CN110560000A - 一种Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法及应用 - Google Patents

一种Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法及应用 Download PDF

Info

Publication number
CN110560000A
CN110560000A CN201910835889.8A CN201910835889A CN110560000A CN 110560000 A CN110560000 A CN 110560000A CN 201910835889 A CN201910835889 A CN 201910835889A CN 110560000 A CN110560000 A CN 110560000A
Authority
CN
China
Prior art keywords
zif
solution
doping
preparing
adsorption material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910835889.8A
Other languages
English (en)
Inventor
纳薇
叶海船
林敏�
冷彦宜
高文桂
王�华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201910835889.8A priority Critical patent/CN110560000A/zh
Publication of CN110560000A publication Critical patent/CN110560000A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0211Compounds of Ti, Zr, Hf
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/024Compounds of Zn, Cd, Hg
    • B01J20/0244Compounds of Zn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种Zr掺杂ZIF‑8制备Zr/ZIF‑8多孔吸附材料的方法及应用,属于吸附材料技术领域。本发明将2‑甲基咪唑溶解于NH4OH溶液中得到溶液A;将硝酸锌和硝酸锆溶解于超纯水中得到溶液B;在温度为25~26℃、搅拌条件下,将溶液A加入到溶液B中反应24~25h;固液分离,采用超纯水洗涤固体,干燥、研磨即得Zr掺杂ZIF‑8的Zr/ZIF‑8多孔吸附材料粉末。本发明利用少量Zr元素掺杂于ZIF‑8,在不破坏ZIF‑8结构的同时,提高其吸附CO2的能力,Zr/ZIF‑8吸附CO2的能力为ZIF‑8的2.2倍,在CO2吸附减排方面具有重要工业应用价值。

Description

一种Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法及应用
技术领域
本发明涉及一种Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法及应用,属于吸附材料技术领域。
背景技术
ZIF-8作为典型的金属有机框架材料,具有比表面积高、孔道结构易修饰、物理化学性能可调等特点,同时还具有更加良好的化学稳定性和热稳定性。虽然ZIF-8具有较大的比表面积和孔容,但其金属位点是Zn,Zn表面的碱性较弱,不利于CO2的吸附。而Zr元素表面碱性较强,将Zr元素掺杂在ZIF-8中,制备出新型多孔吸附材料Zr/ZIF-8,可提高ZIF-8对CO2的吸附能力。
发明内容
本发明针对现有技术存在的问题,提供一种Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法及应用,本发明利用少量Zr元素掺杂于ZIF-8,在不破坏ZIF-8结构的同时,提高其吸附CO2的能力。
一种Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法,具体步骤如下:
(1)将2-甲基咪唑溶解于NH4OH溶液中得到溶液A;
(2)将硝酸锌和硝酸锆溶解于超纯水中得到溶液B;
(3)在温度为25~26℃、搅拌条件下,将步骤(1)溶液A加入到步骤(2)溶液B中反应24~25h;固液分离,采用超纯水洗涤固体,干燥、研磨即得Zr掺杂ZIF-8的Zr/ZIF-8多孔吸附材料粉末。
所述步骤(1)NH4OH溶液中NH3的含量为25%~28%。
所述步骤(1)溶液A中2-甲基咪唑的浓度为1.8~1.9mol/L。
所述步骤(2)溶液B中硝酸锌的浓度为0.6~0.7mol /L,硝酸锆的浓度为0.06~0.07mol /L。
所述步骤(3)溶液A中2-甲基咪唑与溶液B中硝酸锌、硝酸锆的摩尔比为80:9:1。
所述Zr/ZIF-8多孔吸附材料作为CO2吸附捕集剂的应用。
Zr元素掺杂于ZIF-8能够提高吸附性能的原理:
Zr元素表面存在大量碱性位点,表面碱性位点有利于吸附CO2,Zr元素的加入可提高ZIF-8材料的表面碱性,从而提高CO2吸附性能。
本发明的有益效果是:
本发明利用少量Zr元素掺杂于ZIF-8,在不破坏ZIF-8结构的同时,提高其吸附CO2的能力;Zr/ZIF-8吸附CO2的能力为ZIF-8的2.2倍,在CO2吸附减排方面具有重要工业应用价值。
附图说明
图1为实施例1中Zr/ZIF-8材料的X射线衍射分析图;
图2为实施例1中Zr/ZIF-8材料的热重分析图;
图3为实施例1中Zr/ZIF-8材料与ZIF-8材料的电镜分析图;
图4为实施例1中Zr/ZIF-8材料的氮气吸附-脱附图和孔径分布图;
图5为实施例2中Zr/ZIF-8材料的CO2-TPD图。
具体实施方式
下面结合具体实施方式对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
实施例1:一种Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法,具体步骤如下:
(1)将2-甲基咪唑溶解于NH4OH溶液中得到溶液A;其中NH4OH溶液中NH3的含量为25%,溶液A中2-甲基咪唑的浓度为1.90mol/L;
(2)将硝酸锌和硝酸锆溶解于超纯水中得到溶液B;其中溶液B中硝酸锌的浓度为0.60mol /L,硝酸锆的浓度为0.070mol /L;
(3)在温度为25.0℃、搅拌条件下,将步骤(1)溶液A加入到步骤(2)溶液B中反应24.0h;固液分离,采用超纯水洗涤固体,干燥、研磨即得Zr掺杂ZIF-8的Zr/ZIF-8多孔吸附材料粉末;其中溶液A中2-甲基咪唑与溶液B中硝酸锌、硝酸锆的摩尔比为80:9:1;
本实施例Zr/ZIF-8材料的X射线衍射分析图见图1;从图1可知,Zr/ZIF-8与纯ZIF-8具有相同的XRD衍射峰,没有出现其它峰,说明掺杂Zr元素后不会破坏ZIF-8的结构;
本实施例Zr/ZIF-8材料的热重分析图见图2;从图2可知,与ZIF-8相比,Zr/ZIF-8仍具有良好的热稳定性,说明掺杂Zr元素后不会破坏ZIF-8的热稳定性;
本实施例Zr/ZIF-8材料与ZIF-8材料的电镜分析图见图3;其中a为ZIF-8的电镜分析图,b为Zr/ZIF-8材料的电镜分析图,c为b图的局部放大图;从图3可知,Zr/ZIF-8仍具ZIF-8的典型形貌,说明掺杂Zr元素后不会破坏ZIF-8的形貌;
本实施例Zr/ZIF-8材料的氮气吸附-脱附图和孔径分布图见图4;其中a为氮气吸附-脱附图,b为孔径分布图,比表面积,孔容和孔径计算结果如表1所示;
表1
从表1可知,与ZIF-8相比,Zr/ZIF-8仍具ZIF-8的典型多孔结构。
实施例2:实施例1的Zr/ZIF-8的吸附CO2性能测试:
利用CO2-TPD测试Zr/ZIF-8的吸附CO2的性能:
(1)将50mg的Zr/ZIF-8置于温度为300℃条件下氮气吹扫1h;
(2)在温度为40℃条件下采用高纯CO2吸附1h,再用氮气吹扫1h;
(3)执行CO2-TPD程序,温度范围为40-250℃,升温速率为10℃/min;结果见图5,峰面积计算结果如表2所示;
表2
从图5和表2可知,Zr/ZIF-8的CO2脱附峰面积大幅度增加,峰面积由120 mV·℃增加到260 mV·℃。
实施例3:一种Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法,具体步骤如下:
(1)将2-甲基咪唑溶解于NH4OH溶液中得到溶液A;其中NH4OH溶液中NH3的含量为26%,溶液A中2-甲基咪唑的浓度为1.80mol/L;
(2)将硝酸锌和硝酸锆溶解于超纯水中得到溶液B;其中溶液B中硝酸锌的浓度为0.65mol /L,硝酸锆的浓度为0.068mol /L;
(3)在温度为26.0℃、搅拌条件下,将步骤(1)溶液A加入到步骤(2)溶液B中反应24.6h;固液分离,采用超纯水洗涤固体,干燥、研磨即得Zr掺杂ZIF-8的Zr/ZIF-8多孔吸附材料粉末;其中溶液A中2-甲基咪唑与溶液B中硝酸锌、硝酸锆的摩尔比为80:9:1;
本实施例Zr/ZIF-8多孔吸附材的孔容和孔径计算结果如表3所示;
表3
SBET:比表面积;Vp:孔容;Dp:平均孔径;
从表3可知,与ZIF-8相比,Zr/ZIF-8仍具ZIF-8的典型多孔结构。
实施例4:一种Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法,具体步骤如下:
(1)将2-甲基咪唑溶解于NH4OH溶液中得到溶液A;其中NH4OH溶液中NH3的含量为28%,溶液A中2-甲基咪唑的浓度为1.85mol/L;
(2)将硝酸锌和硝酸锆溶解于超纯水中得到溶液B;其中溶液B中硝酸锌的浓度为0.70mol /L,硝酸锆的浓度为0.060mol /L;
(3)在温度为25.5℃、搅拌条件下,将步骤(1)溶液A加入到步骤(2)溶液B中反应25.0h;固液分离,采用超纯水洗涤固体,干燥、研磨即得Zr掺杂ZIF-8的Zr/ZIF-8多孔吸附材料粉末;其中溶液A中2-甲基咪唑与溶液B中硝酸锌、硝酸锆的摩尔比为80:9:1;
本实施例Zr/ZIF-8多孔吸附材的孔容和孔径计算结果如表4所示;
表4
SBET:比表面积;Vp:孔容;Dp:平均孔径;
从表4可知,与ZIF-8相比,Zr/ZIF-8仍具ZIF-8的典型多孔结构。

Claims (6)

1.一种Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法,其特征在于,具体步骤如下:
(1)将2-甲基咪唑溶解于NH4OH溶液中得到溶液A;
(2)将硝酸锌和硝酸锆溶解于超纯水中得到溶液B;
(3)在温度为25~26℃、搅拌条件下,将步骤(1)溶液A加入到步骤(2)溶液B中反应24~25h;固液分离,采用超纯水洗涤固体,干燥、研磨即得Zr掺杂ZIF-8的Zr/ZIF-8多孔吸附材料粉末。
2.根据权利要求1所述Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法,其特征在于:步骤(1)NH4OH溶液中NH3的含量为25%~28%。
3.根据权利要求1所述Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法,其特征在于:步骤(1)溶液A中2-甲基咪唑的浓度为1.8~1.9mol/L。
4.根据权利要求1所述Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法,其特征在于:步骤(2)溶液B中硝酸锌的浓度为0.6~0.7mol /L,硝酸锆的浓度为0.06~0.07mol /L。
5.根据权利要求1所述Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法,其特征在于:步骤(3)溶液A中2-甲基咪唑与溶液B中硝酸锌、硝酸锆的摩尔比为80:9:1。
6.权利要求1~5任意一项所述Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法所制备的Zr/ZIF-8多孔吸附材料作为CO2吸附捕集剂的应用。
CN201910835889.8A 2019-09-05 2019-09-05 一种Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法及应用 Pending CN110560000A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910835889.8A CN110560000A (zh) 2019-09-05 2019-09-05 一种Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910835889.8A CN110560000A (zh) 2019-09-05 2019-09-05 一种Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法及应用

Publications (1)

Publication Number Publication Date
CN110560000A true CN110560000A (zh) 2019-12-13

Family

ID=68777921

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910835889.8A Pending CN110560000A (zh) 2019-09-05 2019-09-05 一种Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法及应用

Country Status (1)

Country Link
CN (1) CN110560000A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112588324A (zh) * 2020-12-28 2021-04-02 湖南金联星特种材料股份有限公司 一锅法制备复合光催化剂CdS/ZIF-8的方法及其应用
CN112979979A (zh) * 2021-02-23 2021-06-18 云南省水利水电科学研究院 用于吸附去除水体中微污染汞的改性zif-8材料制备方法及应用
CN114950555A (zh) * 2022-06-14 2022-08-30 淮阴师范学院 锆基单原子催化剂、制备方法及其在2,5-呋喃二甲醇选择性合成中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2155608A1 (en) * 2007-05-11 2010-02-24 The Regents Of The University Of California Adsorptive gas separation of multi-component gases
CN106732390A (zh) * 2016-12-02 2017-05-31 太原理工大学 高CO2吸附性能的改性ZIFs材料及其制备方法
CN108854975A (zh) * 2018-07-18 2018-11-23 西北农林科技大学 一种棒状zif-8材料及其制备方法和应用
CN109012758A (zh) * 2018-08-31 2018-12-18 河南师范大学 一种用于吸附氟离子的ZrCl4改性ZIF-8复合吸附剂的制备方法及其应用
CN109647343A (zh) * 2018-12-28 2019-04-19 南京工业大学 多活性吸附位点金属-有机骨架复合材料及其制备和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2155608A1 (en) * 2007-05-11 2010-02-24 The Regents Of The University Of California Adsorptive gas separation of multi-component gases
CN106732390A (zh) * 2016-12-02 2017-05-31 太原理工大学 高CO2吸附性能的改性ZIFs材料及其制备方法
CN108854975A (zh) * 2018-07-18 2018-11-23 西北农林科技大学 一种棒状zif-8材料及其制备方法和应用
CN109012758A (zh) * 2018-08-31 2018-12-18 河南师范大学 一种用于吸附氟离子的ZrCl4改性ZIF-8复合吸附剂的制备方法及其应用
CN109647343A (zh) * 2018-12-28 2019-04-19 南京工业大学 多活性吸附位点金属-有机骨架复合材料及其制备和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIMANSHU JASUJA ET AL.: "Rational Tuning of Water Vapor and CO2 Adsorption in Highly Stable Zr-Based MOFs", 《THE JOURNAL OF PHYSICAL CHEMISTRY》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112588324A (zh) * 2020-12-28 2021-04-02 湖南金联星特种材料股份有限公司 一锅法制备复合光催化剂CdS/ZIF-8的方法及其应用
CN112588324B (zh) * 2020-12-28 2022-04-26 湖南金联星特种材料股份有限公司 一锅法制备复合光催化剂CdS/ZIF-8的方法及其应用
CN112979979A (zh) * 2021-02-23 2021-06-18 云南省水利水电科学研究院 用于吸附去除水体中微污染汞的改性zif-8材料制备方法及应用
CN114950555A (zh) * 2022-06-14 2022-08-30 淮阴师范学院 锆基单原子催化剂、制备方法及其在2,5-呋喃二甲醇选择性合成中的应用
CN114950555B (zh) * 2022-06-14 2023-08-18 淮阴师范学院 锆基单原子催化剂、制备方法及其在2,5-呋喃二甲醇选择性合成中的应用

Similar Documents

Publication Publication Date Title
CN110560000A (zh) 一种Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法及应用
Chen et al. Synthesis and characterization of the interpenetrated MOF-5
Qiu et al. Fabrication of Co 3 O 4 nanoparticles in thin porous carbon shells from metal–organic frameworks for enhanced electrochemical performance
CN110642238B (zh) 类石墨烯氮掺杂多孔碳材料及其制备方法和应用
Wang et al. The comparative lithium storage properties of urchin-like hematite spheres: hollow vs. solid
US9381491B2 (en) Ceramic material, method for adsorbing carbon dioxide and method for converting carbon dioxide
US9525190B2 (en) Solid lithium electrolyte via addition of lithium salts to metal-organic frameworks
Ryu et al. Preparation and characterization of a cylinder-type adsorbent for the recovery of lithium from seawater
CN108543516B (zh) 一种锂离子选择性吸附剂、制备方法以及从卤水提锂的工艺
CN107158979B (zh) 一种锂离子印迹杂化膜的制备方法及其用途
CN104475060A (zh) 一种复合吸附剂及其制备方法与应用
CN113019305B (zh) 多孔碱式碳酸镧磷酸盐吸附剂的制备及其应用
US20160340791A1 (en) Electrocatalyst for acidic media and method of making an electrocatalyst for acidic media
CN112871144B (zh) 一种多孔微球吸附材料及其制备和在吸附回收含铀废水或海水中铀方面的应用
CN103435620B (zh) 用于co2吸附与分离的多孔铜金属有机骨架材料及其制备方法
CN113708005B (zh) 一种嵌锂mof/石墨烯复合修饰的功能隔膜及制备方法
CN107198973B (zh) 一种可提高co2气氛下透氧稳定性的铁基陶瓷透氧膜的制备方法
CN115845791B (zh) 一种Ca/La基钙钛矿吸附材料的制备方法及用途
CN110180489B (zh) 一种掺硫富锂锰系锂吸附剂及其制备方法和应用
CN103204545B (zh) 制备立方相Li4Mn5O12的方法
CN106732441A (zh) 一种具有层次孔结构的整体式锂离子筛的制备方法
CN113234232B (zh) 碱金属-稀土异金属框架化合物、制备方法及应用
CN115124067A (zh) 用于H2S检测的CuO/WO3复合材料的制备方法
CN115532219A (zh) 基于石榴石型固体电解质粉末的盐湖提锂吸附剂及其制备和应用
Magnone et al. Effect of synthesis method on oxygen adsorption/desorption properties of La–Sr–Co–Fe–O perovskite-type oxide

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191213

RJ01 Rejection of invention patent application after publication