CN110364357A - 一种高储能密度电容器及其制备方法 - Google Patents

一种高储能密度电容器及其制备方法 Download PDF

Info

Publication number
CN110364357A
CN110364357A CN201910658359.0A CN201910658359A CN110364357A CN 110364357 A CN110364357 A CN 110364357A CN 201910658359 A CN201910658359 A CN 201910658359A CN 110364357 A CN110364357 A CN 110364357A
Authority
CN
China
Prior art keywords
target
high density
completion
purity
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910658359.0A
Other languages
English (en)
Inventor
于仕辉
张春梅
杨盼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201910658359.0A priority Critical patent/CN110364357A/zh
Publication of CN110364357A publication Critical patent/CN110364357A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1254Ceramic dielectrics characterised by the ceramic dielectric material based on niobium or tungsteen, tantalum oxides or niobates, tantalates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

本发明公开了一种高储能密度电容器及其制备方法,利用磁控溅射技术和热蒸镀技术制备的Bi2Mg2/3Nb4/3O7基高储能电容器具有无毒、体积小、储能密度大、高储能效率的特点,储能密度高达30J/cm3以上,由于薄膜性能优良,成本低廉,适合工业化生产。

Description

一种高储能密度电容器及其制备方法
技术领域
本发明属于电容器制造领域,涉及一种高储能密度电容器及其制备方法。
背景技术
目前,高储能元器件在民用和军用领域均发挥着至关重要的作用。如果制备出兼具高功率密度又有高储能密度的理想储能元器件,有望实现二合一功能的全新电源***,将极大减小电源的重量和体积,加快电源***小型化进程,在工业控制、风光发电、交通工具、智能三表、电动工具等民用领域具有极大的应用前景。在高储能元器件中,电介质电容器的功率密度高,且温度稳定性好、安全性高。因此,基于电介质电容材料最有望制备出兼具高功率密度和高储能密度的理想储能元器件。
近年来,对电介质电容材料的研究主要集中在钽酸锶铋(SBT)、钛酸锶钡(BST)、锆钛酸铅(PZT)等几种材料。其中,SBT薄膜具有较好的抗疲劳特性、小的漏电流密度,但是其成膜温度较高,薄膜组分不容易控制,并且介电常数(~110)也较低,难以用来制备高储能密度电容器。BST薄膜具有优良的化学稳定性和热稳定性,并具有高的介电常数(>500),但是其介电损耗和漏电流都较大,且有一个致命弱点,即BST薄膜的击穿场强较低,这就限制了BST薄膜在高储能密度电容器中的应用。PZT的研究已经比较成熟,研究人员已经研发出储能密度高达30J/cm3的PZT基薄膜电容器。但是由于这类材料含有易挥发的重金属铅,这种高毒性使其很难应用于民用领域,学者们在努力地探寻其它的研究方向,以求获得能够取代PZT的新型高储能材料。
发明内容
为了解决现有技术中存在的问题,本发明提供一种高储能密度电容器及其制备方法,解决现有技术中高储能密度电容器材料含有重金属,不够绿色环保的问题。
本发明的技术方案为:
一种高储能密度电容器,由以下方法制备得到:
(1)将Pt靶材、Bi2Mg2/3Nb4/3O7靶材装入磁控溅射腔体内;
(2)将硅基片放置在磁控溅射腔体的样品台上;
(3)待步骤(2)完成后,将磁控溅射***的本底真空度抽至3.0×10-3Pa以下,使用纯Ar气体溅射Pt层;
(4)待步骤(3)完成后,使用掩膜版覆盖部分Pt层,然后将磁控溅射***的本底真空度抽至1.0×10-3Pa以下,使用Ar和O2混合气体作为溅射气体,溅射功率为50~300W,进行沉积得到Bi2Mg2/3Nb4/3O7层;由此得到结构为Si/Pt/Bi2Mg2/3Nb4/3O7的样品;
(5)待步骤(4)完成后,将Si/Pt/Bi2Mg2/3Nb4/3O7样品放入退火炉中空气退火10min~30min,退火温度为500℃~750℃;
(6)步骤(5)完成后,将Bi2Mg2/3Nb4/3O7层上覆盖金属掩膜版,使用热蒸镀设备制备Au顶电极,最终得到Pt金属底电极/Bi2Mg2/3Nb4/3O7层/Au金属顶电极三层结构的无铅Bi2Mg2/3Nb4/3O7基储能电容器。
所述步骤(1)Pt靶材为任意市售或者自制靶材,纯度为99%以上;Bi2Mg2/3Nb4/3O7靶材为常规的固相烧结法自制而成,靶材的纯度为98%以上;靶材与衬底的距离优选为40mm~150mm。
所述步骤(3)Ar气体纯度在99.99%以上;Pt层厚度为30nm~300nm。
所述步骤(4)Ar和O2的纯度均在99.99%以上,氧氩比为1/50~2/3;溅射总气压0.3~15Pa,Bi2Mg2/3Nb4/3O7层的厚度可以通过调节制备工艺参数或沉积时间控制,厚度为20nm~200nm。
所述步骤(5)将热蒸镀设备的本底真空抽至9.0×10-4Pa以下,将电流控制在80~130A,待Au蒸镀完全后关闭蒸发电源。
一种高储能密度电容器的制备方法,包括以下步骤:
(1)将Pt靶材、Bi2Mg2/3Nb4/3O7靶材装入磁控溅射腔体内;
(3)将硅基片放置在磁控溅射腔体的样品台上;
(3)待步骤(2)完成后,将磁控溅射***的本底真空度抽至3.0×10-3Pa以下,使用纯Ar气体溅射Pt层;
(4)待步骤(3)完成后,使用掩膜版覆盖部分Pt层,然后将磁控溅射***的本底真空度抽至1.0×10-3Pa以下,使用Ar和O2混合气体作为溅射气体,溅射功率为50W~300W,进行沉积得到Bi2Mg2/3Nb4/3O7层;由此得到结构为Si/Pt/Bi2Mg2/3Nb4/3O7的样品;
(5)待步骤(4)完成后,将Si/Pt/Bi2Mg2/3Nb4/3O7样品放入退火炉中空气退火10min~30min,退火温度为500℃~750℃;
(6)步骤(5)完成后,将Bi2Mg2/3Nb4/3O7层上覆盖金属掩膜版,使用热蒸镀设备制备Au顶电极,最终得到Pt金属底电极/Bi2Mg2/3Nb4/3O7层/Au金属顶电极三层结构的无铅Bi2Mg2/3Nb4/3O7基储能电容器。
所述步骤(1)Pt靶材为任意市售或者自制靶材,纯度为99%以上;Bi2Mg2/3Nb4/3O7靶材为常规的固相烧结法自制而成,靶材的纯度为98%以上;靶材与衬底的距离优选为40mm~150mm。
所述步骤(3)Ar气体纯度在99.99%以上;Pt层厚度为30nm~300nm。
所述步骤(4)Ar和O2的纯度均在99.99%以上,氧氩比为1/50~2/3;溅射总气压0.3~15Pa,Bi2Mg2/3Nb4/3O7层的厚度可以通过调节制备工艺参数或沉积时间控制,厚度为20nm~200nm。
所述步骤(5)将热蒸镀设备的本底真空抽至9.0×10-4Pa以下,将电流控制在80~130A,待Au蒸镀完全后关闭蒸发电源。
本发明有益效果:本发明利用磁控溅射技术和热蒸镀技术制备的Bi2Mg2/3Nb4/3O7基高储能电容器具有无毒、体积小、储能密度大、高储能效率的特点,储能密度高达30J/cm3以上,由于薄膜性能优良,成本低廉,适合工业化生产。
附图说明
图1为实施例1中制备在硅衬底上的无铅Bi2Mg2/3Nb4/3O7基高储能薄膜电容器的极化强度随外加场强变化的测试曲线图。
具体实施方式
下面结合附图和具体实施例,对本发明的技术方案作进一步详细说明。
实施例1
1.将Pt靶材、Bi2Mg2/3Nb4/3O7靶材装入磁控溅射腔体内,靶材与衬底的距离为100mm。
2.然后,先后用无水乙醇和去离子水超声清洗硅衬底,并用高纯氮气吹干,放入磁控溅射样品台上。
3.步骤2完成后,使用掩膜版覆盖部分Pt层,将磁控溅射***的本底真空度抽至5.0×10-4Pa。通入高纯(99.99%)Ar气体。进行沉积得到100nm的Pt层。
4.步骤3结束后,将磁控溅射***的本底真空度抽至5.0×10-4Pa,通入高纯Ar和O2。溅射功率为120w,氧氩比为3:17,温度为室温。进行沉积得到180nm厚的Bi2Mg2/3Nb4/3O7薄膜。由此得到结构为Si/Pt/Bi2Mg2/3Nb4/3O7的样品。
5.待步骤4完成后,将Si/Pt/Bi2Mg2/3Nb4/3O7样品放入退火炉中在700℃下空气退火10min。
6.步骤5结束后,将Si/Pt/Bi2Mg2/3Nb4/3O7样品转移至热蒸镀设备蒸发室内的样品台上,其上覆盖金属掩膜版,将待蒸发Au放置在蒸发舟内。将热蒸镀设备的本底真空抽至5.0×10-3Pa,将电流从80A逐渐升至110A,待Au蒸镀完全后关闭蒸发电源。
图1为实施例1中制备在硅衬底上的无铅Bi2Mg2/3Nb4/3O7基高储能薄膜电容器的极化强度随外加场强变化的测试曲线图,由图算出薄膜储能密度为36.8J/cm3
实施例2
1.将Pt靶材、Bi2Mg2/3Nb4/3O7靶材装入磁控溅射腔体内,靶材与衬底的距离为150mm。
2.然后,先后用无水乙醇和去离子水超声清洗硅衬底,并用高纯氮气吹干,放入磁控溅射样品台上。
3.步骤2完成后,使用掩膜版覆盖部分Pt层,将磁控溅射***的本底真空度抽至5.0×10-4Pa。通入高纯(99.99%)Ar气体。进行沉积得到100nm的Pt层。
4.步骤3结束后,将磁控溅射***的本底真空度抽至5.0×10-4Pa,通入高纯Ar和O2。溅射功率为300W,氧氩比为3:17,温度为室温。进行沉积得到200nm厚的Bi2Mg2/3Nb4/3O7薄膜。由此得到结构为Si/Pt/Bi2Mg2/3Nb4/3O7的样品。
5.待步骤4完成后,将Si/Pt/Bi2Mg2/3Nb4/3O7样品放入退火炉中在750℃下空气退火10min。
6.步骤5结束后,将Si/Pt/Bi2Mg2/3Nb4/3O7样品转移至热蒸镀设备蒸发室内的样品台上,其上覆盖金属掩膜版,将待蒸发Au放置在蒸发舟内。将热蒸镀设备的本底真空抽至5.0×10-3Pa,将电流从80A逐渐升至110A,待Au蒸镀完全后关闭蒸发电源。
实施例2中制备在硅衬底上的无铅Bi2Mg2/3Nb4/3O7基高储能薄膜电容器的储能密度约为35.5J/cm3
实施例3
1.将Pt靶材、Bi2Mg2/3Nb4/3O7靶材装入磁控溅射腔体内,靶材与衬底的距离为100mm。
2.然后,先后用无水乙醇和去离子水超声清洗硅衬底,并用高纯氮气吹干,放入磁控溅射样品台上。
3.步骤2完成后,使用掩膜版覆盖部分Pt层,将磁控溅射***的本底真空度抽至5.0×10-4Pa。通入高纯(99.99%)Ar气体。进行沉积得到30nm的Pt层。
4.步骤3结束后,将磁控溅射***的本底真空度抽至5.0×10-4Pa,通入高纯Ar和O2。溅射功率为50W,氧氩比为1:9,温度为室温。进行沉积得到20nm厚的Bi2Mg2/3Nb4/3O7薄膜。由此得到结构为Si/Pt/Bi2Mg2/3Nb4/3O7的样品。
5.待步骤4完成后,将Si/Pt/Bi2Mg2/3Nb4/3O7样品放入退火炉中在600℃下空气退火15min。
6.步骤5结束后,将Si/Pt/Bi2Mg2/3Nb4/3O7样品转移至热蒸镀设备蒸发室内的样品台上,其上覆盖金属掩膜版,将待蒸发Au放置在蒸发舟内。将热蒸镀设备的本底真空抽至5.0×10-3Pa,将电流从80A逐渐升至110A,待Au蒸镀完全后关闭蒸发电源。
实施例3中制备在硅衬底上的无铅Bi2Mg2/3Nb4/3O7基高储能薄膜电容器的储能密度约为30.4J/cm3
实施例4
1.将Pt靶材、Bi2Mg2/3Nb4/3O7靶材装入磁控溅射腔体内,靶材与衬底的距离为40mm。
2.然后,先后用无水乙醇和去离子水超声清洗硅衬底,并用高纯氮气吹干,放入磁控溅射样品台上。
3.步骤2完成后,使用掩膜版覆盖部分Pt层,将磁控溅射***的本底真空度抽至5.0×10-4Pa。通入高纯(99.99%)Ar气体。进行沉积得到300nm的Pt层。
4.步骤3结束后,将磁控溅射***的本底真空度抽至5.0×10-4Pa,通入高纯Ar和O2。溅射功率为200W,氧氩比为1:4,温度为室温。进行沉积得到150nm厚的Bi2Mg2/3Nb4/3O7薄膜。由此得到结构为Si/Pt/Bi2Mg2/3Nb4/3O7的样品。
5.待步骤4完成后,将Si/Pt/Bi2Mg2/3Nb4/3O7样品放入退火炉中在500℃下空气退火30min。
6.步骤5结束后,将Si/Pt/Bi2Mg2/3Nb4/3O7样品转移至热蒸镀设备蒸发室内的样品台上,其上覆盖金属掩膜版,将待蒸发Au放置在蒸发舟内。将热蒸镀设备的本底真空抽至5.0×10-3Pa,将电流从80A逐渐升至110A,待Au蒸镀完全后关闭蒸发电源。
实施例4中制备在硅衬底上的无铅Bi2Mg2/3Nb4/3O7基高储能薄膜电容器的储能密度约为33.2J/cm3
本发明并不局限于实施例中所描述的技术,它的描述是说明性的,并非限制性的。本发明的权限由权利要求所限定,基于本技术领域人员依据本发明所能够变化、重组等方法得到的与本发明相关的技术,都在本发明的保护范围之内。

Claims (10)

1.一种高储能密度电容器,其特征在于,由以下方法制备得到:
(1)将Pt靶材、Bi2Mg2/3Nb4/3O7靶材装入磁控溅射腔体内;
(2)将硅基片放置在磁控溅射腔体的样品台上;
(3)待步骤(2)完成后,将磁控溅射***的本底真空度抽至3.0×10-3Pa以下,使用纯Ar气体溅射Pt层;
(4)待步骤(3)完成后,使用掩膜版覆盖部分Pt层,然后将磁控溅射***的本底真空度抽至1.0×10-3Pa以下,使用Ar和O2混合气体作为溅射气体,溅射功率为50~300W,进行沉积得到Bi2Mg2/3Nb4/3O7层;由此得到结构为Si/Pt/Bi2Mg2/3Nb4/3O7的样品;
(5)待步骤(4)完成后,将Si/Pt/Bi2Mg2/3Nb4/3O7样品放入退火炉中空气退火10min~30min,退火温度为500℃~750℃;
(6)步骤(5)完成后,将Bi2Mg2/3Nb4/3O7层上覆盖金属掩膜版,使用热蒸镀设备制备Au顶电极,最终得到Pt金属底电极/Bi2Mg2/3Nb4/3O7层/Au金属顶电极三层结构的无铅Bi2Mg2/ 3Nb4/3O7基储能电容器。
2.根据权利要求1所述高储能密度电容器,其特征在于,所述步骤(1)Pt靶材为任意市售或者自制靶材,纯度为99%以上;Bi2Mg2/3Nb4/3O7靶材为常规的固相烧结法自制而成,靶材的纯度为98%以上;靶材与衬底的距离优选为40mm~150mm。
3.根据权利要求1所述高储能密度电容器,其特征在于,所述步骤(3)Ar气体纯度在99.99%以上;Pt层厚度为30nm~300nm。
4.根据权利要求1所述高储能密度电容器,其特征在于,所述步骤(4)Ar和O2的纯度均在99.99%以上,氧氩比为1/50~2/3;溅射总气压0.3~15Pa,Bi2Mg2/3Nb4/3O7层的厚度可以通过调节制备工艺参数或沉积时间控制,厚度为20nm~200nm。
5.根据权利要求1所述高储能密度电容器,其特征在于,所述步骤(5)将热蒸镀设备的本底真空抽至9.0×10-4Pa以下,将电流控制在80~130A,待Au蒸镀完全后关闭蒸发电源。
6.一种高储能密度电容器的制备方法,其特征在于,包括以下步骤:
(1)将Pt靶材、Bi2Mg2/3Nb4/3O7靶材装入磁控溅射腔体内;
(3)将硅基片放置在磁控溅射腔体的样品台上;
(3)待步骤(2)完成后,将磁控溅射***的本底真空度抽至3.0×10-3Pa以下,使用纯Ar气体溅射Pt层;
(4)待步骤(3)完成后,使用掩膜版覆盖部分Pt层,然后将磁控溅射***的本底真空度抽至1.0×10-3Pa以下,使用Ar和O2混合气体作为溅射气体,溅射功率为50~300W,进行沉积得到Bi2Mg2/3Nb4/3O7层;由此得到结构为Si/Pt/Bi2Mg2/3Nb4/3O7的样品;
(5)待步骤(4)完成后,将Si/Pt/Bi2Mg2/3Nb4/3O7样品放入退火炉中空气退火10min~30min,退火温度为500℃~750℃;
(6)步骤(5)完成后,将Bi2Mg2/3Nb4/3O7层上覆盖金属掩膜版,使用热蒸镀设备制备Au顶电极,最终得到Pt金属底电极/Bi2Mg2/3Nb4/3O7层/Au金属顶电极三层结构的无铅Bi2Mg2/ 3Nb4/3O7基储能电容器。
7.根据权利要求6所述高储能密度电容器的制备方法,其特征在于,所述步骤(1)Pt靶材为任意市售或者自制靶材,纯度为99%以上;Bi2Mg2/3Nb4/3O7靶材为常规的固相烧结法自制而成,靶材的纯度为98%以上;靶材与衬底的距离优选为40mm~150mm。
8.根据权利要求6所述高储能密度电容器的制备方法,其特征在于,所述步骤(3)Ar气体纯度在99.99%以上;Pt层厚度为30nm~300nm。
9.根据权利要求6所述高储能密度电容器的制备方法,其特征在于,所述步骤(4)Ar和O2的纯度均在99.99%以上,氧氩比为1/50~2/3;溅射总气压0.3~15Pa,Bi2Mg2/3Nb4/3O7层的厚度可以通过调节制备工艺参数或沉积时间控制,厚度为20nm~200nm。
10.根据权利要求6所述高储能密度电容器的制备方法,其特征在于,所述步骤(5)将热蒸镀设备的本底真空抽至9.0×10-4Pa以下,将电流控制在80~130A,待Au蒸镀完全后关闭蒸发电源。
CN201910658359.0A 2019-07-21 2019-07-21 一种高储能密度电容器及其制备方法 Pending CN110364357A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910658359.0A CN110364357A (zh) 2019-07-21 2019-07-21 一种高储能密度电容器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910658359.0A CN110364357A (zh) 2019-07-21 2019-07-21 一种高储能密度电容器及其制备方法

Publications (1)

Publication Number Publication Date
CN110364357A true CN110364357A (zh) 2019-10-22

Family

ID=68221328

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910658359.0A Pending CN110364357A (zh) 2019-07-21 2019-07-21 一种高储能密度电容器及其制备方法

Country Status (1)

Country Link
CN (1) CN110364357A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111876756A (zh) * 2020-07-15 2020-11-03 齐鲁工业大学 一种bmn多层介质薄膜及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080193642A1 (en) * 2007-02-12 2008-08-14 The Industry & Academic Cooperation In Chungnam National University Method for room temperature chemical vapor deposition on flexible polymer substrates
CN102543430A (zh) * 2012-01-12 2012-07-04 西安交通大学 焦绿石薄膜多层陶瓷电容器及其低温制备方法
CN102897726A (zh) * 2012-11-09 2013-01-30 山东师范大学 一种制备Si3N4纳米线的方法
CN103219153A (zh) * 2013-03-26 2013-07-24 欧阳俊 一种耐高压高储能密度电容器及其制备方法
CN103278534A (zh) * 2013-05-11 2013-09-04 天津大学 用于室温的氨敏传感器元件的制备方法
CN103278537A (zh) * 2013-06-17 2013-09-04 天津大学 用于室温的超快探测氮氧化物气体的气敏元件的制备方法
CN103993285A (zh) * 2014-05-30 2014-08-20 天津大学 一种柔性bmn薄膜压控变容管的制备方法
CN104087904A (zh) * 2014-07-08 2014-10-08 天津大学 一种高调谐率bmnt薄膜材料的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080193642A1 (en) * 2007-02-12 2008-08-14 The Industry & Academic Cooperation In Chungnam National University Method for room temperature chemical vapor deposition on flexible polymer substrates
CN102543430A (zh) * 2012-01-12 2012-07-04 西安交通大学 焦绿石薄膜多层陶瓷电容器及其低温制备方法
CN102897726A (zh) * 2012-11-09 2013-01-30 山东师范大学 一种制备Si3N4纳米线的方法
CN103219153A (zh) * 2013-03-26 2013-07-24 欧阳俊 一种耐高压高储能密度电容器及其制备方法
CN103278534A (zh) * 2013-05-11 2013-09-04 天津大学 用于室温的氨敏传感器元件的制备方法
CN103278537A (zh) * 2013-06-17 2013-09-04 天津大学 用于室温的超快探测氮氧化物气体的气敏元件的制备方法
CN103993285A (zh) * 2014-05-30 2014-08-20 天津大学 一种柔性bmn薄膜压控变容管的制备方法
CN104087904A (zh) * 2014-07-08 2014-10-08 天津大学 一种高调谐率bmnt薄膜材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LINGXIA LIN ET AL: "Effect ofthicknessonthedielectricpropertiesofbismuthmagnesium niobium thin films depositedbyrfmagnetronsputtering", 《CERAMICS INTERNATIONAL》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111876756A (zh) * 2020-07-15 2020-11-03 齐鲁工业大学 一种bmn多层介质薄膜及其制备方法
CN111876756B (zh) * 2020-07-15 2022-02-11 齐鲁工业大学 一种bmn多层介质薄膜及其制备方法

Similar Documents

Publication Publication Date Title
CN103219153B (zh) 一种耐高压高储能密度电容器及其制备方法
CN109082642A (zh) 一种具有高储能密度与优良热稳定性的无铅外延多层薄膜及其制备方法
Huang et al. Superior energy storage performances achieved in (Ba, Sr) TiO3-based bulk ceramics through composition design and Core-shell structure engineering
CN111676456B (zh) 一种自组装Ba(Hf,Ti)O3:HfO2纳米复合无铅外延单层薄膜及其制备方法
CN110364357A (zh) 一种高储能密度电容器及其制备方法
Yu et al. Energy storage and dielectric properties of a novel Bi1. 5MgNb1. 5O7-Bi2Mg2/3Nb4/3O7 thin film
CN112151357B (zh) 一种钛酸钡基超顺电膜及其中低温溅射制备方法与应用
CN1851039A (zh) 一种锆钛酸铅铁电薄膜材料的制备方法
CN106601903A (zh) c轴高度取向的钛酸钡薄膜及其在中低温下的原位制法
CN115947598B (zh) 一种可与贱金属内电极共烧的反铁电材料及其制备方法
CN110863184A (zh) 一种宽工作温度无铅外延薄膜及其制备方法
Huang et al. Effect of deposition parameters on the growth rate and dielectric properties of the Ba (SnxTi1− x) O3 thin films prepared by radio frequency magnetron sputtering
CN1932080A (zh) 一种钛酸锶钡薄膜材料的制备方法
CN112466665B (zh) 一种柔性固态电介质薄膜电容器及其制备方法
CN101831618B (zh) 一种TiO2/ZrO2两层堆栈结构高介电常数栅介质薄膜及其制备方法
CN100431157C (zh) 一种氧化物铁电存储单元及制备方法
CN108411256B (zh) 一种bts/bst/bzt多层结构介电调谐薄膜的制备方法
WO2023273212A1 (zh) 一种耐疲劳耐高温的柔性无铅铁电储能材料及其制备方法
Wang et al. Influence of deposition parameters on the dielectric properties of rf magnetron sputtered Ba (ZrxTi1− x) O3 thin films
KR20070110237A (ko) 전계 가변형 BST-Pb계 파이로클로어 복합 유전체박막과 제조방법
Wang et al. Characteristics and crystal structure of the Ba (ZrxTi1− x) O3 thin films deposited by RF magnetron sputtering
CN112921288B (zh) 一种制备高储能密度BaTiO3铁电薄膜的方法及其产品与应用
Salavei et al. Analysis of CdTe activation treatment with a novel approach
CN110224021A (zh) 一种肖特基二极管及其制备方法
CN208336004U (zh) 一种高压电容器的电介质薄膜加工装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20191022