WO2021114686A1 - 低合金钢低温压力容器罐体环缝焊接方法 - Google Patents

低合金钢低温压力容器罐体环缝焊接方法 Download PDF

Info

Publication number
WO2021114686A1
WO2021114686A1 PCT/CN2020/105839 CN2020105839W WO2021114686A1 WO 2021114686 A1 WO2021114686 A1 WO 2021114686A1 CN 2020105839 W CN2020105839 W CN 2020105839W WO 2021114686 A1 WO2021114686 A1 WO 2021114686A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
low
welded
tank body
alloy steel
Prior art date
Application number
PCT/CN2020/105839
Other languages
English (en)
French (fr)
Inventor
林耀华
冯存义
喻泉
周增光
鲁贞华
汪珍
陈文兴
刘华学
武永亮
徐姣
Original Assignee
中车长江车辆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车长江车辆有限公司 filed Critical 中车长江车辆有限公司
Publication of WO2021114686A1 publication Critical patent/WO2021114686A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/028Seam welding; Backing means; Inserts for curved planar seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/235Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/12Vessels
    • B23K2101/125Cans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Definitions

  • the present disclosure belongs to the technical field of circumferential seam welding, and in particular relates to a method for circumferential seam welding of low-alloy steel low-temperature pressure vessels.
  • the circumferential seam of low-alloy steel low-temperature pressure vessel is an important type B weld, and its welding joint coefficient is 1.0.
  • Class B important welds require full penetration, and radiographic testing or recordable ultrasonic testing is carried out after welding. Radiographic testing is qualified if it reaches level II or above, and ultrasonic testing is above level one; there should be no cracks or pores on the surface of the weld. , Lack of fusion, lack of penetration, undercut and other defects.
  • the circumferential seam welding of low-alloy steel low-temperature pressure vessel tanks mostly adopts double-sided submerged arc welding, that is, the front side welding is firstly performed. After the front side welding is completed, the back side of the weld is cleaned; Use flux for protection during arc welding; the flux needs to be dried before welding, and when the front side is soldered, a flux pad should be used on the back side to prevent welding through.
  • the submerged arc welding method using the above-mentioned prior art requires double-sided welding, which requires the use of flux and flux pads; and before back welding, the roots need to be cleaned by carbon arc gouging, and after the roots are cleaned, they need to be polished to remove carbides. And carburized layer. This kind of process is more complicated, the production efficiency is low, and the welding cost is high, and the welding environment is poor.
  • the present disclosure provides a low-alloy steel low-temperature pressure vessel girth seam welding method to solve the complicated process, low production efficiency, and low production efficiency caused by double-sided submerged arc welding in the prior art.
  • a method for circumferential seam welding of a low alloy steel low-temperature pressure vessel tank body may include: processing the welding end of the tank body section to be welded until it meets the welding requirements; debugging the welding equipment to It meets the requirements; it can be welded between the circumferential seams of the tank section to be welded by using a small hole penetrating tungsten argon arc method, and the inner side between the circumferential seams of the tank section to be welded can be formed.
  • Bottom weld bead; deep penetration argon arc welding can be used to weld between the circumferential seams of the tank section to be welded, and two cover surfaces can be sequentially formed on the outer side between the circumferential seams of the tank section to be welded Tempered weld bead; the inner side of the two cap surface tempered beads may be located outside the bottom weld bead, and the two cap surface tempered beads may be butted.
  • the small-hole penetration type tungsten argon arc method is used to weld between the circumferential seams of the tank section to be welded, and to weld the tank section to be welded.
  • the inner side between the annular seams can form a bottom weld bead, which can include: when welding between the annular seams of the tank section to be welded by the small-hole penetrating tungsten argon arc method, nozzle welding shielding gas can be used It can be protected at the same time as the back shielding gas.
  • the back shielding gas can be pre-sent for 15-20 seconds, and the argon arc welding torch can be turned on; the back shielding gas can be turned on during the bottom bead welding process, and the nozzle welding shielding gas and The back shielding gas can protect the front and back welding seams of argon arc welding respectively; during welding, the welding current range can be 310 ⁇ 380A, the welding arc voltage range can be 16 ⁇ 20V, and the welding line speed can be 300 ⁇ 380mm/min; After the cover welding bead is completed, the back shielding gas can be stopped, and the nozzle welding shielding gas can continue to be turned on.
  • the nozzle welding shielding gas may be 99.99% pure argon.
  • the flow rate can be 16-20 l/min; the back shielding gas can be 99.99% pure argon or 99.2% industrial nitrogen, and the flow rate of the back shielding gas can be 20-30 l/min.
  • the deep penetration argon arc welding method is used to weld between the circumferential seams of the tank body section to be welded, and on the outer side between the circumferential seams of the tank body section to be welded
  • Two cover tempering welds can be formed in sequence, which can include: when using deep penetration argon arc welding to weld between the circumferential seams of the tank section to be welded, nozzle welding shielding gas can be used for protection, and welding
  • the current range can be 145-175A
  • the welding arc voltage range can be 12-16V
  • the welding linear speed can be (130-170) mm/min.
  • the nozzle welding shielding gas when deep penetration argon arc welding is used to weld between the circumferential seams of the tank section to be welded, can be 99.99% pure argon, and The flow rate of the nozzle welding shielding gas can be (10-18) l/min.
  • the distance between the center line of the cover surface tempering bead and the center line of the bottoming bead may be 4-6 mm.
  • the welding wire used in the welding of the bottoming bead and the capping tempering bead may be a low-alloy steel solid welding wire, and its diameter may be ⁇ 1.2mm;
  • the welding wire model of the alloy steel solid welding wire can be ER55Ni1, and the Ni content of the low alloy steel solid welding wire can be 0.80-1.10%.
  • debugging the welding equipment until it meets the requirements may include: moving the welding torch above the circumferential seam of the tank section to be welded, so that the output end of the welding torch is in a vertical state
  • the output end of the welding torch may be aligned with the position of the bus bar on the tank directly above the circumferential seam of the tank section to be welded, and the extension line of the central axis of the output end of the welding torch may pass through the to be welded The center of the circular seam of the tank section.
  • the welding end of the tank body section to be welded may not be grooved; when the wall thickness of the tank body is 9 ⁇ 12mm, the welding end of the tank section to be welded can be provided with a V-shaped groove, and the groove angle of the V-shaped groove can be 70° ⁇ 5°, and the blunt side of the V-shaped groove can be It is 4 ⁇ 5mm.
  • the material of the tank section to be welded may be low-temperature low-alloy steel 16MnDR.
  • the circumferential seam welding method of the low-alloy steel low-temperature pressure vessel tank body is to first use the small-hole penetrating tungsten argon arc method to weld between the circumferential seams of the tank body section to be welded, so as to weld the tank body
  • the inner side between the circumferential seams of the body cylinder section forms a bottoming bead; the bottoming bead is formed by a small-hole penetrating tungsten argon arc method, and can be well penetrated by a deep penetration argon arc welding compression arc.
  • the argon arc welding method welds between the circumferential seams of the tank barrel sections to be welded, and sequentially forms two cover surface tempering beads on the outer side between the circumferential seams of the tank barrel sections to be welded, which can not only be used It is suitable for filling and cover welding, and it can also temper the bottom weld bead to improve the performance between the weld bead joints and ensure the welding quality; in addition, since deep penetration argon arc welding does not require the use of flux and flux pads, Therefore, the welding cost can be reduced, and the welding work efficiency can be improved. It has good practicability, and thus solves the complicated process, low production efficiency, high welding cost and poor welding environment caused by the use of double-sided submerged arc welding in the prior art. Technical issues.
  • Fig. 1 is a schematic flow chart of a low-alloy steel low-temperature pressure vessel circumferential seam welding method according to an embodiment of the present disclosure
  • Fig. 2 is a schematic diagram of a can body with a wall thickness of 4-8mm after circumferential seam welding according to an embodiment of the present disclosure.
  • Fig. 3 is a schematic diagram of a can body with a wall thickness of 9-12 mm after circumferential seam welding according to an embodiment of the present disclosure.
  • the present disclosure provides a low-alloy steel low-temperature pressure vessel can body circumferential seam welding method, which is designed for the low-temperature low-alloy steel 16MnDR can body tube joint welding seam, and its main core idea is single-sided welding and double-sided forming , In order to achieve the purpose of improving work efficiency, reducing labor intensity, saving welding costs, and ensuring joint performance.
  • FIG. 1 is a schematic flowchart of a method for circumferential seam welding of a low-alloy steel low-temperature pressure vessel according to an embodiment of the present disclosure. As shown in Figure 1, the welding method provided by the present disclosure includes:
  • the welding end processing of the tank section to be welded may include processing the welding end groove, in addition to general cleaning and polishing.
  • the welding end of the tank body section to be welded may not be grooved (as shown in Figure 2); this is because the subsequent welding
  • the deep penetration argon arc welding compression arc used at the time has good penetrating ability, and can achieve the purpose of forming the back side of the single-sided welding when welding the thick tank section.
  • the wall thickness of the tank body is 9-12mm, due to the thicker wall thickness of the tank body, when welding the tank body with this wall thickness, it may not be possible to achieve single-sided welding back forming.
  • the welding end of the tank section to be welded can be opened with a V-shaped groove (as shown in FIG. 3), and the V-shaped slope
  • the groove angle ⁇ of the mouth can be 70° ⁇ 5°
  • the blunt edge p can be 4 to 5 mm to ensure the purpose of forming the back side of the single-sided welding during subsequent welding.
  • the welding method provided in the present disclosure may further include S2: debugging the welding equipment to meet the requirements.
  • the debugging of the welding equipment may include the assembly of the tank section, the posture setting of the welding gun, the selection of welding wire, and the setting of welding parameters.
  • the welding method may include hoisting the tank section assembly to be welded to the roller rack, and may adjust the gap between the welding ends of the tank section to be welded
  • the gap b is 0-0.5mm; the purpose of assembling the tank section to be welded to the roller frame is to open the roller frame during subsequent welding, and use the rotation of the roller frame to drive the tank to be welded
  • the turning of the joint can keep the welding torch in a certain posture and complete the welding of a circumference of the tank section to be welded.
  • the posture of the welding torch can be set as: the welding torch can be moved above the circumferential seam of the tank section to be welded, so that the output end of the welding torch is in a vertical state; the output end of the welding torch can be directly facing
  • the position of the busbar on the tank body directly above the circumferential seam of the tank section to be welded is quasi, and the extension line of the central axis of the output end of the welding gun can pass through the center of the circumferential seam of the tank section to be welded.
  • the welding wire can be a low-alloy steel solid wire, the diameter of which can be ⁇ 1.2mm, the type of the welding wire can be ER55Ni1, the Ni content can be 0.80 to 1.10%, and the wire can be fed in a filling mode.
  • the welding wire has good process performance, the tensile strength Rm of the welding joint is higher than that of the base material, the 180° bending performance is qualified, and the impact absorption KV2 reaches 27J or more; when the welding wire is transported, the welding wire is aligned with the center of the arc zone and is located below the tungsten extreme 2-5mm.
  • the welding method provided by the present disclosure may further include S3: Welding between the circumferential seams of the tank section to be welded using a small-hole penetrating tungsten argon arc method, and between the circumferential seams of the tank section to be welded The inner side of the space can form a bottom bead.
  • two-way nozzle welding shielding gas and back shielding gas can be used.
  • the shielding gas for nozzle welding can be 99.99% pure argon, and the flow can be 16-20 l/min; the back shielding gas can be 99.99% pure argon or 99.2% industrial nitrogen, and the flow of the back shielding gas can be 20 ⁇ 30l/min; after the back shielding gas is pre-supplied for 15-20 seconds, the argon arc welding torch can be turned on; the back shielding gas is always on during the bottom bead welding process, and the nozzle welding shielding gas and the back shielding gas can respectively be used for argon arc welding Protect the front and back welds of the seam;
  • the welding current range may be 310-380A
  • the arc voltage range may be 16-20V
  • the linear velocity may be 300-380mm/min
  • the welding method provided by the present disclosure may further include S4: deep penetration argon arc welding may be used to weld between the circumferential seams of the tank body section to be welded, and two outer sides between the circumferential seams of the tank body section may be formed in sequence.
  • Cover surface tempered bead the inner side of the two cover surface tempered beads can be located on the outer side of the bottom bead, and the two cover surface tempered beads can be butted.
  • nozzle welding shielding gas when using deep penetration argon arc welding to weld between the circumferential seams of the tank section to be welded, can be used for protection; nozzle welding shielding gas can be used for 99.99 % Pure argon, the flow rate can be (10-18) l/min; the welding current range can be 145-175A, the arc voltage range can be 12-16V, and the linear velocity can be (130-170) mm/min.
  • a schematic diagram after welding is shown in Figure 2; for a tank ring with a wall thickness of 9 to 12 mm The welding of the seam, the schematic diagram after welding is shown in Figure 3.
  • the distance between the center line of the cover surface tempered bead 2 and the center line of the bottom bead 1 may be 4-6 mm.
  • Table 1 is a comparison table of weld impact test effects. As shown in Table 1, the low-alloy steel low-temperature pressure vessel circumferential seam welding method provided by the present disclosure has a higher center impact energy of the weld compared with the traditional welding method.
  • the circumferential seam welding method for low-alloy steel low-temperature pressure vessel tanks uses deep penetration argon arc welding to weld between the circumferential seams of the tank sections to be welded.
  • the outer side between the circumferential seams of the tube section can form two cover tempering beads in turn, which can not only be used for filling and cover welding, but also temper the bottom weld bead to improve the weld bead joint Between the performance, guarantee the welding quality.
  • the circumferential seam welding method for low-alloy steel low-temperature pressure vessel tanks requires only gas protection during the welding process, no flux protection and flux backing; this saves flux and drying, and saves labor costs , Reduce the labor intensity of the welder, and ensure the cleanliness of the welding site.
  • the low-alloy steel low-temperature pressure vessel circumferential seam welding method provided by the present disclosure has excellent welding quality, and has high requirements for the toughness of the weld joint, especially the low-temperature low-alloy steel 16MnDR thin plate weld on the low-temperature impact energy
  • Ni-containing welding wire can be filled and tempered welding bead to achieve the purpose of refining crystal grains and improving joint strength and toughness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

一种低合金钢低温压力容器罐体环缝焊接方法,包括:加工待焊接的罐体筒节的焊接端至其符合焊接要求;调试焊接设备至其符合要求;采用小孔穿透型钨极氩弧方式在待焊接的罐体筒节的环缝之间焊接,并且在待焊接的罐体筒节的环缝之间的内侧形成打底焊道(1);采用深熔氩弧焊方式在待焊接的罐体筒节的环缝之间焊接,并且在待焊接的罐体筒节的环缝之间的外侧依次形成两道盖面回火焊道(2);两道所述盖面回火焊道内侧位于所述打底焊道的外侧,并且两个所述盖面回火焊道之间对接。该方法可提高焊接工效,降低人工数量和人工强度,具有较好的工作环境,保证焊接质量。

Description

低合金钢低温压力容器罐体环缝焊接方法
相关申请的交叉引用
本申请要求于2019年12月11日提交、申请号为201911262815.6且名称为“低合金钢低温压力容器罐体环缝焊接方法”的中国专利申请的优先权,其全部内容通过引用合并于此。
技术领域
本公开内容属于环缝焊接技术领域,尤其涉及一种低合金钢低温压力容器罐体环缝焊接方法。
背景技术
目前,低合金钢低温压力容器罐体环缝为B类重要焊缝,其焊接接头系数为1.0。B类重要焊缝要求全焊透,并且在焊后进行射线检测或可记录的超声波检测,射线检测达到Ⅱ级以上为合格,超声波检测达到一级以上为合格;焊缝表面不得有裂纹、气孔、未熔合、未焊透、咬边等缺陷。
现有技术中,低合金钢低温压力容器罐体环缝焊接大多采用双面埋弧焊,即先在正面焊接,待正面焊接完成后,焊缝背面清根;然后打磨再焊接,并在埋弧焊时使用焊剂做保护;焊剂需要在焊前烘干,且正面焊接时,还需在背面使用焊剂垫小车垫焊剂,防止焊穿。
申请人发现现有技术中至少存在以下问题:
采用上述现有技术的埋弧焊接方法需要双面焊,在焊接时需要使用焊剂和焊剂垫;且背面焊接前,需通过碳弧气刨清根,而在清根后还需打磨去除碳化物和渗碳层。这种工艺较复杂、生产效率低,并且焊接成本高、焊接环境差。
因此,需对现有技术进行改进,以解决现有技术中采用双面埋弧 焊造成的工艺复杂、生产效率低、焊接成本高以及焊接环境差的技术问题。
发明内容
针对上述现有技术存在的不足,本公开内容提供了一种低合金钢低温压力容器罐体环缝焊接方法,以解决现有技术中采用双面埋弧焊造成的工艺复杂、生产效率低、焊接成本高以及焊接环境差的技术问题。
在本公开内容的一个方面,提供了一种低合金钢低温压力容器罐体环缝焊接方法,其可以包括:加工待焊接的罐体筒节的焊接端至其符合焊接要求;调试焊接设备至其符合要求;可以采用小孔穿透型钨极氩弧方式在待焊接的罐体筒节的环缝之间焊接,并且在待焊接的罐体筒节的环缝之间的内侧可以形成打底焊道;可以采用深熔氩弧焊方式在待焊接的罐体筒节的环缝之间焊接,并且在待焊接的罐体筒节的环缝之间的外侧可以依次形成两道盖面回火焊道;两道所述盖面回火焊道内侧可以位于所述打底焊道的外侧,并且两个所述盖面回火焊道之间可以对接。
在本公开内容的一些实施方式中,所述采用小孔穿透型钨极氩弧方式在待焊接的罐体筒节的环缝之间焊接,并且在所述待焊接的罐体筒节的环缝之间的内侧可以形成打底焊道,可以包括:在采用小孔穿透型钨极氩弧方式在待焊接的罐体筒节的环缝之间焊接时,可以采用喷嘴焊接保护气和背面保护气两路气同时进行保护;其中,背面保护气预送15~20S后,可以开启氩弧焊枪焊接;打底焊道焊接过程中可以一直开通背面保护气,并且喷嘴焊接保护气和背面保护气可以分别对氩弧焊缝正面、背面焊缝进行保护;焊接时,焊接的电流范围可以为310~380A,焊接的电弧电压范围可以为16~20V,焊接的线速度可以为300~380mm/min;盖面焊道完成后,可以停止背面保护气,喷嘴焊接保护气可以继续开通。
在本公开内容的一些实施方式中,在采用小孔穿透型钨极氩弧方式在待焊接的罐体筒节的环缝之间焊接时,所述喷嘴焊接保护气可以采 用99.99%纯氩气,流量可以为16~20l/min;所述背面保护气可以采用99.99%纯氩或99.2%工业氮,并且背面保护气的流量可以为20~30l/min。
在本公开内容的一些实施方式中,所述采用深熔氩弧焊方式在待焊接的罐体筒节的环缝之间焊接,并且在待焊接的罐体筒节的环缝之间的外侧可以依次形成两道盖面回火焊道,可以包括:在采用深熔氩弧焊方式在待焊接的罐体筒节的环缝之间焊接时,可以采用喷嘴焊接保护气进行保护,焊接的电流范围可以为145~175A,焊接的电弧电压范围可以为12~16V,焊接的线速度可以为(130~170)mm/min。
在本公开内容的一些实施方式中,在采用深熔氩弧焊方式在待焊接的罐体筒节的环缝之间焊接时,所述喷嘴焊接保护气可以采用99.99%纯氩气,并且所述喷嘴焊接保护气的流量可以为(10~18)l/min。
在本公开内容的一些实施方式中,所述盖面回火焊道的中心线与所述打底焊道的中心线之间的距离可以为4~6mm。
在本公开内容的一些实施方式中,所述打底焊道以及所述盖面回火焊道焊接时所采用的焊丝可以为低合金钢实芯焊丝,并且其直径可以为Φ1.2mm;低合金钢实芯焊丝的焊丝型号可以为ER55Ni1,并且低合金钢实芯焊丝的Ni含量可以为0.80~1.10%。
在本公开内容的一些实施方式中,所述调试焊接设备至其符合要求,可以包括:可以移动焊枪至待焊接的罐体筒节的环缝上方,使所述焊枪的输出端处于竖直状态;所述焊枪的输出端可以正对准待焊接的罐体筒节的环缝正上方罐体上母线位置,且,所述焊枪的输出端的中心轴轴的延长线可以通过所述待焊接的罐体筒节的环缝的圆心。
在本公开内容的一些实施方式中,当所述罐体的壁厚为4~8mm时,待焊接的罐体筒节的焊接端可以不开坡口;当所述罐体的壁厚为9~12mm时,待焊接的罐体筒节的焊接端可以开设V形坡口,并且所述V形坡口的坡口角度可以为70°±5°,所述V形坡口的钝边可以为4~5mm。
在本公开内容的一些实施方式中,所述待焊接的罐体筒节的材质 可以为低温低合金钢16MnDR。
本公开内容的有益效果至少包括以下内容:
本公开内容提供的低合金钢低温压力容器罐体环缝焊接方法,由于是先采用小孔穿透型钨极氩弧方式在待焊接的罐体筒节的环缝之间焊接,以在罐体筒节的环缝之间的内侧形成打底焊道;该打底焊道由于是采用小孔穿透型钨极氩弧方式焊接成型,并且可利用深熔氩弧焊压缩电弧良好的穿透能力,从而达到单面焊背面成型;进而不需要双面焊,也不需要清根,还可提高焊接工效,并降低人工数量和人工强度,具有较好的工作环境;随后再采用深熔氩弧焊方式在待焊接的罐体筒节的环缝之间焊接,并且在待焊接的罐体筒节的环缝之间的外侧依次形成两道盖面回火焊道,这样不仅可以用于填充和盖面焊,同时还能对打底焊道起回火作用,以改善焊道接头之间的性能,保证焊接质量;此外,由于深熔氩弧焊不需要使用焊剂和焊剂垫,因而可降低焊接成本,并提高焊接工效,具有很好的实用性,从而很好地解决了现有技术中采用双面埋弧焊造成的工艺复杂、生产效率低、焊接成本高以及焊接环境差的技术问题。
附图说明
为了更清楚地说明本公开内容实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本公开内容的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为依据本公开内容实施例的低合金钢低温压力容器罐体环缝焊接方法的流程示意图;
图2为依据本公开内容实施例的壁厚为4~8mm的罐体环缝焊接后的示意图;以及
图3为依据本公开内容实施例的壁厚为9~12mm的罐体环缝焊接 后的示意图。
具体实施方式
下面将结合本公开内容实施例中的附图,对本公开内容实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本公开内容一部分实施例,而不是全部的实施例。基于本公开内容中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开内容保护的范围。
本公开内容提供的一种低合金钢低温压力容器罐体环缝焊接方法,是针对材质为低温低合金钢16MnDR罐体筒节焊缝而设计的,其主要核心思想是单面焊双面成型,以达到提高作业效率,降低劳动强度,节约焊接成本,并保证接头性能的目的。
图1为依据本公开内容实施例的低合金钢低温压力容器罐体环缝焊接方法的流程示意图。如图1所示,本公开内容提供的焊接方法包括:
S1:加工待焊接的罐体筒节的焊接端至其符合焊接要求。
在本公开内容的一些实施例中,对待焊接的罐体筒节的焊接端加工除去一般的清洁打磨等外,还可以包括对焊接端坡口的加工。
在本公开内容的一些实施例中,当罐体的壁厚为4~8mm时,待焊接的罐体筒节的焊接端可以不开坡口(如图2所示);这是因为后续焊接时采用的深熔氩弧焊压缩电弧具有良好的穿透能力,能对该壁厚的罐体筒节焊接时,从而达到单面焊背面成型的目的。当罐体的壁厚为9~12mm时,由于罐体的壁厚较厚,对该壁厚的罐体筒节焊接时,可能不能达到单面焊背面成型。
在本公开内容的一些实施例中,对于壁厚为9~12mm的罐体,可以将待焊接的罐体筒节的焊接端开设V形坡口(如图3所示),该V形坡口的坡口角度α可以为70°±5°,钝边p可以为4~5mm,以保证后续焊接时单面焊背面成型的目的。
本公开内容提供的焊接方法还可以包括S2:调试焊接设备至其符合要求。
在本公开内容的一些实施例中,焊接设备的调试可以包括罐体筒节的装配、焊枪的姿态设置、焊丝选择以及焊接参数的设置。
在本公开内容的一些实施例中,所述焊接方法可以包括将待焊环缝的罐体筒节装配件吊运至滚轮架,并可以调整待焊接的罐体筒节的焊接端之间的间隙b为0-0.5mm;将待焊环缝的罐体筒节装配至滚轮架的目的是在于:后续焊接时,可以开启滚轮架,并且利用滚轮架的转动来驱动待焊接的罐体筒节的转到,从而可以使焊枪保持一种姿态,即可完成待焊接的罐体筒节的一个圆周的焊接。
在本公开内容的一些实施例中,焊枪的姿态可以设置为:可以移动焊枪至待焊接的罐体筒节的环缝上方,使焊枪的输出端处于竖直状态;焊枪的输出端可以正对准待焊接的罐体筒节的环缝正上方罐体上母线位置,且,焊枪的输出端的中心轴轴的延长线可以通过待焊接的罐体筒节的环缝的圆心。
在本公开内容的一些实施例中,焊丝可以选用低合金钢实芯焊丝,其直径可以为Φ1.2mm,焊丝型号可以为ER55Ni1,Ni含量可以为0.80~1.10%,并可以采用填充方式送丝;该焊丝工艺性能良好,焊接接头抗拉强度Rm高于母材,180°弯曲性能合格,冲击吸收功KV2达到27J以上;焊丝在输送时,焊丝对准电弧区中心,并位于钨极端部下方2-5mm。
本公开内容提供的焊接方法还可以包括S3:采用小孔穿透型钨极氩弧方式在待焊接的罐体筒节的环缝之间焊接,并且在待焊接的罐体筒节环缝之间的内侧可以形成打底焊道。
在本公开内容的一些实施例中,在采用小孔穿透型钨极氩弧方式在待焊接的罐体筒节的环缝之间焊接时,可以采用喷嘴焊接保护气和背面保护气两路气同时进行保护;喷嘴焊接保护气可以采用99.99%纯氩气,流量可以为16~20l/min;背面保护气可以采用99.99%纯氩或99.2%工业 氮,背面保护气的流量可以为20~30l/min;在背面保护气预送15~20S后,可以开启氩弧焊枪焊接;打底焊道焊接过程中一直开通背面保护气,并且喷嘴焊接保护气和背面保护气分别可以对氩弧焊缝正面、背面焊缝进行保护;
在本公开内容的一些实施例中,焊接时,焊接的电流范围可以为310~380A,电弧电压范围可以为16~20V,线速度可以为300~380mm/min;盖面焊道完成后,停止背面保护气,喷嘴焊接保护气继续开通。
本公开内容提供的焊接方法还可以包括S4:可以采用深熔氩弧焊方式在待焊接的罐体筒节的环缝之间焊接,在罐体筒节环缝之间的外侧可以依次形成两道盖面回火焊道;两道盖面回火焊道内侧可以位于打底焊道的外侧,并且两个盖面回火焊道之间可以对接。
在本公开内容的一些实施例中,在采用深熔氩弧焊方式在待焊接的罐体筒节的环缝之间焊接时,可以采用喷嘴焊接保护气进行保护;喷嘴焊接保护气可以采用99.99%纯氩气,流量可以为(10~18)l/min;焊接的电流范围可以为145~175A,电弧电压范围可以为12~16V,线速度可以为(130~170)mm/min。
在本公开内容的一些实施例中,对于壁厚δ为4~8mm的罐体的环缝的焊接,其焊接后的示意图如图2所示;对于壁厚δ为9~12mm的罐体环缝的焊接,其焊接后的示意图如图3所示。结合图2以及图3,在本公开内容的一些实施例中,焊接后,盖面回火焊道2的中心线与打底焊道1的中心线之间的距离可以为4~6mm。
在本公开内容的一些实施例中,表1为焊缝冲击试验效果对比表。如表1所示,本公开内容提供的低合金钢低温压力容器罐体环缝焊接方法,相比于传统的焊接方式,具有更高的焊缝中心冲击功。
表1:焊缝冲击试验效果对比表
  母材 焊缝冲击试验温度 焊缝中心冲击功KV2
传统焊接方法 16MnDR -40℃ 10J~24J
本焊接方法 16MnDR -40℃ >29J
本公开内容的有益效果至少包括以下内容:
1、本公开内容提供的低合金钢低温压力容器罐体环缝焊接方法,由于打底焊道是采用小孔穿透型钨极氩弧方式焊接,可利用深熔氩弧焊压缩电弧良好的穿透能力,从而达到单面焊背面成型而不需要双面焊也不需要清根,因而可提高焊接工效率,并降低人工数量和人工强度,还具有较好的工作环境;
2、本公开内容提供的低合金钢低温压力容器罐体环缝焊接方法,由于是采用深熔氩弧焊方式在待焊接的罐体筒节的环缝之间焊接,在待焊接的罐体筒节的环缝之间的外侧可以依次形成两道盖面回火焊道,这样不仅可以用于填充和盖面焊,同时还能对打底焊道起回火作用,以改善焊道接头之间的性能,保证焊接质量。
3、本公开内容提供的低合金钢低温压力容器罐体环缝焊接方法,在焊接罐体环缝时,可不开坡口,或开很小的坡口;因而焊接填充金属量很少,焊接材料消耗量小,节省了焊接成本。
4、本公开内容提供的低合金钢低温压力容器罐体环缝焊接方法,在焊接过程中只需要气体保护,不需要焊剂保护和焊剂衬垫;如此节省了焊剂和烘干,节省了人力成本,降低了焊工劳动强度,并保证了焊接现场的清洁度。
5、本公开内容提供的低合金钢低温压力容器罐体环缝焊接方法,焊接质量优良,对于焊缝接头韧性要求较高的环缝,尤其是低温低合金钢16MnDR薄板焊缝对低温冲击功要求时,可以通过含Ni焊丝的填充以及回火焊道,从而达到细化晶粒、提升接头强度和韧性的目的。
以下所举实施例为本公开内容的较佳实施方式,仅用来方便说明本公开内容,并非对本公开内容作任何形式下的限制,任何所述技术领域中具有通常知识者,若在不脱离本公开内容所提技术特征的范围内, 利用本公开内容所揭示技术内容所作出局部更动或修饰的等效实施例,并且未脱离本公开内容的技术特征内容,均仍属于本公开内容技术特征的范围内。

Claims (10)

  1. 一种低合金钢低温压力容器罐体环缝焊接方法,包括:
    加工待焊接的罐体筒节的焊接端至其符合焊接要求;
    调试焊接设备至其符合要求;
    采用小孔穿透型钨极氩弧方式在所述待焊接的罐体筒节的环缝之间焊接,并且在所述待焊接的罐体筒节的环缝之间的内侧形成打底焊道;
    采用深熔氩弧焊方式在所述待焊接的罐体筒节的环缝之间焊接,并且在所述待焊接的罐体筒节的环缝之间的外侧依次形成两道盖面回火焊道;以及
    两道所述盖面回火焊道内侧位于所述打底焊道的外侧,并且两个所述盖面回火焊道之间对接。
  2. 根据权利要求1所述的低合金钢低温压力容器罐体环缝焊接方法,其中,所述采用小孔穿透型钨极氩弧方式在所述待焊接的罐体筒节的环缝之间焊接,并且在所述待焊接的罐体筒节的环缝之间的内侧形成打底焊道,包括:
    在采用小孔穿透型钨极氩弧方式在所述待焊接的罐体筒节的环缝之间焊接时,采用喷嘴焊接保护气和背面保护气两路气同时进行保护;
    其中,所述背面保护气预送15~20S后,开启氩弧焊枪焊接;
    所述打底焊道焊接过程中一直开通所述背面保护气,并且所述喷嘴焊接保护气和所述背面保护气分别对氩弧焊缝正面、背面焊缝进行保护;
    焊接时,所述焊接的电流范围为310~380A,所述焊接的电弧电压范围为16~20V,所述焊接的线速度为300~380mm/min;以及
    盖面焊道完成后,停止所述背面保护气,所述喷嘴焊接保护气继续开通。
  3. 根据权利要求2所述的低合金钢低温压力容器罐体环缝焊接方法,其中,在采用小孔穿透型钨极氩弧方式在所述待焊接的罐体筒节的环缝之间焊接时,所述喷嘴焊接保护气采用99.99%纯氩气,并且所述喷嘴焊接保护气的流量为16~20l/min;以及
    所述背面保护气采用99.99%纯氩或99.2%工业氮,并且背面保护气的流量为20~30l/min。
  4. 根据权利要求2所述的低合金钢低温压力容器罐体环缝焊接方法,其中,所述采用深熔氩弧焊方式在所述待焊接的罐体筒节的环缝之间焊接,并且在所述待焊接的罐体筒节环缝之间的外侧依次形成两道所述盖面回火焊道,包括:
    在采用深熔氩弧焊方式在所述待焊接的罐体筒节的环缝之间焊接时,采用所述喷嘴焊接保护气进行保护;以及
    所述焊接的电流范围为145~175A,所述焊接的电弧电压范围为12~16V,所述焊接的线速度为(130~170)mm/min。
  5. 根据权利要求4所述的低合金钢低温压力容器罐体环缝焊接方法,其中,在采用深熔氩弧焊方式在所述待焊接的罐体筒节的环缝之间焊接时,所述喷嘴焊接保护气采用99.99%纯氩气,并且所述喷嘴焊接保护气的流量为(10~18)l/min。
  6. 根据权利要求1所述的低合金钢低温压力容器罐体环缝焊接方法,其中,所述盖面回火焊道的中心线与所述打底焊道的中心线之间的距离为4~6mm。
  7. 根据权利要求1所述的低合金钢低温压力容器罐体环缝焊接方法,其中,所述打底焊道以及所述盖面回火焊道焊接时所采用的焊丝为低合金钢实芯焊丝,其直径为Φ1.2mm;
    所述低合金钢实芯焊丝的焊丝型号为ER55Ni1;以及
    所述低合金钢实芯焊丝的Ni含量为0.80~1.10%。
  8. 根据权利要求1所述的低合金钢低温压力容器罐体环缝焊接方法,其中,所述调试焊接设备至其符合要求,包括:
    移动焊枪至所述待焊接的罐体筒节的环缝上方,使所述焊枪的输出端处于竖直状态;以及
    所述焊枪的输出端正对准所述待焊接的罐体筒节的环缝正上方罐体上母线位置,且,所述焊枪的输出端的中心轴轴的延长线通过所述待焊接的罐体筒节的环缝的圆心。
  9. 根据权利要求1所述的低合金钢低温压力容器罐体环缝焊接方法,其中,
    当所述罐体的壁厚为4~8mm时,所述待焊接的罐体筒节的焊接端不开坡口;以及
    当所述罐体的壁厚为9~12mm时,所述待焊接的罐体筒节的焊接端开设V形坡口,并且所述V形坡口的坡口角度为70°±5°,所述V形坡口的钝边为4~5mm。
  10. 根据权利要求1所述的低合金钢低温压力容器罐体环缝焊接方法,其中,所述待焊接的罐体筒节的材质为低温低合金钢16MnDR。
PCT/CN2020/105839 2019-12-11 2020-07-30 低合金钢低温压力容器罐体环缝焊接方法 WO2021114686A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911262815.6 2019-12-11
CN201911262815.6A CN110899920A (zh) 2019-12-11 2019-12-11 低合金钢低温压力容器罐体环缝焊接方法

Publications (1)

Publication Number Publication Date
WO2021114686A1 true WO2021114686A1 (zh) 2021-06-17

Family

ID=69824071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105839 WO2021114686A1 (zh) 2019-12-11 2020-07-30 低合金钢低温压力容器罐体环缝焊接方法

Country Status (2)

Country Link
CN (1) CN110899920A (zh)
WO (1) WO2021114686A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110899920A (zh) * 2019-12-11 2020-03-24 中车长江车辆有限公司 低合金钢低温压力容器罐体环缝焊接方法
CN112475551A (zh) * 2020-10-30 2021-03-12 中车长江车辆有限公司 低合金钢低温压力容器薄壁罐体环缝焊接方法
CN112894083A (zh) * 2021-01-27 2021-06-04 广船国际有限公司 一种船用储罐9Ni钢的自动对接焊接方法
CN117798459B (zh) * 2024-02-29 2024-04-30 鞍山华信重工机械有限公司 球形压力储罐焊接方法和***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10202394A (ja) * 1997-01-20 1998-08-04 Babcock Hitachi Kk 鏡体の自動溶接支持装置及び鏡体の自動溶接法
JPH11190495A (ja) * 1997-12-26 1999-07-13 Mitsubishi Materials Corp 圧力容器およびその製造方法
CN102357741A (zh) * 2011-09-07 2012-02-22 无锡市创新化工设备有限公司 真空容器的环缝焊接工艺
CN104551344A (zh) * 2013-10-23 2015-04-29 上海航天精密机械研究所 一种环缝结构对接接头自动化焊接方法
CN104646795A (zh) * 2015-02-06 2015-05-27 中国运载火箭技术研究院 一种5m直径弱刚性、小直径人孔贮箱封箱环缝焊接方法
CN109352141A (zh) * 2018-12-18 2019-02-19 中车长江车辆有限公司 一种压力容器筒体环缝的焊接方法
CN110899920A (zh) * 2019-12-11 2020-03-24 中车长江车辆有限公司 低合金钢低温压力容器罐体环缝焊接方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001539A (ja) * 2000-06-20 2002-01-08 Babcock Hitachi Kk 異材溶接方法
CN101474702A (zh) * 2008-01-02 2009-07-08 上海贤达罗兰压力容器制造有限公司 双相钢sa-240 s31803手工钨极氩弧gtaw焊接工艺
CN107824943A (zh) * 2017-09-22 2018-03-23 广东福维德焊接股份有限公司 一种深熔弧焊双焊枪焊接工艺
CN107838538B (zh) * 2017-12-15 2020-05-15 广东省焊接技术研究所(广东省中乌研究院) 一种钛合金管道全位置等离子焊接工艺
CN108247228A (zh) * 2017-12-29 2018-07-06 兰州兰石重型装备股份有限公司 一种薄壁不锈钢智能高效焊接方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10202394A (ja) * 1997-01-20 1998-08-04 Babcock Hitachi Kk 鏡体の自動溶接支持装置及び鏡体の自動溶接法
JPH11190495A (ja) * 1997-12-26 1999-07-13 Mitsubishi Materials Corp 圧力容器およびその製造方法
CN102357741A (zh) * 2011-09-07 2012-02-22 无锡市创新化工设备有限公司 真空容器的环缝焊接工艺
CN104551344A (zh) * 2013-10-23 2015-04-29 上海航天精密机械研究所 一种环缝结构对接接头自动化焊接方法
CN104646795A (zh) * 2015-02-06 2015-05-27 中国运载火箭技术研究院 一种5m直径弱刚性、小直径人孔贮箱封箱环缝焊接方法
CN109352141A (zh) * 2018-12-18 2019-02-19 中车长江车辆有限公司 一种压力容器筒体环缝的焊接方法
CN110899920A (zh) * 2019-12-11 2020-03-24 中车长江车辆有限公司 低合金钢低温压力容器罐体环缝焊接方法

Also Published As

Publication number Publication date
CN110899920A (zh) 2020-03-24

Similar Documents

Publication Publication Date Title
WO2021114686A1 (zh) 低合金钢低温压力容器罐体环缝焊接方法
CN104096954A (zh) 双人双面同步钨极高频脉冲氩弧焊对焊工法
CN103862146B (zh) 燃气轮机燃烧器内筒体制造方法及工装
WO2018196251A1 (zh) 倾斜位置垂直气电焊焊接方法
CN103264209A (zh) 不锈钢焊件的组合焊接方法
CN106903399B (zh) X80以上钢级的高强度管道半自动焊接方法
CN105252120B (zh) 一种不锈钢气瓶内胆环缝焊接方法
CN111069745B (zh) 一种适用于厚板铝合金的焊接方法
CN102248267A (zh) 一种厚壁铬钼钢管道埋弧焊焊接工艺
CN101508053A (zh) 高镍合金与不锈钢异种金属的焊接方法
CN109352141A (zh) 一种压力容器筒体环缝的焊接方法
CN111069746B (zh) 一种超高强度钢双面双弧气体保护焊焊接工艺
CN103231155A (zh) 一种易焊接高强大厚度钢板不预热气体保护焊焊接工艺
CN109352142A (zh) 一种Q420B钢板的GMAW-Ar焊接方法
CN103495795A (zh) 碳钢管道熔化极气体保护打底自动焊接工艺
CN108890092B (zh) 熔化极mag焊焊接管板单面焊双面成型的方法
CN103737162A (zh) 一种复合焊接方法
CN105728911A (zh) 管线钢制管焊接工艺
CN108067710B (zh) 一种10~18mm厚钢药芯焊丝高效双道埋弧焊工艺
CN104588834B (zh) 一种直缝钢管的焊接方法
CN108941852A (zh) 一种航空高压导管的焊接方法
CN110328492B (zh) 一种航空发动机涡轮后机匣支板长裂纹a-tig焊修复方法
CN109807438A (zh) 一种用于热水器搪瓷钢内胆环缝焊接的方法
CN112222580A (zh) 一种热轧u肋双面焊接方法
CN110695563A (zh) 覆土罐罐壁板的焊接方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20900542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20900542

Country of ref document: EP

Kind code of ref document: A1