采用实施例1的焊接方法能够焊接70m,而采用传统的手工焊条电弧焊只焊接了48m,焊接工效提高了45%;对于整体来说,在同等焊工数量,同等焊接时间的情况下,新工艺焊接了320m,传统工艺焊接了246m,焊接工效提高了30%。由此可知,采用新工艺,能够在保证焊缝质量的前提下,减少焊缝填充量,提高焊接效率,提升30%的综合焊接工效,从而降低了焊接施工成本。

Claims (10)

1.一种覆土罐罐壁板的焊接方法,其特征在于,包括以下步骤:
(1)在罐壁板上加工双V型复合坡口;
所述双V型复合坡口包括钝边、下段坡口和上段坡口,所述下段坡口与所述上段坡口的交接处为坡口拐点,所述下段坡口的坡口角度为42.5°~47.5°,所述上段坡口的坡口面角度为3.5°~6.5°,所述钝边的长度为0.5~1.5mm,所述坡口拐点距罐壁板底边的距离为4~6mm;
(2)采用混合气体保护焊进行罐壁板的横焊和立上焊;
所述混合气体保护焊采用的保护气体为75vol%~85vol%二氧化碳与15vol%~25vol%氩气组成的混合气。
2.根据权利要求1所述的覆土罐罐壁板的焊接方法,其特征在于,步骤(1)中,所述下段坡口的坡口角度为45°,所述上段坡口的坡口面角度为5°,所述钝边的长度为1mm,所述坡口拐点距罐壁板底边的距离为5mm。
3.根据权利要求1所述的覆土罐罐壁板的焊接方法,其特征在于,步骤(1)中,所述双V型复合坡口的装配工艺参数为:坡口根部间隙为2~2.5mm,错边小于1.5mm。
4.根据权利要求1所述的覆土罐罐壁板的焊接方法,其特征在于,步骤(1)中,所述加工双V型复合坡口采用的加工方法为机械式冷加工。
5.根据权利要求1所述的覆土罐罐壁板的焊接方法,其特征在于,步骤(1)中,所述罐壁板的厚度为12~30mm。
6.根据权利要求1-5任一项所述的覆土罐罐壁板的焊接方法,其特征在于,步骤(2)中,焊接时,从双V型复合坡口的小端底部依次焊接打底层、填充层和盖面层;
所述焊接打底层采用的焊接电流为90~130A,所述焊接填充层采用的焊接电流为180~200A,所述焊接盖面层采用的焊接电流为180~200A。
7.根据权利要求6所述的覆土罐罐壁板的焊接方法,其特征在于,所述焊接的道间温度为150℃以下。
8.根据权利要求6所述的覆土罐罐壁板的焊接方法,其特征在于,所述焊接打底层采用的成型技术为单面焊双面成型技术。
9.根据权利要求6所述的覆土罐罐壁板的焊接方法,其特征在于,所述焊接打底层采用的工艺参数为:焊接电流为90~130A,电压为18~20V,焊丝直径为1.2mm,焊接速度为16~22cm/min,送丝速度80~110in/min,焊丝伸长度8~12mm,气体流量为20~30L/min;
所述焊接填充层采用的工艺参数为:焊接电流为180~200A,电压为23~26V,焊丝直径为1.2mm,焊接速度为18~22cm/min,送丝速度90~110in/min,焊丝伸长度8~12mm,气体流量为20~30L/min;
所述焊接盖面层采用的工艺参数为:焊接电流为180~200A,电压为23~26V,焊丝直径为1.2mm,焊接速度为14~20cm/min,送丝速度80~100in/min,焊丝伸长度8~12mm,气体流量为20~30L/min。
10.根据权利要求1-5任一项所述的覆土罐罐壁板的焊接方法,其特征在于,步骤(2)中,所述混合气体保护焊采用的保护气体为75vol%~85vol%二氧化碳与15vol%~25vol%氩气组成的混合气。
CN201910970028.0A 2019-10-12 2019-10-12 覆土罐罐壁板的焊接方法 Pending CN110695563A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910970028.0A CN110695563A (zh) 2019-10-12 2019-10-12 覆土罐罐壁板的焊接方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910970028.0A CN110695563A (zh) 2019-10-12 2019-10-12 覆土罐罐壁板的焊接方法

Publications (1)

Publication Number Publication Date
CN110695563A true CN110695563A (zh) 2020-01-17

Family

ID=69198792

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910970028.0A Pending CN110695563A (zh) 2019-10-12 2019-10-12 覆土罐罐壁板的焊接方法

Country Status (1)

Country Link
CN (1) CN110695563A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112404664A (zh) * 2020-10-21 2021-02-26 常州蓝翼飞机装备制造有限公司 不锈钢氦弧焊焊接工艺以及焊接坡口结构
CN115121915A (zh) * 2022-07-29 2022-09-30 武汉一冶钢结构有限责任公司 一种co2气保焊横焊一点击穿的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139194A (en) * 1979-04-19 1980-10-30 Nippon Steel Corp Automatic one side welding method of pipeline girth joint
JPS59141380A (ja) * 1983-01-31 1984-08-14 Nippon Steel Corp パイプのガ−ス継手の片面自動溶接方法
CN101722351A (zh) * 2008-10-28 2010-06-09 宝山钢铁股份有限公司 一种无衬垫单面焊双面成型打底焊缝质量控制方法
CN102615380A (zh) * 2012-03-10 2012-08-01 广东省韶关粤江发电有限责任公司 超超临界火电机组焊接sa335-p91/p92钢的焊接工艺
CN106903399A (zh) * 2017-03-16 2017-06-30 中国石油天然气集团公司 X80以上钢级的高强度管道半自动焊接方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139194A (en) * 1979-04-19 1980-10-30 Nippon Steel Corp Automatic one side welding method of pipeline girth joint
JPS59141380A (ja) * 1983-01-31 1984-08-14 Nippon Steel Corp パイプのガ−ス継手の片面自動溶接方法
CN101722351A (zh) * 2008-10-28 2010-06-09 宝山钢铁股份有限公司 一种无衬垫单面焊双面成型打底焊缝质量控制方法
CN102615380A (zh) * 2012-03-10 2012-08-01 广东省韶关粤江发电有限责任公司 超超临界火电机组焊接sa335-p91/p92钢的焊接工艺
CN106903399A (zh) * 2017-03-16 2017-06-30 中国石油天然气集团公司 X80以上钢级的高强度管道半自动焊接方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张志贤等: "《管道工》", 31 October 2004, 电子科技大学出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112404664A (zh) * 2020-10-21 2021-02-26 常州蓝翼飞机装备制造有限公司 不锈钢氦弧焊焊接工艺以及焊接坡口结构
CN112404664B (zh) * 2020-10-21 2023-12-29 常州蓝翼飞机装备制造有限公司 不锈钢氦弧焊焊接工艺以及焊接坡口结构
CN115121915A (zh) * 2022-07-29 2022-09-30 武汉一冶钢结构有限责任公司 一种co2气保焊横焊一点击穿的方法

Similar Documents

Publication Publication Date Title
CN110640277B (zh) 一种q420高强度钢厚板不预热双丝埋弧焊焊接工艺
CN103801808B (zh) 窄间隙熔化极活性气体保护电弧焊工艺
CN103567613B (zh) 一种不锈钢复合板铁路罐车焊接工艺
CN110681956A (zh) 一种用于液压支架结构件中厚板焊接的深熔角焊工艺
CN102699493B (zh) 余热锅炉受热管与连接板co2气体保护焊立向下焊接法
CN112809135B (zh) 一种9Ni钢自动高效深熔氩弧焊接工艺
CN110640271B (zh) 低合金高强度钢t型全焊透接头横角焊位置的高效焊接工艺
CN112453659B (zh) 一种提高焊接接头对拉伸应力抵抗能力的焊接方法
CN102962559A (zh) 80mm特厚钢板K型坡口药芯焊丝气体保护焊接方法
CN104384670B (zh) 一种海洋平台用钢板焊接方法
CN101954524A (zh) 超高强钢与异种高强钢的焊接工艺
CN111659983A (zh) 一种波形钢腹板钢混组合梁焊接施工工艺
CN110695563A (zh) 覆土罐罐壁板的焊接方法
WO2021114686A1 (zh) 低合金钢低温压力容器罐体环缝焊接方法
CN109570708B (zh) 一种正交异性钢桥面u肋k型接头复合焊接方法
CN112171029A (zh) 一种锅炉锅筒双丝埋弧焊免清根焊方法
CN111570971A (zh) 舱壁下墩与双层底的高应力区域全熔透角焊缝的焊接方法
CN114952050A (zh) 一种适用于8mm以上大直径厚壁筒体的复合焊接方法
CN101323041B (zh) 石油方钻杆窄间隙脉冲熔化极气保护自动焊方法
CN103008846B (zh) 低碳高强度钢的焊接方法
CN116571841A (zh) 一种提高9%镍钢立对接拼板焊缝焊接效率的方法
CN108994523B (zh) 一种液压支架底座柱窝的加固改造方法
CN108746948B (zh) T型接头全熔透免清根埋弧自动焊横焊工艺
CN112589241A (zh) 立式磨辊芯斜面焊接修复方法
CN111037040B (zh) 一种提高金属屈服型阻尼器疲劳性能的焊接工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200117

RJ01 Rejection of invention patent application after publication