CN110640138B - 一种ZrNiSn基Half-Heusler热电材料及其制备和调控反位缺陷的方法 - Google Patents

一种ZrNiSn基Half-Heusler热电材料及其制备和调控反位缺陷的方法 Download PDF

Info

Publication number
CN110640138B
CN110640138B CN201910859369.0A CN201910859369A CN110640138B CN 110640138 B CN110640138 B CN 110640138B CN 201910859369 A CN201910859369 A CN 201910859369A CN 110640138 B CN110640138 B CN 110640138B
Authority
CN
China
Prior art keywords
zrnisn
thermoelectric material
based half
heusler thermoelectric
regulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910859369.0A
Other languages
English (en)
Other versions
CN110640138A (zh
Inventor
康慧君
王同敏
杨雄
郭恩宇
陈宗宁
李廷举
曹志强
卢一平
接金川
张宇博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201910859369.0A priority Critical patent/CN110640138B/zh
Publication of CN110640138A publication Critical patent/CN110640138A/zh
Priority to US16/820,161 priority patent/US20210074900A1/en
Application granted granted Critical
Publication of CN110640138B publication Critical patent/CN110640138B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0483Alloys based on the low melting point metals Zn, Pb, Sn, Cd, In or Ga
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/04Alloys containing less than 50% by weight of each constituent containing tin or lead
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/854Thermoelectric active materials comprising inorganic compositions comprising only metals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/857Thermoelectric active materials comprising compositions changing continuously or discontinuously inside the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明提供一种ZrNiSn基Half‑Heusler热电材料及其制备和调控反位缺陷的方法,ZrNiSn基Half‑Heusler热电材料的制备和调控反位缺陷的方法包括以下步骤:在氩气氛围或者密闭无氧环境中按照原子比1:1:1将Zr、Ni、Sn混合,将混合物料置于磁悬浮熔炼炉中熔炼得到铸锭,将铸锭研磨后干燥获得粉体,采用放电等离子体烧结技术将粉体烧结后至于真空容器中,热处理后淬火得到ZrNiSn基Half‑Heusler热电材料。本发明所述方法流程短、步骤少、易控制,能成功的制备出具有反位缺陷的ZrNiSn单相Half‑Heusler热电材料。

Description

一种ZrNiSn基Half-Heusler热电材料及其制备和调控反位缺 陷的方法
技术领域
本发明涉及热电材料技术,尤其涉及一种ZrNiSn基Half-Heusler热电材料及其制备和调控反位缺陷的方法。
背景技术
热电发电技术在特种电源、绿色能源、环境能量收集与工业余热发电等领域具有重要的应用价值。近年来,热电材料的热电优值ZT不断获得突破,相应的热电器件应用技术的也得到了极大的发展。热电材料是一种可以直接将热能转换为电能的有效能源材料,具有较高稳定性及简单结构等特点,但是低的能效限制了它的应用。因此,如何有效提高热电材料的效率是当下一个研究热点。近年来,具有半导体特征或塞贝克效应的Half-Heusler(半哈斯勒)合金在温差发电领域表现出很好的应用前景,可作为一种典型的中高温热电材料。
热电材料的性能主要取决于其热电优值ZT,ZT值越大,其热电转换效率越高。热电优值定义为ZT=α2σT/κ,其中,α为塞贝克(Seebeck)系数,σ为电导率,α2σ也可定义为功率因子PF,T为绝对温度,κ为总的热导率,包括晶格(声子)热导率κl和电子热导率κe(κ=κle)。然而,由于这些热电参数(Seebeck系数α、电导率σ和电子热导率κe)对载流子浓度n具有较强的依赖性,彼此相互耦合,即通过调节载流子浓度n获得高的电导率σ往往会导致低的Seebeck系数α和高的电子热导率κe。因此,如何有效提高ZT值一直是困扰学术界的难题。
Half-Heusler化合物由于具有良好的高温化学和热稳定性、优异的机械性能以及较高的高温热电优值,因此被认为是具有大规模商业化生产和应用的潜在热电材料。然而由于ZrNiSn基Half-Heusler化合物的热电性能对制备工艺较为敏感,不同的制备工艺容易使得材料微结构及原子无序度产生差异。由于Zr和Sn的原子半径相近,因此该缺陷容易在高温制备过程中原位生成,并通过退火进行回复。当Zr/Sn反位缺陷含量越高时,ZrNiSn热电材料由半导体特性转变为半金属特性。然而,早期的制备条件很难通过直接熔炼得到单相的样品,结构缺陷很难得到可靠的结果。
发明内容
本发明的目的在于,针对目前热电材料无法有效提高ZT值的问题,提出一种ZrNiSn基Half-Heusler热电材料的制备和调控反位缺陷的方法,该方法流程短、步骤少、易控制,能成功的制备出具有反位缺陷的ZrNiSn单相Half-Heusler热电材料。
为实现上述目的,本发明采用的技术方案是:一种ZrNiSn基Half-Heusler热电材料的制备和调控反位缺陷的方法,包括以下步骤:
在氩气氛围或者密闭无氧环境中按照原子比1:1:1将Zr、Ni、Sn混合,将混合物料置于磁悬浮熔炼炉中熔炼得到铸锭,将铸锭研磨后干燥获得粉体,采用放电等离子体烧结技术将粉体烧结后至于真空容器中,热处理后淬火得到ZrNiSn基Half-Heusler热电材料。
进一步地,ZrNiSn基Half-Heusler热电材料的制备和调控反位缺陷的方法,包括以下步骤:
(1)为防止氧化,在氩气氛围或者密闭无氧环境中按照原子比为1:1:1将Zr、Ni、Sn混合;
(2)将混合物料置于磁悬浮熔炼炉中熔炼,熔炼在氩气保护氛围下进行,将混合物料升温至1600~1800℃后保温1~5min得到铸锭,优选的升温至1650~1750℃后保温3~5min得到铸锭;
(3)将铸锭球磨至0.5-2μm,后自然干燥获得粉体;
(4)采用放电等离子体烧结技术将粉体进行烧结,烧结温度为800-1000℃,烧结压力为80-100MPa,保温时间为5-20min;优选的烧结温度为900-1000℃,烧结压力为80-100MPa,保温时间为10-20min;
(5)将烧结后的粉体置于真空容器中;
(6)将装有粉体的真空容器置于箱式高温烧结炉中进行长时间扩散退火处理;退火温度为800-1100℃、保温时间为12-36h;优选的退火温度为900-1000℃、保温时间为24-36h
(7)将保温后的装有试样的真空容器进行快速淬火处理得到ZrNiSn基Half-Heusler热电材料,降温速率为200-300℃/min。
进一步地,所述Zr、Ni、Sn纯度≥99.9%。
进一步地,所述Zr、Ni、Sn选取直径×长度为1×2mm~2×5mm的小颗粒。
进一步地,步骤(2)所述熔炼为3-6次,以保证熔炼后组织的均匀性。
进一步地,步骤(2)所述氩气保护氛围压力为104-105Pa。
进一步地,步骤(3)所述球磨:首先用研钵将铸锭粗磨成粒径0.1-1mm的粉体;然后在氩气氛围下进行湿法球磨。球磨介质为无水乙醇,球料比为10:1-20:1,转速为:200-600r/min,球磨时间为5-20h。
进一步地,步骤(3)所述干燥:在氩气氛围或者密闭无氧环境中将抽滤后的粉体进行12-48h的自然干燥处理。
进一步地,步骤(5)所述真空容器的真空度≤5×10-3Pa。所述真空容器包括但不限于直径15-30mm的石英玻璃管。
进一步地,步骤(7)淬火的淬火介质为水。
本发明的另一个目的还公开了一种ZrNiSn基Half-Heusler热电材料,采用上述方法制备而成。
本发明一种ZrNiSn基Half-Heusler热电材料及其制备和调控反位缺陷的方法,与现有技术相比较具有以下优点:
本发明以ZrNiSn合金为研究目标,利用磁悬浮熔炼结合放电等离子体烧结工艺制备出单相的ZrNiSn基Half-Heusler热电材料,并通过不同的热处理工艺调节反位缺陷浓度。采用XRD对试样的成分进行表征,并测试相关的热电性能。结果表明,该方法制备的ZrNiSn基Half-Heusler反位缺陷热电材料具有流程短、步骤少、易控制等优点。通过调控反位缺陷的浓度,能够有效的调节其变化引起的相关热电参数,从而提高材料的热电优值ZT。以上结果表明采用磁悬浮熔炼结合放电等离子体烧结工艺能够有效的制备出单相的ZrNiSn基Half-Heusler热电材料,通过不同的热处理工艺可以有效的调控反位缺陷的浓度。
应用本发明方法,通过XRD检测,不同热处理工艺的ZrNiSn热电材料均为单相,通过激光热导仪,采用四探针法直接测量得到材料的电导率,结果表明,随着扩散退火温度的升高,试样的反位缺陷逐渐减少,电导率逐渐降低。并通过计算发现反位缺陷减少时,试样的功率因子也相应的降低。最终计算结果表明,反位缺陷的增多能够有效的提升材料的热电优值ZT。本发明,获得了一种成功的制备出具有反位缺陷的ZrNiSn单相Half-Heusler热电材料的方法,并揭示了反位缺陷对ZrNiSn成分的Half-Heusler热电材料的热电性能的影响。
附图说明
图1为不同成分放电等离子体烧结后试样的XRD。
图2为不同热处理工艺的ZrNiSn成分Half-Heusler热电材料的电导率。
图3为不同热处理工艺的ZrNiSn成分Half-Heusler热电材料的功率因子。
图4为不同热处理工艺的ZrNiSn成分Half-Heusler热电材料的热电优值。
具体实施方式
以下结合实施例对本发明进一步说明:
实施例1
本实施例公开了一种具有反位缺陷成分均匀单相的ZrNiSn基Half-Heusler热电材料,按照原子比为1:1:1的成分配料并进行熔炼,其中各元素原子百分含量为:Zr:33.3%;Ni:33.3%;Sn:33.3%。
本发明的进一步改进在于:
球磨后得到的反位缺陷ZrNiSn基Half-Heusler热电材料的晶粒尺寸为0.5-2μm。
一种具有反位缺陷的单相ZrNiSn基Half-Heusler热电材料的加工方法,包括以下步骤:
(1)选料:Zr、Ni、Sn选取直径×长度为2×5mm的小颗粒。所有试样的纯度≥99.9%。
(2)为防止氧化,在手套箱中按照ZrNiSn原子比为1:1:1的名义成分进行配料。
(3)熔炼:采用磁悬浮熔炼炉,氩气保护氛围下(104-105Pa),升温至1600~1800℃后保温3min,为了保证熔炼后组织的均匀性,反复熔炼4次。
(4)球磨:首先用研钵将铸锭粗磨成粒径0.1-1mm的粉体。然后在氩气氛围下进行湿法球磨。球磨介质为无水乙醇,球料比为15:1,转速为:500r/min,球磨时间为10h。
(5)干燥处理:在手套箱中将抽滤后的粉体进行24h的自然干燥处理。
(6)烧结:采用放电等离子体烧结技术对制备的粉体进行烧结,烧结温度为1000℃,烧结压力为100MP,保温时间为15min。
(7)封管:将热处理温度为900℃试样装入直径20mm的石英玻璃管中进行真空封管,玻璃管真空度≤5×10-3Pa。
(8)热处理:将密封后的试样分别在箱式高温烧结炉中进行长时间扩散退火处理。退火温度为900℃。保温时间为24h。
(9)淬火:将保温后的试样进行快速淬火处理,以水作为淬火介质,淬火得到ZrNiSn基Half-Heusler热电材料,所述ZrNiSn基Half-Heusler热电材料晶粒尺寸为0.5-2μm。
实施例2
(1)选料:Zr、Ni、Sn选取直径×长度为2×5mm的小颗粒。所有试样的纯度≥99.9%。
(2)为防止氧化,在手套箱中按照ZrNiSn原子比为1:1:1的名义成分进行配料。
(3)熔炼:采用磁悬浮熔炼炉,氩气保护氛围下(104-105Pa),升温至1600~1800℃后保温4min,为了保证熔炼后组织的均匀性,反复熔炼3次。
(4)球磨:首先用研钵将铸锭粗磨成粒径0.1-1mm的粉体。然后在氩气氛围下进行湿法球磨。球磨介质为无水乙醇,球料比为20:1,转速为:600r/min,球磨时间为8h。
(5)干燥处理:在手套箱中将抽滤后的粉体进行20h的自然干燥处理。
(6)烧结:采用放电等离子体烧结技术对制备的粉体进行烧结,烧结温度为950℃,烧结压力为90MP,保温时间为20min。
(7)封管:将热处理温度为950℃的试样装入直径20mm的石英玻璃管中进行真空封管,玻璃管真空度≤5×10-3Pa。
(8)热处理:将密封后的试样分别在箱式高温烧结炉中进行长时间扩散退火处理。退火温度为950℃。保温时间为20h。
(9)淬火:将保温后的试样进行快速淬火处理,以水作为淬火介质,淬火得到ZrNiSn基Half-Heusler热电材料,所述ZrNiSn基Half-Heusler热电材料晶粒尺寸为0.5-2μm。
实验结果
不同成分放电等离子体烧结后试样的XRD如图1所示。从图中可以看出不同热处理工艺的ZrNiSn热电材料都为单相成分。
不同热处理工艺的ZrNiSn成分Half-Heusler热电材料的电导率如图2所示。从图2中可以看出随着退火温度的升高,试样的电导率逐渐减小,电导率在923℃时由7.35×104S/m减小到了6.25×104S/m。
不同热处理工艺的ZrNiSn成分Half-Heusler热电材料的功率因子如图3所示。从图3中可以看出随着退火温度的升高,试样的功率因子逐渐减小,功率因子在923℃时由3.31减小到了2.95。
不同热处理工艺的ZrNiSn成分Half-Heusler热电材料的热电优值如图4所示。从图4中可以看出随着退火温度的升高,试样的热电优值ZT逐渐减小,热电优值ZT在923℃时由0.63减小到了0.51。
本实施例通过采用磁悬浮熔炼结合放电等离子体烧结工艺制备出具有反位缺陷的ZrNiSn单相Half-Heusler热电材料,并通过不同的热处理工艺调节反位缺陷浓度。XRD结果显示所制备的试样都为单相。随着退火温度的升高,反位缺陷在回复的过程中拥有更高的驱动力,快速淬火后退火温度越高的试样反位缺陷的含量越少。热电性能的测试结果表明随着反位缺陷浓度的升高,试样的电导率逐渐增加,功率因子也逐渐增加,从而试样的热电优值ZT也有所提升。通过本发明,成功的制备出具有反位缺陷的ZrNiSn单相Half-Heusler热电材料,并进行了定性和定量分析,揭示了反位缺陷对ZrNiSn成分的Half-Heusler热电材料的热电性能的影响。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (8)

1.一种ZrNiSn基Half-Heusler热电材料的制备和调控反位缺陷的方法,其特征在于,包括以下步骤:
(1)按照原子比为1:1:1将Zr、Ni、Sn混合;
(2)将混合物料置于磁悬浮熔炼炉中熔炼,熔炼在氩气保护氛围下进行,将混合物料升温至1600~1800℃后保温1~5min得到铸锭;
(3)将铸锭球磨至0.5-2μm,后自然干燥获得粉体;
(4)采用放电等离子体烧结技术将粉体进行烧结,烧结温度为900-1100℃,烧结压力为80-100MPa,保温时间为5-20min;
(5)将烧结后的粉体置于真空容器中;
(6)将装有粉体的真空容器置于箱式高温烧结炉中进行长时间扩散退火处理;退火温度为800-1100℃、保温时间为12-36h;
(7)将保温后的试样进行快速淬火处理得到ZrNiSn基Half-Heusler热电材料;
步骤(3)所述球磨:首先用研钵将铸锭粗磨成粒径0.1-1mm的粉体;然后在氩气氛围下进行湿法球磨;球磨介质为无水乙醇,球料比为10:1-20:1,转速为:200-600r/min,球磨时间为5-20h。
2.根据权利要求1所述ZrNiSn基Half-Heusler热电材料的制备和调控反位缺陷的方法,其特征在于,所述Zr、Ni、Sn纯度≥99.9%。
3.根据权利要求1所述ZrNiSn基Half-Heusler热电材料的制备和调控反位缺陷的方法,其特征在于,步骤(2)所述熔炼为3-6次。
4.根据权利要求1所述ZrNiSn基Half-Heusler热电材料的制备和调控反位缺陷的方法,其特征在于,步骤(2)所述氩气保护氛围压力为104-105Pa。
5.根据权利要求1所述ZrNiSn基Half-Heusler热电材料的制备和调控反位缺陷的方法,其特征在于,步骤(3)所述干燥:在氩气氛围或者密闭无氧环境中将抽滤后的粉体进行12-48h的自然干燥处理。
6.根据权利要求1所述ZrNiSn基Half-Heusler热电材料的制备和调控反位缺陷的方法,其特征在于,步骤(5)所述真空容器的真空度≤5×10-3Pa。
7.根据权利要求1所述ZrNiSn基Half-Heusler热电材料的制备和调控反位缺陷的方法,其特征在于,步骤(7)淬火的淬火介质为水。
8.一种ZrNiSn基Half-Heusler热电材料,采用权利要求1-7任一项所述方法制备而成。
CN201910859369.0A 2019-09-11 2019-09-11 一种ZrNiSn基Half-Heusler热电材料及其制备和调控反位缺陷的方法 Active CN110640138B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910859369.0A CN110640138B (zh) 2019-09-11 2019-09-11 一种ZrNiSn基Half-Heusler热电材料及其制备和调控反位缺陷的方法
US16/820,161 US20210074900A1 (en) 2019-09-11 2020-03-16 ZrNiSn-BASED HALF-HEUSLER THERMOELECTRIC MATERIAL AND PROCESS FOR MANUFACTURING SAME AND FOR REGULATING ANTISITE DEFECTS THEREIN

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910859369.0A CN110640138B (zh) 2019-09-11 2019-09-11 一种ZrNiSn基Half-Heusler热电材料及其制备和调控反位缺陷的方法

Publications (2)

Publication Number Publication Date
CN110640138A CN110640138A (zh) 2020-01-03
CN110640138B true CN110640138B (zh) 2021-07-06

Family

ID=68991253

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910859369.0A Active CN110640138B (zh) 2019-09-11 2019-09-11 一种ZrNiSn基Half-Heusler热电材料及其制备和调控反位缺陷的方法

Country Status (2)

Country Link
US (1) US20210074900A1 (zh)
CN (1) CN110640138B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112899550B (zh) * 2021-01-18 2022-07-19 四川大学 一种锆镍锡基半哈斯勒-石墨烯复合热电材料及其制备方法
CN113270535A (zh) * 2021-05-24 2021-08-17 上海大学 一种Ru填隙的高性能ZrNiSn基热电材料及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005098979A1 (en) * 2004-03-08 2005-10-20 General Motors Corporation THERMOELECTRIC MATERIAL USING ZrNiSn-BASED HALF HEUSLER STRUCTURES
JP4515279B2 (ja) * 2005-02-16 2010-07-28 国立大学法人東京工業大学 熱電変換材料及びその製造方法
CN100444997C (zh) * 2006-12-21 2008-12-24 北京工业大学 一种简单快速的超细WC-Co复合粉的制备方法
CN101245426A (zh) * 2008-03-04 2008-08-20 浙江大学 一种制备半哈斯勒热电化合物的方法
JP5333001B2 (ja) * 2008-12-15 2013-11-06 株式会社豊田中央研究所 熱電材料及びその製造方法
US9048004B2 (en) * 2010-12-20 2015-06-02 Gmz Energy, Inc. Half-heusler alloys with enhanced figure of merit and methods of making
CN103553627B (zh) * 2013-09-27 2015-12-09 大连理工大学 一种陶瓷基复合材料及其制备方法和应用
JP6265103B2 (ja) * 2014-10-23 2018-01-24 住友電気工業株式会社 焼結体
CN105018767B (zh) * 2015-06-30 2017-03-08 安徽工业大学 一种微波快速合成‑烧结制备ZrNiSn块体热电材料的方法
CN108048725A (zh) * 2017-11-28 2018-05-18 深圳大学 ZrNiSn基高熵热电材料及其制备方法与热电器件
CN108963064B (zh) * 2017-12-28 2019-11-29 中国科学院物理研究所 热压烧结装置、微纳多孔结构的块体热电材料及其制法
CN112105455B (zh) * 2018-01-22 2023-09-01 香港大学 用于氧还原反应的电催化剂、其制造方法及其用途

Also Published As

Publication number Publication date
US20210074900A1 (en) 2021-03-11
CN110640138A (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
CN110592459B (zh) 一种具有低晶格热导率的高熵Half-Heusler热电材料及其制备方法
CN109616568B (zh) 具有高迁移率的n型三镁化二锑合金热电材料及其制备方法
CN108238796B (zh) 铜硒基固溶体热电材料及其制备方法
CN107445621B (zh) 一种Cu-Te纳米晶/Cu2SnSe3热电复合材料及其制备方法
CN110257667B (zh) 一种n型三镁化二锑合金热电材料及其制备
CN103700759B (zh) 一种纳米复合结构Mg2Si基热电材料及其制备方法
CN110640138B (zh) 一种ZrNiSn基Half-Heusler热电材料及其制备和调控反位缺陷的方法
CN102931335A (zh) 一种石墨烯复合锑化钴基方钴矿热电材料及其制备方法
CN101694010A (zh) 一种层状纳米结构InSb热电材料的制备方法
CN109671840B (zh) 一种用于热电材料的锑碲硒基体合金的构建方法、锑碲硒基热电材料
CN107845724A (zh) 一种低成本环境友好型SnS基热电材料及其制备方法
CN112802955A (zh) 一种p型Cu2Te-Ag2Te热电材料及其制备方法
CN105702847B (zh) 一种提高BiTeSe基N型半导体热电材料性能的方法
WO2019214158A1 (zh) 基于晶体拓扑实现粉末合金烧结相变的五元系n型热电材料与制备方法
CN112397634B (zh) 一种提升Bi-Sb-Te基热电材料性能的方法
CN108198934B (zh) 一种复合热电材料及其制备方法
CN103811653B (zh) 一种多钴p型填充方钴矿热电材料及其制备方法
CN107293637B (zh) 一种高性能GeSbTe基热电材料的制备方法
CN110635018A (zh) 一种具有高硬度的ZrNiSn基Half-Heusler热电材料及其制备方法
CN103290249A (zh) 生产热电转换材料的方法、装置及生产溅射靶材的方法
CN109022863B (zh) 一种填充Ga的基方钴矿热电材料及其制备方法
CN101307392B (zh) 液体急冷结合放电等离子烧结制备CoSb3基热电材料的方法
CN108172680B (zh) 一种立方相Ca2Ge热电材料及其制备方法
KR20130045683A (ko) 열전재료, 상기 열전재료를 이용한 열전소자 및 그 제조방법
CN109103323A (zh) 一种通过填充Ga、Te替换Sb提高基方钴矿材料热电性能的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant