CN110642238A - 类石墨烯氮掺杂多孔碳材料及其制备方法和应用 - Google Patents

类石墨烯氮掺杂多孔碳材料及其制备方法和应用 Download PDF

Info

Publication number
CN110642238A
CN110642238A CN201910982689.5A CN201910982689A CN110642238A CN 110642238 A CN110642238 A CN 110642238A CN 201910982689 A CN201910982689 A CN 201910982689A CN 110642238 A CN110642238 A CN 110642238A
Authority
CN
China
Prior art keywords
graphene
nitrogen
carbon material
porous carbon
doped porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910982689.5A
Other languages
English (en)
Other versions
CN110642238B (zh
Inventor
任斌
许跃龙
王莎莎
张利辉
刘振法
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Energy Research Institute of Hebei Academy of Sciences
Original Assignee
Energy Research Institute of Hebei Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Energy Research Institute of Hebei Academy of Sciences filed Critical Energy Research Institute of Hebei Academy of Sciences
Priority to CN201910982689.5A priority Critical patent/CN110642238B/zh
Publication of CN110642238A publication Critical patent/CN110642238A/zh
Application granted granted Critical
Publication of CN110642238B publication Critical patent/CN110642238B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种类石墨烯氮掺杂多孔碳材料及其制备方法和应用,包括以下步骤:(1)以三聚氰胺、PVP和氯化铵为原料,按一定比例混合研磨后,得到混合物;(2)将步骤(1)得到的混合物置于空气气氛中煅烧得到类石墨烯氮掺杂多孔碳材料。利用三聚氰胺、PVP和氯化铵为原料,按一定比例混合研磨后,直接置于空气气氛中煅烧就可以得到类石墨烯氮掺杂多孔碳材料。在制备过程中,无需经历干燥过程,直接进行煅烧即可得到类石墨烯氮掺杂多孔碳材料,缩短了制备周期,简化了制备流程;可以在空气气氛下进行煅烧制得,制备过程方便;得到的材料具备优异的电化学和吸附性能,能够广泛应用于超级电容器和有机污染物吸附中。

Description

类石墨烯氮掺杂多孔碳材料及其制备方法和应用
技术领域
本发明涉及类石墨烯材料制备技术领域,尤其涉及一种类石墨烯氮掺杂多孔碳材料及其制备方法和应用。
背景技术
类石墨烯多孔碳材料,因其具有高比表面积、宽的禁带宽度、强的平面内电子传输能力、以及长的光生载流子寿命等优势,引起人们广泛的关注,被广泛应用于电容传感器、光催化降解有机污染物等领域。
为了进一步提高类石墨烯多孔碳材料的性能,目前研究常通过采用不同的制备方法将氮元素掺杂至类石墨烯多孔碳材料中得到类石墨烯氮掺杂多孔碳材料。相关技术中,类石墨烯氮掺杂多孔碳材料的制备方法包括以下步骤:将间苯二酚、HMT(hexamethylenetetraamine,六次甲基四胺)、去离子、氨水、三聚氰胺, TMB(3,3',5,5'-Tetramethylbenzidine,3,3',5,5'-四甲基联苯胺)三甲基苯加入到圆底烧瓶中,80℃反应8h离心干燥后,在氮气氛围中1℃/min升温速率升温至900℃,煅烧3h得到类石墨烯氮掺杂多孔碳材料。
制备类石墨烯氮掺杂多孔碳材料的方法在将原料混合后,还需要进行后续的干燥过程,才能进行煅烧,制备的时间较长;且,为防止类石墨烯材料的氧化,在煅烧过程中还需要通入惰性气体,以保证该煅烧过程在惰性气氛下进行,制备过程不方便。
发明内容
本发明所要解决的技术问题是提供一种制备时间短、无需惰性气体保护的类石墨烯氮掺杂多孔碳材料的制备方法。
为解决上述问题,本发明所采取的技术方案是:
第一方面,提供了一种类石墨烯氮掺杂多孔碳材料的制备方法,包括以下步骤:
(1)以三聚氰胺、PVP(polyvinyl pyrrolidone,聚乙烯吡咯烷酮)和氯化铵为原料,按一定比例混合研磨后,得到混合物;
(2)将步骤(1)得到的混合物置于空气气氛中煅烧得到类石墨烯氮掺杂多孔碳材料。
作为本发明的进一步改进,包括以下步骤:
(1)按照一定的质量比分别称取三聚氰胺、PVP和氯化铵,将三聚氰胺、PVP和氯化铵加入至研钵中研磨一段时间后,得到混合物;
(2)将步骤(1)得到的混合物放入陶瓷坩埚中,将所述陶瓷坩埚放置于马弗炉中,将马弗炉由室温加热至一定温度,并保温一端时间后得到类石墨烯氮掺杂多孔碳材料。
作为本发明的进一步改进,所述三聚氰胺、PVP和氯化铵的质量比范围为1-3:1:1-3。
作为本发明的进一步改进,将三聚氰胺、PVP和氯化铵加入至研钵中研磨1min。
作为本发明的进一步改进,将马弗炉由室温加热至600-1000℃。
作为本发明的进一步改进,所述将马弗炉由室温加热至600-1000℃后,保温4-6h。
作为本发明的进一步改进,所述马弗炉的升温速率为5-10℃/min。
作为本发明的进一步改进,包括以下步骤:
(1)按照质量比为1:1:1分别称取三聚氰胺、PVP和氯化铵,将三聚氰胺、PVP和氯化铵加入至研钵中研磨1min后,得到混合物;
(2)将步骤(1)得到的混合物放入陶瓷坩埚中,将所述陶瓷坩埚放置于马弗炉中,将马弗炉按照5℃/min的升温速率由室温加热至900℃后,保温5h后得到类石墨烯氮掺杂多孔碳材料。
第二方面,提供了一种类石墨烯氮掺杂多孔碳材料,是通过如第一方面所述的制备方法制备得到的。
第三方面,提供了类石墨烯氮掺杂多孔碳材料在超级电容器和有机污染物吸附中的应用。
采用上述技术方案所产生的有益效果在于:
本发明所提供的一种类石墨烯氮掺杂多孔碳材料及其制备方法,利用三聚氰胺、PVP和氯化铵为原料,按一定比例混合研磨后,直接置于空气气氛中煅烧就可以得到类石墨烯氮掺杂多孔碳材料。
(1)将三聚氰胺、PVP和氯化铵研磨后得到的混合物,无需经历干燥过程,即可直接进行煅烧,进而得到类石墨烯氮掺杂多孔碳材料,缩短了制备周期,简化了制备流程。
(2)三氯氰胺作为碳源、氮源以及模板,PVP作为碳源和造孔剂,氯化铵用于造孔以及在煅烧过程中提供酸性环境以利于碳化,在煅烧过程中,PVP和氯化铵分解产生的气体促进材料形成孔结构。
而氯化铵的存在还抑制了材料的过氧化,防止材料的完全氧化,进而保证了即使在空气气氛中进行煅烧,仍然能够得到类石墨烯氮掺杂多孔碳材料,无需保证煅烧过程必须保持在惰性气氛下进行,制备过程方便。
(3)制备得到的类石墨烯氮掺杂多孔碳材料的比表面积可达800m2/g,且同时存在介孔和微孔结构,使得其具备优异的电化学和吸附性能:作超级电容器比电容可达216F/g(电流密度为1A/g),吸附亚甲基蓝可达300mg/g。
(4)本方法提供的类石墨烯氮掺杂多孔碳材料制备方法简单便捷,得到的材料具备优异的电化学和吸附性能,能够广泛应用于超级电容器和有机污染物吸附中,例如光催化吸附和电催化吸附。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是实施例1得到的类石墨烯氮掺杂多孔碳材料的XRD图。
图2是实施例1得到的类石墨烯氮掺杂多孔碳材料的拉曼光谱图。
图3是实施例1得到的类石墨烯氮掺杂多孔碳材料的扫描电镜图。
图4是实施例1得到的类石墨烯氮掺杂多孔碳材料的透射电镜图。
图5是实施例1得到的类石墨烯氮掺杂多孔碳材料的XPS图。
图6是实施例1得到的类石墨烯氮掺杂多孔碳材料的氮气吸脱附曲线图。
图7是实施例1得到的类石墨烯氮掺杂多孔碳材料的孔径分布图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合附图和具体实施例对发明进行清楚、完整的描述。
实施例1:
制备一种类石墨烯氮掺杂多孔碳材料,包括以下步骤:
(1)按照质量比为1:1:1分别称取三聚氰胺、PVP和氯化铵,将三聚氰胺、PVP和氯化铵加入至研钵中研磨1min后,得到混合物。
(2)将步骤(1)得到的混合物放入陶瓷坩埚中,将陶瓷坩埚放置于马弗炉中,将马弗炉按照5℃/min的升温速率由室温加热至900℃后,保温5h后得到类石墨烯氮掺杂多孔碳材料。
图1为得到的类石墨烯氮掺杂多孔碳材料的XRD图,由图1可知,在该XRD图中,存在2θ=26°的特征峰,与石墨烯的(002)晶面的衍射峰位置重合;图2为得到的类石墨烯氮掺杂多孔碳材料的拉曼光谱图,由图2可知,在该拉曼光谱中,存在位于1363cm-1及1612cm-1附近的拉曼峰,该拉曼峰与石墨烯的D峰和G峰对应;图3和图4分别为得到的类石墨烯氮掺杂多孔碳材料的电镜图,由图3和图4可知,得到的氮掺杂多孔碳材料为多层结构;图5为得到的类石墨烯氮掺杂多孔碳材料的XPS图,由5可知,获得的材料中含有氮元素。因此,由图1-图5可知,本发明获得了类石墨烯氮掺杂多孔碳材料。
图6和图7分别为得到的类石墨烯氮掺杂多孔碳材料的氮气吸脱附曲线图和孔径分布图,由图6和图7可知,该类石墨烯氮掺杂多孔碳材料的存在介孔和微孔,且由计算可知,得到的类石墨烯氮掺杂多孔碳材料的比表面积为800m2/g。
实施例2:
制备一种类石墨烯氮掺杂多孔碳材料,包括以下步骤:
(1)按照质量比为1:1:3分别称取三聚氰胺、PVP和氯化铵,将三聚氰胺、PVP和氯化铵加入至研钵中研磨1min后,得到混合物。
(2)将步骤(1)得到的混合物放入陶瓷坩埚中,将陶瓷坩埚放置于马弗炉中,将马弗炉按照5℃/min的升温速率由室温加热至600℃后,保温6h后得到类石墨烯氮掺杂多孔碳材料。
经检测,得到的石墨烯氮掺杂多孔碳材料比表面积为752m2/g。
实施例3:
制备一种类石墨烯氮掺杂多孔碳材料,包括以下步骤:
(1)按照质量比为3:1:1分别称取三聚氰胺、PVP和氯化铵,将三聚氰胺、PVP和氯化铵加入至研钵中研磨1min后,得到混合物。
(2)将步骤(1)得到的混合物放入陶瓷坩埚中,将陶瓷坩埚放置于马弗炉中,将马弗炉按照5℃/min的升温速率由室温加热至1000℃后,保温4h后得到类石墨烯氮掺杂多孔碳材料。
经检测,得到的石墨烯氮掺杂多孔碳材料比表面积为750m2/g。
对比例1:
(1)按照质量比为1:1:1分别称取三聚氰胺、PVP和氯化铵,将三聚氰胺、PVP和氯化铵加入至研钵中研磨1min后,得到混合物。
(2)将步骤(1)得到的混合物放入陶瓷坩埚中,将陶瓷坩埚放置于管式炉中并通入氮气,在氮气气氛下将管式炉按照5℃/min的升温速率由室温加热至900℃后,保温5h后得到类石墨烯氮掺杂多孔碳材料。
本实施例得到的类石墨烯氮掺杂多孔碳材料的比表面积为760m2 /g。
实验例1:类石墨烯氮掺杂多孔碳材料的电化学性能表征
在进行电化学测试之前,首先制备工作电极:一、将制得的电极材料,研磨成粉末,并在105℃下干燥8小时,除去水分;二、将干燥好的电极材料粉末与5wt%聚四氟乙烯溶液按照质量比为“95:100”混合(电极材料粉末约为0.1g,记录电极材料粉末的质量m1与聚四氟乙烯溶液质量m2),加入蒸馏水40-50mL,机械搅拌或者电磁搅拌5小时;三、混合好的电极材料与泡沫镍片一同在105℃下干燥8小时,除去水分;四、将两个泡沫镍片称重,记录质量m3,并将混有聚四氟乙烯的电极材料压平,包夹在已称重的两个泡沫镍片中,压片,制成电极片;五、将电极片在105℃下干燥脱水后,记录下电极片质量m4;六、干燥好的电极片需在电解液中浸润24小时,进行电化学测试。电极片中的活性质量m按照下列公式计算:
采用标准三电极体系使用电化学工作站(Gamry Interface 1000E)上进行电化学性能测试,其中,所制得的电极片、铂片和饱和甘汞电极分别作为工作电极、对电极和参比电极,采用6mol/L KOH作为电解液,得到的结果如表1所示。
表1
Figure DEST_PATH_IMAGE001
实验例2:类石墨烯氮掺杂多孔碳材料的有机污染物吸附性能表征
固定类石墨烯氮掺杂多孔碳材料投加量为10mg ,所吸附的亚甲基蓝溶液浓度为100mg/L,避光条件下反应90min,得到亚甲基蓝的吸附值,得到的结果如表2所示。
表2
Figure DEST_PATH_IMAGE002
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围。

Claims (10)

1.一种类石墨烯氮掺杂多孔碳材料的制备方法,其特征在于,包括以下步骤:
(1)以三聚氰胺、聚乙烯吡咯烷酮PVP和氯化铵为原料,按一定比例混合研磨后,得到混合物;
(2)将步骤(1)得到的混合物置于空气气氛中煅烧得到类石墨烯氮掺杂多孔碳材料。
2.根据权利要求1所述的类石墨烯氮掺杂多孔碳材料的制备方法,其特征在于,包括以下步骤:
(1)按照一定的质量比分别称取三聚氰胺、PVP和氯化铵,将三聚氰胺、PVP和氯化铵加入至研钵中研磨一段时间后,得到混合物;
(2)将步骤(1)得到的混合物放入陶瓷坩埚中,将所述陶瓷坩埚放置于马弗炉中,将马弗炉由室温加热至一定温度,并保温一段时间后得到类石墨烯氮掺杂多孔碳材料。
3.根据权利要求2所述的类石墨烯氮掺杂多孔碳材料的制备方法,其特征在于,所述三聚氰胺、PVP和氯化铵的质量比范围为1-3:1:1-3。
4.根据权利要求2所述的类石墨烯氮掺杂多孔碳材料的制备方法,其特征在于,将三聚氰胺、PVP和氯化铵加入至研钵中研磨1min。
5.根据权利要求2所述的类石墨烯氮掺杂多孔碳材料的制备方法,其特征在于,将马弗炉由室温加热至600-1000℃。
6.根据权利要求5所述的类石墨烯氮掺杂多孔碳材料的制备方法,其特征在于,所述将马弗炉由室温加热至600-1000℃后,保温4-6h。
7.根据权利要求2所述的类石墨烯氮掺杂多孔碳材料的制备方法,其特征在于,所述马弗炉的升温速率为5-10℃/min。
8.根据权利要求2所述的类石墨烯氮掺杂多孔碳材料的制备方法,其特征在于,包括以下步骤:
(1)按照质量比为1:1:1分别称取三聚氰胺、PVP和氯化铵,将三聚氰胺、PVP和氯化铵加入至研钵中研磨1min后,得到混合物;
(2)将步骤(1)得到的混合物放入陶瓷坩埚中,将所述陶瓷坩埚放置于马弗炉中,将马弗炉按照5℃/min的升温速率由室温加热至900℃后,保温5h后得到类石墨烯氮掺杂多孔碳材料。
9.一种类石墨烯氮掺杂多孔碳材料,其特征在于,是通过权利要求1-8任一项权利要求所述的制备方法制备得到的。
10.权利要求9所述类石墨烯氮掺杂多孔碳材料在超级电容器和有机污染物吸附中的应用。
CN201910982689.5A 2019-10-16 2019-10-16 类石墨烯氮掺杂多孔碳材料及其制备方法和应用 Active CN110642238B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910982689.5A CN110642238B (zh) 2019-10-16 2019-10-16 类石墨烯氮掺杂多孔碳材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910982689.5A CN110642238B (zh) 2019-10-16 2019-10-16 类石墨烯氮掺杂多孔碳材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110642238A true CN110642238A (zh) 2020-01-03
CN110642238B CN110642238B (zh) 2021-02-09

Family

ID=68994143

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910982689.5A Active CN110642238B (zh) 2019-10-16 2019-10-16 类石墨烯氮掺杂多孔碳材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110642238B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111681887A (zh) * 2020-06-16 2020-09-18 浙江工业大学 一种超级电容器用超薄类石墨烯碳材料的制备方法
CN112044437A (zh) * 2020-08-17 2020-12-08 河北省科学院能源研究所 一种珊瑚状Fe-基/碳复合催化剂及其制备方法和应用
CN113735100A (zh) * 2021-09-07 2021-12-03 河北省科学院能源研究所 一种活化二维氮掺杂类石墨烯的方法
CN114212783A (zh) * 2021-10-28 2022-03-22 中国汽车技术研究中心有限公司 一种生物质储能材料及制备方法
CN114256468A (zh) * 2021-12-03 2022-03-29 北京科技大学 一种负载铂量子点氮掺杂类石墨烯碳材料的制备方法
CN114715875A (zh) * 2022-03-31 2022-07-08 宁波大学 一种薄层碳基材料的制备方法及其作为电池材料的用途
CN114804097A (zh) * 2022-05-12 2022-07-29 重庆锦添翼新能源科技有限公司 一种氮掺杂球形多孔碳及其制备方法
CN117486212A (zh) * 2023-11-14 2024-02-02 东营昆宇电源科技有限公司 一种蜂窝状氮掺杂多孔碳材料及其在钠电负极中的应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996018456A2 (en) * 1994-12-15 1996-06-20 Cabot Corporation Gel composition containing carbonaceous compound
CN101823705A (zh) * 2009-03-04 2010-09-08 南京大学 一种高表面积含氮中孔碳材料的制备方法
CN102167310A (zh) * 2011-01-30 2011-08-31 黑龙江大学 水热法制备氮掺杂石墨烯材料的方法
CN102583318A (zh) * 2012-02-24 2012-07-18 大连理工大学 一种制备氮掺杂分级孔多孔炭微球的方法
CN105819422A (zh) * 2016-03-17 2016-08-03 南京理工大学 一种氮掺杂中空介孔碳球的制备方法
CN107021468A (zh) * 2016-02-01 2017-08-08 台湾奈米碳素股份有限公司 含氮的多孔性碳材料及其电容与制造方法
CN107555412A (zh) * 2017-09-07 2018-01-09 江苏福瑞士电池科技有限公司 一种氮掺杂多孔碳的制备方法及其在锂离子电池上的应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996018456A2 (en) * 1994-12-15 1996-06-20 Cabot Corporation Gel composition containing carbonaceous compound
CN101823705A (zh) * 2009-03-04 2010-09-08 南京大学 一种高表面积含氮中孔碳材料的制备方法
CN102167310A (zh) * 2011-01-30 2011-08-31 黑龙江大学 水热法制备氮掺杂石墨烯材料的方法
CN102583318A (zh) * 2012-02-24 2012-07-18 大连理工大学 一种制备氮掺杂分级孔多孔炭微球的方法
CN107021468A (zh) * 2016-02-01 2017-08-08 台湾奈米碳素股份有限公司 含氮的多孔性碳材料及其电容与制造方法
CN105819422A (zh) * 2016-03-17 2016-08-03 南京理工大学 一种氮掺杂中空介孔碳球的制备方法
CN107555412A (zh) * 2017-09-07 2018-01-09 江苏福瑞士电池科技有限公司 一种氮掺杂多孔碳的制备方法及其在锂离子电池上的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王凯: "新型氮掺杂多孔碳纳米片的制备及其功能化", 《郑州大学硕士学位论文》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111681887A (zh) * 2020-06-16 2020-09-18 浙江工业大学 一种超级电容器用超薄类石墨烯碳材料的制备方法
CN112044437A (zh) * 2020-08-17 2020-12-08 河北省科学院能源研究所 一种珊瑚状Fe-基/碳复合催化剂及其制备方法和应用
CN113735100A (zh) * 2021-09-07 2021-12-03 河北省科学院能源研究所 一种活化二维氮掺杂类石墨烯的方法
CN114212783A (zh) * 2021-10-28 2022-03-22 中国汽车技术研究中心有限公司 一种生物质储能材料及制备方法
CN114256468A (zh) * 2021-12-03 2022-03-29 北京科技大学 一种负载铂量子点氮掺杂类石墨烯碳材料的制备方法
CN114715875A (zh) * 2022-03-31 2022-07-08 宁波大学 一种薄层碳基材料的制备方法及其作为电池材料的用途
CN114804097A (zh) * 2022-05-12 2022-07-29 重庆锦添翼新能源科技有限公司 一种氮掺杂球形多孔碳及其制备方法
CN114804097B (zh) * 2022-05-12 2024-03-22 重庆锦添翼新能源科技有限公司 一种氮掺杂球形多孔碳及其制备方法
CN117486212A (zh) * 2023-11-14 2024-02-02 东营昆宇电源科技有限公司 一种蜂窝状氮掺杂多孔碳材料及其在钠电负极中的应用

Also Published As

Publication number Publication date
CN110642238B (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
CN110642238B (zh) 类石墨烯氮掺杂多孔碳材料及其制备方法和应用
Hua et al. All‐in‐one perovskite catalyst: smart controls of architecture and composition toward enhanced oxygen/hydrogen evolution reactions
Ye et al. Cage-confinement of gas-phase ferrocene in zeolitic imidazolate frameworks to synthesize high-loading and atomically dispersed Fe–N codoped carbon for efficient oxygen reduction reaction
US10170770B2 (en) N-doped porous carbon electrocatalyst and process for preparation thereof
Wang et al. An efficient Co–N–C oxygen reduction catalyst with highly dispersed Co sites derived from a ZnCo bimetallic zeolitic imidazolate framework
Zhong et al. Nitrogen-doped hierarchically porous carbon as efficient oxygen reduction electrocatalysts in acid electrolyte
US7867941B2 (en) Sulfur-containing mesoporous carbon, method of manufacturing the same, and fuel cell using the mesoporous carbon
Li et al. A nitrogen-doped mesoporous carbon containing an embedded network of carbon nanotubes as a highly efficient catalyst for the oxygen reduction reaction
Yao et al. CNTs@ Fe–N–C core–shell nanostructures as active electrocatalyst for oxygen reduction
JP2007137754A (ja) メソ細孔性炭素とその製造方法、それを利用した担持触媒及び燃料電池
CN108658067B (zh) 一种磷氮共掺杂碳材料及其制备方法与用途
Kim et al. The role of pre-defined microporosity in catalytic site formation for the oxygen reduction reaction in iron-and nitrogen-doped carbon materials
Zakaria Nanostructuring of nanoporous iron carbide spheres via thermal degradation of triple-shelled Prussian blue hollow spheres for oxygen reduction reaction
CN110876953A (zh) 一种p,s共掺杂氮化碳同型异质结复合光催化剂
Wang et al. Metal (metal= Fe, Co), N codoped nanoporous carbon for efficient electrochemical oxygen reduction
Fruehwald et al. Probing the influence of the carbon support on the activity of Fe-N3/C model active sites for the oxygen reduction reaction
Liu et al. Crystalline‐Water/Coordination Induced Formation of 3D Highly Porous Heteroatom‐Doped Ultrathin Carbon Nanosheet Networks for Oxygen Reduction Reaction
Wang et al. Fluorine and nitrogen co-doped ordered mesoporous carbon as a metal-free electrocatalyst for oxygen reduction reaction
CN113813926B (zh) B-n路易斯酸碱对结构的多孔碳材料及其制备方法和应用
KR102197651B1 (ko) 산소 환원 반응용 다공성 탄소 촉매, 그 제조 방법 및 이를 포함하는 연료전지
CN108232216B (zh) 一种有序介孔碳共负载二氧化铈和双核酞菁钴材料及其制备方法
Wassner et al. Spherical Core–Shell Titanium (Oxy) nitride@ Nitrided Carbon Composites as Catalysts for the Oxygen Reduction Reaction: Synthesis and Electrocatalytic Performance
KR101742530B1 (ko) 수전해 장치용 산화극 촉매 및 그 제조방법
Zhang et al. Bulk production of N, Fe-doped carbon with high surface area and big pore volume and its excellent activity for oxygen reduction in acidic media
Jin et al. Highly efficient electrocatalysts with CoO/CoFe 2 O 4 composites embedded within N-doped porous carbon materials prepared by hard-template method for oxygen reduction reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant