CN110404585B - 一种利用水浴加热在基底上制备mof片的方法 - Google Patents

一种利用水浴加热在基底上制备mof片的方法 Download PDF

Info

Publication number
CN110404585B
CN110404585B CN201910824136.7A CN201910824136A CN110404585B CN 110404585 B CN110404585 B CN 110404585B CN 201910824136 A CN201910824136 A CN 201910824136A CN 110404585 B CN110404585 B CN 110404585B
Authority
CN
China
Prior art keywords
reaction kettle
putting
heating
substrate
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910824136.7A
Other languages
English (en)
Other versions
CN110404585A (zh
Inventor
雷鸣
黄凯
郭帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Posts and Telecommunications
Original Assignee
Beijing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Posts and Telecommunications filed Critical Beijing University of Posts and Telecommunications
Priority to CN201910824136.7A priority Critical patent/CN110404585B/zh
Publication of CN110404585A publication Critical patent/CN110404585A/zh
Application granted granted Critical
Publication of CN110404585B publication Critical patent/CN110404585B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • B01J35/33
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel

Abstract

本发明涉及一种利用水浴加热在基底(泡沫镍、钢网、钛网、钼网等)上二次生长二维纳米MOF片的方法,属于材料科学与工程技术和化学领域。本发明制备的二维纳米MOF片涉及的金属有Fe、Co、Ni、Mn、Cu、Zn等元素。首先配置相应的一定浓度的反应物溶液A,把事先清洗干净的基底浸入上述溶液中,然后在一定温度下加热数十小时得到中间产物B;把制备好的中间产物B放入管式炉中,在惰性气体的条件下加热数小时,得到中间产物C;最后再重复得到中间产物B的方法。本方法具有操作简单、效率高、应用范围广等优点。

Description

一种利用水浴加热在基底上制备MOF片的方法
(1)发明名称:一种利用水热法在基底上二次生长二维纳米MOF片的方法
(2)技术领域
本发明涉及利用水热法在基底上二次生长二维纳米MOF片的方法,属于材料科学与工程技术和化学领域。
(3)背景技术
自支撑电极,将活性组分或者电催化剂以某种共价键或化学键吸附的形式结合在能导电的基底电极(集流体或者电极上),可以达到既能传递电子,又能活化底物的双重目的。自支撑电极由集流体、电催化剂和复合三个部分组成。集流体:有铜箔、钴、石墨烯、氧化石墨烯、纳米炭纤维等导电性优良集流体,因为电极除了提供电化学反应的界面之外,还是导电的介质,将电子运输到反应界面;电催化剂:镍、四氧化三钴、CoO、NaS、ZnO、Ni1-xFeOOH、硫化亚铁等,起到加速电化学反应;复合:一般是在优良的集流体或者改性的集流体上原位生长或自组装上具有微纳米结构的催化性能优异的电催化剂。常用制备自支撑电极的方法有:自组装法-高温原位固化、静电自组装退货法、磷化法、水热原位制备法、直接退火处理法、水溶液和微乳液介导法等。其中,这里我们用到的是水热原位制备法。
水热法或溶剂热法,通常指的是直接将金属盐与有机桥联配体在特定的溶剂(如水或者有机溶剂)中混合,放入密闭的耐高压金属容器(即反应釜中)通过加热,反应物在体系的自产生压力下进行反应。对于MOF而言,反应及晶化温度通常在60~180℃之间,很多化合物可以在150℃左右的温度下合成。传统的加热方法采用平衡原理,将反应容器置于烘箱、油浴等装置中,通常进行一次反应需要半天至数天时间。由于相对较高的压力和高温,水(溶剂)热法有利于MOF产物的单晶生长,通过合理的反应温度等条件控制,可望获得较大尺寸的单晶,这是水(溶剂)热法的优点及其被广泛采用的主要原因。
将通过水热法制备好的自支撑MOF电极在惰性气体条件下进行煅烧,即进行碳化处理。碳化(carbonization)又称干馏、炭化、焦化,是指固体或有机物在隔绝空气条件下加热分解的反应过程或加热固体物质来制取液体或气体 (通常会变为固体)产物的一种方式。这个过程不一定会涉及到裂解或热解。本文专利此处是脱水碳化,指的是将有机物去掉其他元素留下碳。如浓硫酸具有很强的脱水能力在和有机物接触时,把有机物中的氢、氧元素按水的组成比 (2:1)脱去,留下黑色的碳,从而使对方碳化。实际脱的是氢和氧,并不是说该物质就含水。同时,高温下碳或不饱和的碳把一些金属还原出来。碳化后的自支撑MOF电极ORR电化学催化性能明显提升很多,但是OER电化学催化性能稍微降低了一些,通过本发明的二次生长MOF的方法,在碳化后的基底上再次生长MOF材料,既弥补了OER的电化学催化性能,也保证了ORR的电化学催化性能。
(4)发明内容
1、本发明的目标
本发明的目的是提出一种利用水热法在基底上二次生长二维纳米MOF片的方法。高温碳化虽然会提升样品ORR等催化性能,但同时也会使原样品的OER 等催化性能降低,通过二次生长二维纳米MOF片的方法,除了增强了ORR等催化性能外,同时还弥补了OER的电化学催化性能。
2、本技术的发明要点本发明要点如下:
(1)用金属盐溶液、有机物和溶剂配置成质量-体积浓度为6-10mg/ml的反应物溶液A,所述的金属盐元素为Fe、Co、Ni、Mn、Cu、Zn,所述的有机物为2,6-萘二羧酸二钾盐,所述的溶剂为去离子水。
(2)把清洗干净的基底放入实验步骤(1)所述溶液中(即放入反应釜中),最后把反应釜放入鼓风干燥机中,反应温度为60-180℃,反应时间为12-24h;将得到的基底放入真空管式炉中进行煅烧,一般使用氮气或氩气作为惰性气体,煅烧温度为600-900℃,而煅烧时间为4-10h。
(3)使用与步骤(1)相同的金属盐、有机物和溶剂,配置成质量-体积浓度为3.6-6mg/ml的反应物溶液B,然后把步骤(2)得到的泡沫镍放入溶液B中 (即反应釜中),再次放入鼓风干燥箱中,反应时间和温度与步骤(2)相同。
本发明提出的利用水热法在基底上二次生长二维纳米MOF片的方法,其优是:这种方法适用范围广泛,可以合成多种金属MOF材料,如Ni、Co、Fe、 Mn、Zn等,同时这种方法也适合多种基底,比如泡沫镍、钛网、钢网、镍网等,且材料结构坚固,导热和导电性能良好,化学性能稳定,合成工艺简单,可以大规模生产。
(5)本发明的附图
图1、2和3分别是本发明方法制备的第一次生长MOF、碳化后的MOF和第二次生长MOF的扫描透射电子显微镜图。图4和图5分别是OER和ORR电化学催化性能图;其中R-NCM@NF代表第二次生长MOF的泡沫镍,A- NCM@NF代表碳化后MOF的泡沫镍,NCM@NF代表第一次生长MOF的泡沫镍,而NF代表原始泡沫镍。
(6)本发明实施例
以下介绍本发明方法的实施例:
实施例1
Ni-Co-MOF/泡沫镍材料的制备
首先,把乙酸镍、硝酸钴、2,6-萘二羧酸二钾盐和去离子水充分混合,配置成6.7mg/ml的混合溶液A并倒入反应釜中,然后把清洗干净的泡沫镍放入反应釜中,在60℃条件下加热20h;待加热完毕后,取出泡沫镍并烘干,然后放入管式炉中,在650℃条件下煅烧4h;待煅烧完毕后,再配置3mg/ml的混合溶液A并倒入另一个反应釜中,把煅烧好的泡沫镍放入该反应釜中,在60℃条件下加热20h,待加热完毕后,取出泡沫镍并且烘干,得到最后的产物。
实施例2
Ni-Fe-MOF/泡沫镍材料的制备
首先,把乙酸镍、硝酸铁、2,6-萘二羧酸二钾盐和去离子水充分混合,配置成6.7mg/ml的混合溶液A并倒入反应釜中,然后把清洗干净的泡沫镍放入反应釜中,在60℃条件下加热20h;待加热完毕后,取出泡沫镍并烘干,然后放入管式炉中,在650℃条件下煅烧4h;待煅烧完毕后,再配置3mg/ml的混合溶液A并倒入另一个反应釜中,把煅烧好的泡沫镍放入该反应釜中,在60℃条件下加热20h,待加热完毕后,取出泡沫镍并且烘干,得到最后的产物。
实施例3
Ni-Co-MOF/钢网材料的制备
首先,把乙酸镍、硝酸钴、2,6-萘二羧酸二钾盐和去离子水充分混合,配置成6.7mg/ml的混合溶液A并倒入反应釜中,然后把清洗干净的钢网放入反应釜中,在60℃条件下加热20h;待加热完毕后,取出钢网并烘干,然后放入管式炉中,在650℃条件下煅烧4h;待煅烧完毕后,再配置3mg/ml的混合溶液A并倒入另一个反应釜中,把煅烧好的钢网放入该反应釜中,在60℃条件下加热20h,待加热完毕后,取出钢网并且烘干,得到最后的产物。
实施例4
Ni-Fe-MOF/钢网材料的制备
首先,把乙酸镍、硝酸铁、2,6-萘二羧酸二钾盐和去离子水充分混合,配置成6.7mg/ml的混合溶液A并倒入反应釜中,然后把清洗干净的钢网放入反应釜中,在60℃条件下加热20h;待加热完毕后,取出钢网并烘干,然后放入管式炉中,在650℃条件下煅烧4h;待煅烧完毕后,再配置3mg/ml的混合溶液A并倒入另一个反应釜中,把煅烧好的钢网放入该反应釜中,在60℃条件下加热20h,待加热完毕后,取出钢网并且烘干,得到最后的产物。
实施例5
Ni-Co-MOF/钛网材料的制备
首先,把乙酸镍、硝酸钴、2,6-萘二羧酸二钾盐和去离子水充分混合,配置成6.7mg/ml的混合溶液A并倒入反应釜中,然后把清洗干净的钛网放入反应釜中,在60℃条件下加热20h;待加热完毕后,取出钛网并烘干,然后放入管式炉中,在650℃条件下煅烧4h;待煅烧完毕后,再配置3mg/ml的混合溶液A并倒入另一个反应釜中,把煅烧好的钛网放入该反应釜中,在60℃条件下加热20h,待加热完毕后,取出钛网并且烘干,得到最后的产物。
实施例6
Ni-Fe-MOF/钛网材料的制备
首先,把乙酸镍、硝酸铁、2,6-萘二羧酸二钾盐和去离子水充分混合,配置成6.7mg/ml的混合溶液A并倒入反应釜中,然后把清洗干净的钛网放入反应釜中,在60℃条件下加热20h;待加热完毕后,取出钛网并烘干,然后放入管式炉中,在650℃条件下煅烧4h;待煅烧完毕后,再配置3mg/ml的混合溶液A并倒入另一个反应釜中,把煅烧好的钛网放入该反应釜中,在60℃条件下加热20h,待加热完毕后,取出钛网并且烘干,得到最后的产物。
实施例7
Ni-Co-MOF/钼网材料的制备
首先,把乙酸镍、硝酸钴、2,6-萘二羧酸二钾盐和去离子水充分混合,配置成6.7mg/ml的混合溶液A并倒入反应釜中,然后把清洗干净的钼网放入反应釜中,在60℃条件下加热20h;待加热完毕后,取出钼网并烘干,然后放入管式炉中,在650℃条件下煅烧4h;待煅烧完毕后,再配置3mg/ml的混合溶液A并倒入另一个反应釜中,把煅烧好的钼网放入该反应釜中,在60℃条件下加热20h,待加热完毕后,取出钼网并且烘干,得到最后的产物。
实施例8
Ni-Fe-MOF/钼网材料的制备
首先,把乙酸镍、硝酸铁、2,6-萘二羧酸二钾盐和去离子水充分混合,配置成6.7mg/ml的混合溶液A并倒入反应釜中,然后把清洗干净的钼网放入反应釜中,在60℃条件下加热20h;待加热完毕后,取出钼网并烘干,然后放入管式炉中,在650℃条件下煅烧4h;待煅烧完毕后,再配置3mg/ml的混合溶液A并倒入另一个反应釜中,把煅烧好的钼网放入该反应釜中,在60℃条件下加热20h,待加热完毕后,取出钼网并且烘干,得到最后的产物。
实施例9
Ni-Co-MOF/镍网材料的制备
首先,把乙酸镍、硝酸钴、2,6-萘二羧酸二钾盐和去离子水充分混合,配置成6.7mg/ml的混合溶液A并倒入反应釜中,然后把清洗干净的镍网放入反应釜中,在60℃条件下加热20h;待加热完毕后,取出镍网并烘干,然后放入管式炉中,在650℃条件下煅烧4h;待煅烧完毕后,再配置3mg/ml的混合溶液A并倒入另一个反应釜中,把煅烧好的镍网放入该反应釜中,在60℃条件下加热20h,待加热完毕后,取出镍网并且烘干,得到最后的产物。
实施例10
Ni-Fe-MOF/镍网材料的制备
首先,把乙酸镍、硝酸铁、2,6-萘二羧酸二钾盐和去离子水充分混合,配置成6.7mg/ml的混合溶液A并倒入反应釜中,然后把清洗干净的镍网放入反应釜中,在60℃条件下加热20h;待加热完毕后,取出镍网并烘干,然后放入管式炉中,在650℃条件下煅烧4h;待煅烧完毕后,再配置3mg/ml的混合溶液A并倒入另一个反应釜中,把煅烧好的镍网放入该反应釜中,在60℃条件下加热20h,待加热完毕后,取出镍网并且烘干,得到最后的产物。

Claims (1)

1.一种利用水浴加热在基底上二次生长二维纳米MOF片的方法, 其特征在于该方法包括以下步骤:
(1)用金属盐溶液、有机物和溶剂配置成质量-体积浓度为6-10 mg/mL的反应物溶液A,然后把溶液A倒入反应釜中;
所述的金属盐元素为Fe、Co、Ni、Mn、Cu、Zn,所述的有机物为2,6-萘二羧酸二钾盐,所述的溶剂为去离子水;
(2)把清洗干净的基底放入实验步骤(1)反应釜中的溶液A中,最后把反应釜放入鼓风干燥机中,反应温度为60-180 ℃,反应时间为12-24 h;将得到的基底放入真空管式炉中进行煅烧,使用氮气或氩气作为隔绝空气的气体,煅烧温度为600-900 ℃,而煅烧时间为4-10h;
(3)使用与步骤(1)相同的金属盐、有机物和溶剂,配置成质量-体积浓度为3.6-6mg/mL的反应物溶液B,并把溶液B倒入反应釜中,然后把步骤(2)煅烧后的基底放入反应釜中的溶液B中,再次将反应釜放入鼓风干燥箱中,反应温度为60-180 ℃,反应时间为12-24 h。
CN201910824136.7A 2019-09-02 2019-09-02 一种利用水浴加热在基底上制备mof片的方法 Active CN110404585B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910824136.7A CN110404585B (zh) 2019-09-02 2019-09-02 一种利用水浴加热在基底上制备mof片的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910824136.7A CN110404585B (zh) 2019-09-02 2019-09-02 一种利用水浴加热在基底上制备mof片的方法

Publications (2)

Publication Number Publication Date
CN110404585A CN110404585A (zh) 2019-11-05
CN110404585B true CN110404585B (zh) 2021-11-12

Family

ID=68369639

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910824136.7A Active CN110404585B (zh) 2019-09-02 2019-09-02 一种利用水浴加热在基底上制备mof片的方法

Country Status (1)

Country Link
CN (1) CN110404585B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110993365A (zh) * 2019-11-22 2020-04-10 南京理工大学 泡沫镍上自生长双金属mof及其衍生物电极材料
CN113751074B (zh) * 2021-09-02 2023-04-25 北京建筑大学 固载型催化剂及其制备方法和应用
CN114892184A (zh) * 2022-06-11 2022-08-12 蚌埠学院 一种MOFs衍生物电催化剂的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115177A2 (en) * 2013-01-28 2014-07-31 Council Of Scientific & Industrial Research A process for the preparation of mofs-porous polymeric membrane composites
ES2856694T3 (es) * 2013-03-11 2021-09-28 Uti Lp Estructura organometálica, producción y uso de la misma
CN104437116B (zh) * 2014-12-08 2017-06-23 大连理工大学 一种大孔载体表面擦涂法植入同源金属氧化物粒子诱导合成MOFs膜的方法
WO2017078609A1 (en) * 2015-11-05 2017-05-11 Su Holding Ab One-pot synthesis of metal-organic frameworks with encapsulated target-molecule and their use
CN105621430B (zh) * 2015-12-29 2017-10-31 中国科学院力学研究所 一种新型合成金属有机骨架复合膜的方法
CN107887180B (zh) * 2017-11-08 2019-07-02 哈尔滨工业大学 一种在泡沫镍上原位生长Ni-MOF-74的方法

Also Published As

Publication number Publication date
CN110404585A (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
CN110404585B (zh) 一种利用水浴加热在基底上制备mof片的方法
CN111659401B (zh) 一种三维多孔碳纳米管石墨烯复合膜及其制备方法
CN110289424B (zh) 一种mof衍生碳与蜂窝状多孔碳复合材料的制备方法
CN103785859B (zh) 一种纳米介孔材料的制备方法
CN102757036A (zh) 多孔石墨烯的制备方法
CN111270263B (zh) 一种泡沫镍负载富硼、氧空位的四氧化三钴电极及其制备方法
CN112058286B (zh) 一种二维普鲁士蓝类似物@MXene复合电催化剂的原位制备方法
CN114318401B (zh) 表面亲水可调型镍钼合金材料的制备方法及其应用于大电流分解水产氢
CN113385185A (zh) 一种高活性、可选择性的钙钛矿型光热催化剂及其制备方法和应用
CN110665484A (zh) 一种协同生长的自支撑介孔金属有机框架材料的制备方法
CN112725819A (zh) 一种钨钼基氮碳化物纳米材料及其制备方法与应用
Chen et al. Bimetal-organic layer-derived ultrathin lateral heterojunction with continuous semi-coherent interfaces for boosting photocatalytic CO2 reduction
CN113684503B (zh) 一种N-GO@Co-Ni12P5-Ni3P/NCF复合电极材料及其制备方法
Luan et al. In situ growth of a GDY–MnO x heterointerface for selective and efficient ammonia production
CN111137942B (zh) 一种片状多孔的石墨烯量子点/磷化铜复合材料及其制备方法
CN113649035A (zh) 一种磷化钼基多晶块体及其制备方法与应用
Cao et al. Graphdiyne/copper sulfide heterostructure for active conversion of CO 2 to formic acid
CN111533121B (zh) 一种高比表面积多孔石墨空心半球的制备方法
CN110961136A (zh) 一种三维可连续结构的Fe3N包覆的FeNCN复合物及其制备方法
CN110624593A (zh) 一种VN@Co电催化剂的制备方法
CN113718284B (zh) 无金属的碳氮负载的碳纳米管复合材料、其制备及其用途
CN103663411A (zh) 一种双螺旋碳纳米管的高产合成方法
CN113769769B (zh) 镍-铁磷化物/石墨烯/镍复合材料、其制备方法及应用
CN113955728B (zh) 中空等级结构磷化钴/磷化钴锰的制备及其电解水的应用
CN114100682B (zh) 一种羽状叶异质结光催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant