CN110303865B - 串联双电机差速功率分流的无级变速传动*** - Google Patents

串联双电机差速功率分流的无级变速传动*** Download PDF

Info

Publication number
CN110303865B
CN110303865B CN201910623256.0A CN201910623256A CN110303865B CN 110303865 B CN110303865 B CN 110303865B CN 201910623256 A CN201910623256 A CN 201910623256A CN 110303865 B CN110303865 B CN 110303865B
Authority
CN
China
Prior art keywords
motor
power
gear
output
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910623256.0A
Other languages
English (en)
Other versions
CN110303865A (zh
Inventor
杨振忠
彭天权
曹少华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi Yuchai Machinery Co Ltd
Original Assignee
Guangxi Yuchai Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi Yuchai Machinery Co Ltd filed Critical Guangxi Yuchai Machinery Co Ltd
Priority to CN201910623256.0A priority Critical patent/CN110303865B/zh
Publication of CN110303865A publication Critical patent/CN110303865A/zh
Application granted granted Critical
Publication of CN110303865B publication Critical patent/CN110303865B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/06Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of change-speed gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/16Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of differential gearing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Of Transmissions (AREA)

Abstract

本发明公开了一种串联双电机差速功率分流的无级变速传动***,包括发动机输出/差速器输入轴、第一电机、第二电机、电机控制器、功率分流装置、离合器、变速箱、发动机动力输出轴以及蓄电池;其中第一电机和第二电机串连布置,发动机输出/差速器输入轴将发动机的动力传递给第一电机发电,同时发动机输出/差速器输入轴通过功率分流装置、离合器以及变速箱向外输出动力形成第一功率路径;第一电机通过电机控制器向第二电机和蓄电池供电,第二电机通过功率分流装置、离合器以及变速箱向外输出动力形成第二功率路径。本发明的无级变速传动***具有机械功率和电功率两条功率路径。

Description

串联双电机差速功率分流的无级变速传动***
技术领域
本发明是关于无级变速传动***,特别是关于一种串联双电机差速功率分流的无级变速传动***(EMCVT)。
背景技术
现有的传动***(以拖拉机为例)按换挡方式分为手动换挡传动***,动力不间断自动换挡传动***,液压机械无级变速传动***(HMCVT)。
1.手动换挡传动***:
拖拉机田间作业时,由于土地阻力变化大,整机负荷变化大,采用手动换挡传动系的拖拉机需要频繁停车换挡,以满足农具作业牵引力及速度要求,员工工作强度大,作业效率低,作业质量不稳定;同时,发动机转速与车辆速度直接相关,整车速度变化导致发动机转速变化范围大,发动机不能工作在一个稳定经济的转速范围内,导致油耗高、排放差、震动磨损大。该型传动系结构简单、制造维护成本低,适合农民用户当前的购买水平。世界先进国家,手动换挡传动系多应用在80Hp马力以下拖拉机产品上。
2.拖拉机动力不间断自动换挡传动***:
在发动机到变速箱的动力不中断的车辆行驶条件下,进行的换挡过程;采用湿式多片离合器作为换挡执行机构,需要挡位变换时,换挡的两个离合器按照控制油压的变化,顺序分开与结合两个离合器,在车辆负载行驶中实现不停车换挡,解决了手动换挡传动系作业时停车换挡的问题,减少了员工作业强度、提高了操控舒适性及作业效率。但,动力不间断自动换挡传动系发动机转速与车辆速度直接相关,车辆速度变化导致发动机转速变化范围大,发动机不能工作在一个稳定经济的转速范围内,发动机油耗高、排放差、震动磨损大。同时,拖拉机由于作业要求多,挡位数量多,该种传动系结构需要的离合器数量及比例阀很多,以160马力16挡变速箱为例:全域自动变速箱需要8个离合器8个液压比例阀;由于一致性的原因,该型传动系的换挡性能需在专用出厂试验台上调试标定,随着使用时间的增长,离合器磨损增加,换挡控制时间发生了改变,平顺性变差,产生换挡冲击。目前,这些***的技术基本被国外公司掌握并主要依靠进口,该传动系结构复杂、价格高、降价难、维修成本高。由于价格的原因,世界先进国家,动力换挡传动系多应用在80-200Hp拖拉机产品上。
3.液压机械无级变速传动***(HMCVT):
该传动***由液压柱塞变量泵/马达/多排差速机构/湿式离合器及制动器组成,主要优点是:通过差速器对发动机功率分流成两条功率路线,一条是机械功率路线,功率直接传递到变速箱输入轴;一条是液压功率路线,经机-液-机功率转换过程后,与变速箱输入轴实现全部功率的汇流;通过功率分流、汇流原理,实现传动系扭矩、转速按照车辆速度与牵引力要求自动连续变化,保证车辆变速时的牵引力与速度要求。
该传动***(HMCVT)实现了车辆传动系无级自动变化,员工操作强度低,操作舒适性好,作业效率、质量高;由于发动机转速、扭矩与整车速度、牵引力完全解耦(不相关),发动机可以稳定的工作在低油耗区域,震动小、排放好。
该传动***(HMCVT)所采用的高压变量柱塞泵/马达、比例阀等属于精密液压偶件,对装配净洁度、使用清洁度、保养维护清洁度要求非常高,需要专用液压油,使用维护费用高昂;该***变速箱采用多排差速机构与湿式离合器或制动器,实现4-6个挡位的区域变换,该***零件数量多,结构复杂,***关键技术基本被国外公司掌握,产品主要依靠进口,该传动系成本高、降价难。由于价格与使用维护的原因,该***在中国市场使用量非常少。由于价格的原因,世界先进国家,液压机械无级变速传动系(HMCVT),多应用在200--400Hp拖拉机产品上。
上述现有技术的传动***存在以下缺点:
1.采用手动换挡传动系,结构简单,制造、保养维修容易,成本低。缺点如下:
(1)采用手动换挡传动系的拖拉机需要频繁停车换挡,以满足农具作业牵引力及速度要求,员工工作强度大,作业效率低,作业质量不稳定。
(2)发动机转速与车辆速度直接相关,整车速度变化导致发动机转速变化范围大,发动机不能工作在一个稳定经济的转速范围内,油耗高、排放差、震动磨损大。
2.动力不间断自动换挡传动系,在车辆负载行驶中实现不停车换挡,提高了拖拉机作业效率与操控舒适性。缺点如下:
(1)该传动系发动机转速与车辆速度直接相关,车辆速度变化导致发动机转速变化范围大,发动机不能工作在一个稳定经济的转速范围内,油耗高、排放差、震动磨损大。
(2)该传动系结构需要的离合器数量及比例阀数量很多,随着使用时间的增长,离合器磨损增加,换挡控制时间发生了改变,平顺性变差,产生换挡冲击。
(3)传统动力换挡变速箱,是单功率路线有级式传动,实现超级爬行挡(超低速),要加很多繁复的减速轮系。并且,不能实现旋耕等主要作业时的无级传动,也就是理论上不能匹配到与旋耕机最佳的行驶速度
(4)目前,这些***的技术基本被国外公司掌握并主要依靠进口,该传动系价格高、降价难、维修成本高。
3.液压机械无级变速传动***(HMCVT),实现了由4-6个挡组成的全域无级变速***,作业效率高,操控舒适性好,发动机输出与车辆负载、速度解耦,发动机平稳运行在低油耗、低排放区间。缺点如下:
(1)4-6个挡位组成的机械变速***是由多排差速机构及4-6个湿式离合器或制动器构成的变速机构,结构复杂,零部件加工要求高,成本高。
(2)由液压精密偶件组成的液压功率分流***,对装配净洁度、使用清洁度、保养维护清洁度要求非常高,需要专用液压油,使用维护费用高昂。
(3)由于这些***的技术基本被国外公司掌握,产品主要依靠进口,成本很高、降价难。
因此,需要设计一种传动***,能够解决上述现有传动***所存在的技术问题。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容
本发明的目的在于提供一种串联双电机差速功率分流的无级变速传动***,其能够有效克服上述现有技术的传动***存在的问题。
为实现上述目的,本发明提供了一种串联双电机差速功率分流的无级变速传动***,其设置于发动机的动力输出端,无级变速传动***包括发动机输出/差速器输入轴、第一电机、第二电机、电机控制器、功率分流装置、离合器、变速箱、发动机动力输出轴以及蓄电池;其中第一电机和第二电机串连布置,发动机输出/差速器输入轴将发动机的动力传递给第一电机发电,同时发动机输出/差速器输入轴通过功率分流装置、离合器以及变速箱向外输出动力形成第一功率路径;第一电机通过电机控制器向第二电机和蓄电池供电,第二电机通过功率分流装置、离合器以及变速箱向外输出动力形成第二功率路径。
在一优选的实施方式中,功率分流装置包括左半轴齿轮、右半轴齿轮及差速器行星架;第一电机包括第一电机空心输入轴、第一电机转子及第一电机定子,第一电机转子与第一电机空心轴机械连接,且第一电机空心轴与左半轴齿轮连接,用以通过发动机的动力使第一电机转子发电;第二电机包括第二电机空心输出轴、第二电机转子及第二电机定子,第二电机转子与第二电机空心输出轴机械连接,并通过第二电机空心输出轴单独输出第二电机功率;第一电机定子和第二电机定子安装在电机定子共用壳体中;发动机输出/差速器输入轴从第一电机空心输入轴内通过,第一电机空心输入轴又从第二电机空心输出轴内通过,发动机输出/差速器输入轴、第一电机空心输入轴、第二电机空心输出轴为三轴同轴嵌套结构,发动机输出/差速器输入轴穿过第一电机空心输入轴与差速器行星架连接,同时发动机动力输出轴与差速器行星架连接,用以输出发动机动力。
在一优选的实施方式中,变速箱包括变速箱输入轴、变速箱同步器和变速箱齿轮组以及中央传动主动齿轮。变速箱输入轴与右半轴齿轮固定连接,用以向变速箱输入动力;变速箱同步器和变速箱齿轮组与变速箱输入轴构成定轴式4-6挡变速箱;中央传动主动齿轮与变速箱齿轮组机械连接,发动机输出/差速器输入轴的转速经变速箱变速后,由中央传动主动齿轮传递给中央传动从动齿轮,再经中央传动差速器半轴齿轮/半轴向外输出动力。
在一优选的实施方式中,串联双电机差速功率分流的无级变速传动***还包括第二电机输出主动齿轮、第二电机输出从动齿轮、动力换挡主动齿轮、动力换挡从动齿轮、动力换挡传动齿轮、离合器输出主动齿轮以及离合器输出从动齿轮。第二电机输出主动齿轮与第二电机空心输出轴固定连接;第二电机输出从动齿轮与第一/动力传递离合器(C1/C2)输入轴固定连接,并与第二电机输出主动齿轮啮合;动力换挡主动齿轮与动力换挡离合器(C1)输出轴固定连接;动力换挡从动齿轮与动力换挡传动轴固定连接,并与动力换挡主动齿轮啮合;动力换挡传动齿轮与动力换挡传动轴固定连接,并与变速箱齿轮组机械连接;离合器输出主动齿轮与动力传递离合器(C2)输出轴固定连接;离合器输出从动齿轮与变速箱输入轴固定连接,并与离合器输出主动齿轮啮合。
在一优选的实施方式中,发动机的机械功率通过发动机输出/差速器输入轴输入到功率分流装置,差速器行星架将机械功率分流为两个部分:一部分通过差速器行星架分配到右半轴齿轮直接输出到变速箱输入轴;另一部分通过差速器行星架分配给左半轴齿轮,并经第一电机空心输入轴传给第一电机转子发电转化成电功率,电功率经电机控制器调压、调频后,直接传给第二电机转化为机械能,机械能经过第二电机空心输出轴输出到第二电机输出主动齿轮、第二电机输出从动齿轮,并传递到第一/动力传递离合器(C1/C2)输入轴上;从而实现无级变速传动***的发动机的机械功率的分流模式。
在一优选的实施方式中,在无级变速模式下,离合器C2结合,C1分离,第二电机是电功率通过第一/动力传递离合器(C1/C2)输入轴、动力传递离合器(C2)输出轴、离合器输出主动齿轮、离合器输出从动齿轮传递给变速箱输入轴,并与右半轴齿轮分流的一部分发动机的机械功率在变速箱输入轴处汇合;从而实现无级变速传动***的发动机的机械功率与第二电机的电功率的汇流模式。
在一优选的实施方式中,某一挡位下,右半轴齿轮的转速通过离合器、变速箱的传动***与中央传动从动齿轮成固定线性正比关系,即与整车速度成固定线性正比关系;
右半轴齿轮的转速在功率分流装置中与左半轴齿轮的转速成线性反比关系,即当整车速度减少牵引力增加时,右半轴齿轮的速度、扭矩按照固定的比例减少与增加,此时左半轴齿轮的转速与右半轴齿轮的转速增减方向相反,即右半轴齿轮的转速增加,左半轴齿轮的转速减少,反之右半轴齿轮的转速减少,左半轴齿轮的转速增加;
当发动机的转速不变,即与发动机输出/差速器输入轴连接的差速器行星架的转速不变时,因第一电机空心输入轴与左半轴齿轮连接,通过左半轴齿轮的转速变化,能够实现第一电机的功率变化,经电机控制器的转换/控制电流、电压、频率后,输出给第二电机电能,实现第二电机的速度与变速箱输入轴的转速相匹配,从而实现无级变速传动***在某一挡位下的无级变速模式。
在一优选的实施方式中,在无级变速行驶模式下,第一电机始终处于发电状态,通过功率分流装置的差速器机构特性,从而实现整车速度、牵引力与发动机转速、扭矩为解耦关系(无关系)。
在一优选的实施方式中,在换挡模式下,当离合器C2分离,离合器C1结合,第二电机转子由控制器调整转速与换挡时刻对应挡位下的中央传动主动齿轮的转速相匹配,第二电机的功率经第二电机空心输出轴、第二电机输出主动齿轮、第二电机输出从动齿轮、第一/动力传递离合器(C1/C2)输入轴、离合器C1输出轴、动力换挡主动齿轮、动力换挡从动齿轮、动力换挡传动轴、动力换挡传动齿轮、齿轮组中对应的挡位齿轮、中央传动主动齿轮、中央传动从动齿轮至末端传动,最终到达驱动轮,从而实现无级变速传动***的全域无级变速换挡模式。
在一优选的实施方式中,当需要低速行驶时,第二电机转子输出的行走所需要的功率到达变速箱输入轴,此时发动机输出/差速器输入轴通过发动机动力输出轴向后端部件提供其所需的绝大部分发动机功率;同时右半轴齿轮与变速箱输入轴连接,车辆的行驶速度由右半轴齿轮的转速控制,通过调整第一电机转子到比较高的转速而降低右半轴齿轮的转速,从而实现无级变速传动***的控制车辆行驶速度处于爬行与缓行速度模式。
在一优选的实施方式中,当需要倒车时,电机控制器输入反向电压、电流,控制第二电机转子反向旋转,第二电机转子的反向功率通过第二电机空心输出轴、第二电机输出主动齿轮、第二电机输出从动齿轮、第一/动力传递离合器(C1/C2)输入轴、动力传递离合器(C2)输出轴、离合器输出主动齿轮、离合器输出从动齿轮传递到变速箱输入轴,并通过变速箱齿轮组传递到中央传动从动齿轮输出倒车功率,此时第一电机转子的发电转速达到最高范围,从而实现无级变速传动***的倒挡模式。
在一优选的实施方式中,当车辆需要重负荷起步时,无级变速传动***短期处于混合动力状态,此时发动机分流的机械功率通过右半轴齿轮输出到变速箱输入轴;第二电机助力时的功率处于额定功率与峰值功率状态之间,第二电机助力时的功率大小,取决于操控者油门开度区间,此时电机控制器控制蓄电池通过路线向第二电机供电,电能通过第二电机转子转换为机械能,由第二电机空心输出轴、第二电机输出主动齿轮、第二电机输出从动齿轮、第一/动力传递离合器(C1/C2)输入轴、动力传递离合器(C2)输出轴、离合器输出主动齿轮、离合器输出从动齿轮传递到变速箱输入轴;此时在变速箱输入轴处汇流入第二电机的功率和发动机的功率两股功率,两股功率之和大于起步加速时的所需功率,从而实现无级变速传动***的起步助力模式。
与现有技术相比,本发明的串联双电机差速功率分流的无级变速传动***具有以下有益效果:通过差速器对发动机功率分流成两条功率路线,一条是机械功率路线,一条是电功率路线,机械功率路线直接传递到4或6挡变速箱输入轴;电功率路线通过机-电-机的功率转换模式,传递电功率到第二电机,并传递到变速箱输入轴,与机械功率路线汇流;通过差速器功率分流、汇流原理,实现传动系(EMCVT)输出扭矩、转速根据车辆速度与牵引力变化自动连续变化,实现了拖拉机负载状态下的不停车变速。本方案(EMCVT)设计了第二电机功率独立传递路线,该独立路线不与变速箱功率传动路线重合,实现了4-6挡变速箱挡位的自动换挡,以保证电机在高效区工作,进而实现了整机从零到最大设计速度范围内的全域无级变速。实现了田间作业行驶自动化,大幅降低了员工的劳动强度,提高了作业效率与质量;同时,由于电机响应速度快,换挡平顺性优良,换挡时间短,减少了换挡离合器的摩擦功,提高了离合器的使用寿命与可靠性。本方案的差速功率分流结构,实现了发动机扭矩、转速与车辆牵引力、速度的完全解耦(独立不相关),发动机可以稳定的运转在一个优化的低油耗区域,降低发动机油耗10%以上,更容易满足排放的政策法规要求,降低了发动机的震动与磨损。可以实现拖拉机行走***速度独立于发动机动力输出轴的转速,从而可以寻找到行驶速度与农具理论转速的最佳匹配点,提高作业效率,降低油耗、排放。由于永磁交流电机的低速大转矩特性,本方案可以实现超低速爬行挡功能,在0-0.1km/h的行驶速度范围内稳定工作,并通过动力输出轴输出绝大部分发动机功率,用于开沟等特殊作业。不需要在变速箱内设置倒挡,依靠第二电机的反向旋转,可以实现0-Vmax km/h的任意逆行速度,满足拖拉机各种作业要求。依靠第二电机的额定功率或瞬时高功率功能,助力车辆低速重负荷起步,减少地头加速时间及未作业地块,增加作物播种面积。变速箱根据拖拉机功率大小可以设计成4-6挡定轴式变速箱,采用同步器换挡结构,变速箱结构简单、可靠,零件大幅减少,传动效率高,成本低。主要关键零部件,大功率永磁同步电机及电机控制器,高功率放电电池等技术与产品,本地生产商完全掌握并大规模生产,本地采购渠道宽阔。由于电机及控制器的高可靠性及低成本,本传动系的制造、使用维护成本大幅降低。
附图说明
图1是根据本发明一实施方式的无级变速传动***的结构示意图。
图2是根据本发明一实施方式的无级变速传动***的电机控制器的电功率转换模块示意图。
主要附图标记说明:
1-发动机,2-发动机输出/差速器输入轴,3-扭转减震器,4-第一电机轴承盖,5-电机定子共用壳体,6-第一电机定子,7-第一电机转子,8-第二电机定子,9-第二电机转子,10-第一电机空心输入轴,11-第二电机空心输出轴,12-左半轴齿轮,13-差速器行星架,14-右半轴齿轮,15-变速箱输入轴,16-动力换挡传动轴,17-动力换挡传动齿轮(Z5),18-发动机动力输出轴,19-后桥壳体,20-中央传动差速器半轴齿轮/半轴,21-中央传动从动齿轮,22-中央传动主动齿轮,23-变速箱齿轮组(Z6/Z7/Z8/Z9),24-离合器输出从动齿轮(Zn),25-离合器输出主动齿轮(Zm),26-动力传递离合器(C2)输出轴,27-动力换挡离合器(C1)输出轴,28-动力换挡主动齿轮(Z3),29-动力换挡从动齿轮(Z4),30-第二电机输出从动齿轮(Z2),31-离合器输入轴,32-第二电机输出主动齿轮(Z1)。
具体实施方式
下面结合附图,对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。
如图1所示,图1是根据本发明一实施方式的无级变速传动***的结构示意图。根据本发明优选实施方式的串联双电机差速功率分流的无级变速传动***(EMCVT),发动机输出/差速器输入轴2在第一电机空心输入轴10内通过,MG1第一电机空心输入轴10从MG2第二电机空心输出轴11内通过,三条轴为同轴嵌套结构,MG1第一电机定子6与MG2第二电机定子8安装在定子共用壳体5中。MG1第一电机转子7与MG1第一电机空心输入轴10机械连接,MG1第一电机空心输入轴10与左半轴齿轮12连接;发动机1通过扭转减震器3与发动机输出/差速器输入轴2机械连接,发动机输出/差速器输入轴2穿过第一电机空心输入轴10与差速器行星架13连接,用于输出发动机动力;MG2第二电机转子9与MG2第二电机空心输出轴11机械连接,并通过MG2第二电机空心输出轴11单独输出第二电机功率;右半轴齿轮14与变速箱输入轴15固定连接,用于向变速箱输入动力;变速箱输入轴15与变速箱同步器、变速箱齿轮组23(Z6/Z7/Z8/Z9)组成了定轴式4-6挡变速箱,变速箱齿轮组23(Z6/Z7/Z8/Z9)中的齿轮Z6/Z7/Z8/Z9等与中央传动主动齿轮22机械连接,变速后的功率经中央传动主动齿轮22传递到中央传动从动齿轮21,再经末端减速传动(未绘示)传到拖拉机驱动轮。
在一些实施方式中,本发明的串联双电机差速功率分流的无级变速传动***具有无级变速功率输出模式:
请参阅图1,通过件左半轴齿轮12、右半轴齿轮14、差速器行星架13组成的差速器作为发动机输出功率的功率分流装置;发动机1发出的机械功率经过发动机输出/差速器输入轴2输入到差速器行星架13,差速器行星架13作为差速器的功率输入部件将输入功率输出到两个方向,一部分功率通过差速器行星架13分配到右半轴齿轮14直接输出到变速箱输入轴15,一部分机械功率经差速器行星架13分配给左半轴齿轮12并经第一电机空心输入轴10传给第一电机转子7发电转化成电功率;电功率经电机控制器(如图2所示,图2是根据本发明一实施方式的无级变速传动***的电机控制器的电功率转换模块示意图。)调压、调频后,直接传给第二电机转子9转化为机械功能,经过第二电机空心输出轴11输出到第二电机输出主动齿轮32(Z1)、第二电机输出从动齿轮30(Z2)传递到第一/动力传递离合器(C1/C2)输入轴31上,在自动换挡(CVT)模式下动力传递离合器(C2)输出轴26结合,动力换挡离合器(C1)输出轴27分离,第二电机MG2的功率通过第一/动力传递离合器(C1/C2)输入轴31→动力传递离合器(C2)输出轴26→离合器输出主动齿轮25(Zm)→离合器输出从动齿轮24(Zn)→传递给变速箱输入轴15,并与右半轴齿轮14分流的发动机功率在变速箱输入轴15处汇合,实现发动机功率的汇流模式。
在一些实施方式中,本发明的串联双电机差速功率分流的无级变速传动***具有无级变速的调速模式:
请继续参阅图1,在某一挡位下,右半轴齿轮14的转速通过变速箱等传动***与中央传动从动齿轮21成固定线性正比关系,也就与整车速度V成固定线性正比关系。右半轴齿轮14在本差速机构(功率分流装置)中与左半轴齿轮12的转速成线性反比关系,因此在一定的发动机转速与功率下,当整车的速度减少,而牵引力增加时,右半轴齿轮14的速度、扭矩按照固定的比例减少与增加,此时左半轴齿轮12的转速与右半轴齿轮14的转速增减方向相反,即:右半轴齿轮14转速增加,左半轴齿轮12转速减少,反之,右半轴齿轮14转速减少,左半轴齿轮12转速增加。理论上可以看做为发动机1的转速不变,即与发动机1的发动机输出/差速器输入轴2连接的差速器行星架13转速不变,由于第一电机MG1通过第一电机空心输入轴10与左半轴齿轮12连接,通过左半轴齿轮12的转速变化,实现MG1第一电机转子7的功率的变化,经电机控制器转换/控制电流、电压、频率,输出MG2第二电机转子9功率;实现第二电机转子9的速度与变速箱输入轴15转速相匹配,完成了在某一挡位下的无级变速模式。
在自动换挡(CVT)行驶模式下,MG1第一电机转子7始终是处于第一电机状态;同时,通过差速器(功率分流装置)的结构特性,实现了整车速度、牵引力与发动机转速、扭矩的解耦(不相关)关系,保证发动机工作的稳定性。
在一些实施方式中,本发明的串联双电机差速功率分流的无级变速传动***具有全域无级变速换挡模式:
请继续参阅图1,一般情况下,拖拉机整车的速度范围为0-50km/h之间,根据拖拉机功率的不同需要设置4-6个挡位的定轴变速箱,确保在拖拉机全速度范围内,第一电机MG1/第二电机MG2能工作在高效区域,提高传动***的总效率。
在换挡模式下:MG2电机控制器接受整车控制器VCU(未绘示)发出的拖拉机的速度状态信号,产生MG2第二电机的转速控制信号,此时的功率来自于高放电倍率蓄电池,换挡时根据离合器逻辑控制要求,离合器C2分离,离合器C1结合,第二电机转子9调整转速与换挡时刻某挡位下中央传动主动齿轮22的转速匹配;MG2第二电机功率经第二电机空心输出轴11→第二电机输出主动齿轮32(Z1)→第二电机输出从动齿轮30(Z2)→第一/动力传递离合器(C1/C2)输入轴31→动力换挡离合器(C1)输出轴27结合→动力换挡主动齿轮28(Z3)→动力换挡从动齿轮29(Z4)→动力换挡传动轴16→动力换挡传动齿轮17(Z5)→结构设计确定的齿轮Z6/Z7/Z8/Z9中之一→中央传动主动齿轮22→中央传动从动齿轮21→末端传动(未图示)→最终到达驱动轮(未图示)。
此刻,MG2第二电机转子9通过上述换挡传动路线,越过变速箱输入轴15的功率路线,直接向拖拉机中央传动主动齿轮22提供负载功率;根据差速机构受力原理,此时右半轴齿轮14仍然有与MG1第一电机成比例的扭矩存在;MG1第一电机根据中央传动主动齿轮22的实时转速信号及目标挡位信号,根据VCU(整车控制器未绘示)发出的指令进入卸载状态→第二电机状态→转速跟踪调速模式,通过对左半轴齿轮12转速的调节,调整变速箱输入轴15的转速达到同步脱挡的转速范围,TCU(变速控制器未绘示)对换挡执行机构发出指令信号,换挡执行器脱挡,本结构脱挡过程需要第一电机MG1主动调速脱挡,原因在于第一电机转动惯量大,同步器摘挡困难。
在挂挡状态下,此时MG2第二电机转子9仍然在原功率状态下工作,MG1第一电机转子7根据目标挡位的转速要求,通过调整MG1第一电机转速来调整变速箱输入轴15的转速,达到目标挡位同步器的同步转速要求,换挡执行机构由空挡位置执行挂挡动作。挂挡完成,MG1第一电机转子7卸载进入发电状态,动力换挡离合器(C1)输出轴27分离,动力传递离合器(C2)输出轴26结合,第二电机转子9转换到正常行驶功率路线,经过相关齿轮传递功率到变速箱输入轴15,并与变速箱输入轴15的机械分流功率汇流输出。
所有挡位换挡过程相同。行驶换挡过程中,发动机油门开度不变,利用MG1第一电机快速响应的转速变化,调整变速箱输入轴15的转速,达到同步器换挡要求。由于差速器与发动机转速、扭矩解耦(无关系)的特点,传动***可以取消发动机输出端的离合器。
在一些实施方式中,本发明的串联双电机差速功率分流的无级变速传动***还具有爬行与缓行速度获得模式:
请继续参阅图1,在需要很低行走速度时,MG2第二电机转子9输出行走所需要的功率到变速箱输入轴15,该工况下发动机输出/差速器输入轴2通过发动机动力输出轴18向后端农机具提供绝大部分发动机功率。右半轴齿轮14与变速箱输入轴15连接,车辆行驶速度由右半轴齿轮14的转速控制,通过调整MG1第一电机转子7到比较高的转速可以降低右半轴齿轮14的转速,控制车辆行驶速度到接近于0-0.1km/h的稳定状态,从而实现爬行与缓行速度获得模式。
在一些实施方式中,本发明的串联双电机差速功率分流的无级变速传动***还具有倒挡模式:
请继续参阅图1,在倒挡模式下,电机控制器输入反向电压、电流,控制MG2第二电机转子9反向旋转,MG2第二电机的反向功率通过第二电机空心输出轴11→第二电机输出主动齿轮32(Z1)→第二电机输出从动齿轮30(Z2)→第一/动力传递离合器(C1/C2)输入轴31→动力传递离合器(C2)输出轴26→离合器输出主动齿轮25(Zm)→离合器输出从动齿轮24(Zn)传递到变速箱输入轴15,并通过变速箱传递到中央传动从动齿轮21输出倒车功率。倒挡模式下,MG1第一电机转子7发电转速范围达到最高范围,从而实现倒挡模式。
在一些实施方式中,本发明的串联双电机差速功率分流的无级变速传动***还具有起步助力模式:
请继续参阅图1,当拖拉机需要重负荷起步时,传动***短期处于混合动力状态下,发动机1分流的机械功率通过右半轴齿轮14输出到变速箱输入轴15;第二电机MG2助力时处于额定功率与峰值功率的状态之间,助力功率大小,取决于操控者油门开度区间;此时第二电机MG2的功率来自车辆的蓄电池,通过路线MG2第二电机转子9→第二电机空心输出轴11→第二电机输出主动齿轮32(Z1)→第二电机输出从动齿轮30(Z2)→第一/动力传递离合器(C1/C2)输入轴31→动力传递离合器(C2)输出轴26→离合器输出主动齿轮25(Zm)→离合器输出从动齿轮24(Zn)传递到变速箱输入轴15;此时变速箱输入轴15并入两股功率,一股为主要由蓄电池供电的MG2第二电机的额定功率,另一股是几乎全部的发动机1的额定功率,其中第二电机MG2峰值功率的设计值基本等于发动机1的额定功率值,那么两股功率之和便大于起步加速时所需的功率,起步加速功率一般为发动机1的额定功率的1.5-1.8倍,这样可以大幅减小对发动机低速起步的能力要求,减少了整车加速起步距离,减小了未作业土地面积。
如图2所示,图2是根据本发明一实施方式的无级变速传动***的电机控制器的电功率转换模块示意图。在一些实施方式中,本发明的发动机(ICE)动力经差速器机构功率分流产生一定比例发动机动力,直接传递给变速传动系;另一部分发动机动力通过第一电机→AC/DC整流→DC/AC逆变→第二电机→变速传动系→负载;正常作业情况下,第一电机的电能全部传给第二电机转化为机械能,与直接发动机功率合流传给负载;储能装置的能量仅用来提供换挡时与整机加速时第二电机需要的瞬时功率;电力转换模块***根据储能装置的SOC荷值(电量水平),发出对储能装置充电的即时指令,维护储能装置SOC荷值满足换挡与起步加速的能量存储量。
上述实施例仅以拖拉机为例,但本发明并不以此为限,道路及非道路车辆均可适用。
综上所述,本发明的串联双电机差速功率分流的无级变速传动***具有以下优点:
1.发动机功率通过差速器及两个电机的独立作用,分流成两条功率路线,一条是机械功率路线,一条是机-电-机功率路线,通过功率分流、汇流原理,实现传动系传动比的连续无级变化即CVT传动系;由于CVT传动系可以实现发动机扭矩、速度与整车牵引力、速度的完全解耦,即独立不相关,本传动系可以在满足车辆需求功率的条件下,保持发动机稳定运转在一个低油耗、低排放的理想设计区间,达到整车省油、减低排放的目标。
2.本方案无级变速***(CVT)采用串联共用定子壳体双电机结构,共用定子壳体双电机可以共用转子轴向空间,共用电机MG1/MG2冷却水道,共用功率线缆空间,电机集成化程度高,减小了同等功率下的电机总体积,最大程度的利用了传动系的轴向空间。
3.本方案功率分流装置采用双电机加差速器方式,有别于液压功率分流方案(HMCVT)的柱塞泵/马达传动系,电机性能上:0到大转速、大扭矩的响应速度比液压泵***快2-3倍,速度控制精准度优于液压泵/马达***,使用维护费用上:电机维护保养简单,使用可靠,不会产生运转污染,液压泵与马达使用净洁度要求非常高,保养维修费用很高。成本及采购:永磁同步电机同等功率成本是液压泵/马达的一半左右,本地生产商已经完全掌握了电机的研发生产技术。
4.本方案利用双电机及独立的功率传递路线,实现了所有变速箱挡位的自动换挡;采用了定轴齿轮变速箱与独立换挡路线结合,不同于传统液压(HMCVT)多排差速机构及必须采用的湿式离合器或制动器,大幅减少了制造装配难度,大幅减少了同等挡位下的零部件数量,降低了制造成本;提高了产品的设计可靠度,降低了产品的使用维护费用。
5. 本方案利用双电机及功率分流传递路线,充分发挥了第二电机峰值功率是额定功率2倍以上的特点,设计功率电池及功率电路保证MG2峰值功率的短期释放,减少了MG2电机的体积,满足了车辆动力不间断换挡功率的要求,同时在起步加速模式下,采用混合动力模式,增加整机功率1.5-1.8倍,大大减少了起步加速距离,这表明在同等农田面积下增加了被作业土地面积的比例,增加了作物产量。该混合动力模式也可以应用在拖拉机短期越障及克服短期阻力上,这取决于控制程序设置。传统液压(HMCVT)加多排差速机构传动系,目前不能产生本方案的混合功率的功能,起步加速时间长。
6.本方案(EMCVT)可以实现拖拉机行走***速度独立于发动机动力输出轴的转速,从而可以与被驱动的农机具寻找到理论最佳速度匹配点,提高作业效率,降低油耗、排放。由于永磁交流电机的低速大转矩特性,本方案可以实现超低速爬行功能,在0-0.1km/h的行驶速度范围内稳定工作,并通过动力输出轴(17)输出绝大部分发动机功率,用于开沟等特殊作业。
7.本方案(EMCVT) 不需要在变速箱内设置倒挡,依靠第二电机MG2(8)(9)的反向旋转,可以实现0-Vmax km/h的设计逆行速度,满足拖拉机各种作业要求。
8.本方案(EMCVT)主要关键零部件,大功率永磁同步电机及电机控制器,高功率放电电池等技术与产品,本地厂商完全掌握并大规模生产,本地化采购渠道宽阔。由于电机及控制器的高可靠性及低成本,本传动系的制造、使用维护成本低于上述由液压元件组成的HMCVT变速***。
9.本方案(EMCVT)实现了田间作业行驶自动化,大幅降低了员工的劳动强度,提高了作业效率与质量。
10.本方案(EMCVT)配有大功率第一电机MG1,通过标准化输出接口,向外输出规定电压、频率的电功率,为需要电功率的作业机具提供电功率,扩大了配备本方案的整机作业范围。
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。

Claims (11)

1.一种串联双电机差速功率分流的无级变速传动***,其设置于发动机的动力输出端,其特征在于,所述无级变速传动***包括发动机输出/差速器输入轴、第一电机、第二电机、电机控制器、功率分流装置、离合器、变速箱、发动机动力输出轴以及蓄电池;
其中所述第一电机和所述第二电机串连布置,所述发动机输出/差速器输入轴将所述发动机的动力传递给所述第一电机发电,同时所述发动机输出/差速器输入轴通过所述功率分流装置、所述离合器以及所述变速箱向外输出动力形成第一功率路径;所述第一电机通过所述电机控制器向所述第二电机和所述蓄电池供电,所述第二电机通过所述功率分流装置、所述离合器以及所述变速箱向外输出动力形成第二功率路径;
所述功率分流装置包括左半轴齿轮、差速器行星架及右半轴齿轮;
所述第一电机包括第一电机空心输入轴、第一电机转子及第一电机定子,所述第一电机转子与所述第一电机空心输入轴机械连接,且所述第一电机空心输入轴与所述左半轴齿轮连接,用以通过所述发动机的动力使所述第一电机转子发电;
所述第二电机包括第二电机空心输出轴、第二电机转子及第二电机定子,所述第二电机转子与所述第二电机空心输出轴机械连接,并通过所述第二电机空心输出轴单独输出第二电机功率;
所述第一电机定子和所述第二电机定子安装在电机定子共用壳体中;
在无级变速行驶状态下,所述第一电机始终处于发电状态;
所述无级变速传动***还包括功率汇流模式、无级变速模式、换挡模式、爬行与缓行模式、倒挡模式以及起步助力模式。
2.如权利要求1所述的串联双电机差速功率分流的无级变速传动***,其特征在于,所述发动机输出/差速器输入轴从所述第一电机空心输入轴内通过,所述第一电机空心输入轴又从所述第二电机空心输出轴内通过,所述发动机输出/差速器输入轴、所述第一电机空心输入轴、所述第二电机空心输出轴为三轴同轴嵌套结构,所述发动机输出/差速器输入轴穿过所述第一电机空心输入轴与所述差速器行星架连接,同时所述发动机动力输出轴与所述差速器行星架连接,用以输出发动机动力。
3.如权利要求2所述的串联双电机差速功率分流的无级变速传动***,其特征在于,所述变速箱包括:
变速箱输入轴,其与所述右半轴齿轮固定连接,用以向所述变速箱输入动力;
变速箱同步器和变速箱齿轮组,其与所述变速箱输入轴构成定轴式4-6挡变速箱;以及
中央传动主动齿轮,其与所述变速箱齿轮组机械连接,所述发动机输出/差速器输入轴的转速经所述变速箱变速后,由所述中央传动主动齿轮传递给中央传动从动齿轮,再经中央传动差速器半轴齿轮/半轴向外输出动力。
4.如权利要求3所述的串联双电机差速功率分流的无级变速传动***,其特征在于,还包括:
第二电机输出主动齿轮,其与所述第二电机空心输出轴固定连接;
第二电机输出从动齿轮,其与离合器输入轴固定连接,并与所述第二电机输出主动齿轮啮合;
动力换挡主动齿轮,其与动力换挡离合器输出轴固定连接;
动力换挡从动齿轮,其与动力换挡传动轴固定连接,并与所述动力换挡主动齿轮啮合;
动力换挡传动齿轮,其与动力换挡传动轴固定连接,并与所述变速箱齿轮组机械连接;
离合器输出主动齿轮,其与动力传递离合器输出轴固定连接;以及
离合器输出从动齿轮,其与所述变速箱输入轴固定连接,并与所述离合器输出主动齿轮啮合。
5.如权利要求4所述的串联双电机差速功率分流的无级变速传动***,其特征在于,所述发动机的机械功率通过所述发动机输出/差速器输入轴输入到所述功率分流装置,所述差速器行星架将所述机械功率进行分流;所述第一功率路径为通过所述差速器行星架分配到所述右半轴齿轮直接输出到所述变速箱输入轴;所述第二功率路径为通过所述差速器行星架分配给所述左半轴齿轮,并经所述第一电机空心输入轴传给所述第一电机转子发电转化成电功率,所述电功率经所述电机控制器调压、调频后,直接传给所述第二电机转化为机械能,所述机械能经过所述第二电机空心输出轴输出到所述第二电机输出主动齿轮、所述第二电机输出从动齿轮,并传递到所述离合器输入轴上。
6.如权利要求4所述的串联双电机差速功率分流的无级变速传动***,其特征在于,所述功率汇流模式包括:在无级变速模式下,动力传递离合器结合,动力换挡离合器分离,所述第二电机的电功率通过离合器输入轴、所述动力传递离合器输出轴、所述离合器输出主动齿轮、所述离合器输出从动齿轮传递给所述变速箱输入轴,并与所述右半轴齿轮分流的一部分所述发动机的机械功率在所述变速箱输入轴处汇合。
7.如权利要求4所述的串联双电机差速功率分流的无级变速传动***,其特征在于,所述无级变速模式包括:在某一挡位下,所述右半轴齿轮的转速通过所述离合器、所述变速箱的传动***与所述中央传动从动齿轮成固定线性正比关系;所述右半轴齿轮的转速在所述功率分流装置中与所述左半轴齿轮的转速成线性反比关系;当所述发动机的转速不变时,所述发动机输出/差速器输入轴与所述差速器行星架连接,所述第一电机空心输入轴与所述左半轴齿轮连接,通过所述左半轴齿轮的转速变化,能够实现所述第一电机的功率变化,所述第一电机的功率变化经过所述电机控制器的转换/控制电流、电压、频率后,输出给所述第二电机电能,使所述第二电机的速度与所述变速箱输入轴的转速相匹配。
8.如权利要求4所述的串联双电机差速功率分流的无级变速传动***,其特征在于,所述换挡模式包括:当动力传递离合器分离,动力换挡离合器结合,所述第二电机转子由所述电机控制器调整转速与换挡时刻对应挡位下的所述中央传动主动齿轮的转速相匹配,所述第二电机的功率经所述第二电机空心输出轴、所述第二电机输出主动齿轮、所述第二电机输出从动齿轮、所述离合器输入轴、所述动力换挡离合器输出轴、所述动力换挡主动齿轮、所述动力换挡从动齿轮、所述动力换挡传动轴、所述动力换挡传动齿轮、所述齿轮组中对应的挡位齿轮、所述中央传动主动齿轮、所述中央传动从动齿轮至末端传动,最终到达驱动轮。
9.如权利要求4所述的串联双电机差速功率分流的无级变速传动***,其特征在于,所述爬行与缓行模式包括:当需要低速行驶时,所述第二电机转子输出的行走所需要的功率到达所述变速箱输入轴,此时所述发动机输出/差速器输入轴通过所述发动机动力输出轴向后端部件提供其所需的发动机功率;同时所述右半轴齿轮与所述变速箱输入轴连接,车辆的行驶速度由所述右半轴齿轮的转速控制,通过将所述第一电机转子调整到高转速能够降低所述右半轴齿轮的转速。
10.如权利要求4所述的串联双电机差速功率分流的无级变速传动***,其特征在于,所述倒挡模式包括:当需要倒车时,所述电机控制器输入反向电压、电流,控制所述第二电机转子反向旋转,所述第二电机转子的反向功率通过所述第二电机空心输出轴、所述第二电机输出主动齿轮、所述第二电机输出从动齿轮、所述离合器输入轴、所述动力传递离合器输出轴、所述离合器输出主动齿轮、离合器输出从动齿轮传递到所述变速箱输入轴,并通过所述变速箱齿轮组传递到所述中央传动从动齿轮输出倒车功率。
11.如权利要求4所述的串联双电机差速功率分流的无级变速传动***,其特征在于,所述起步助力模式包括:当车辆需要重负荷起步时,所述无级变速传动***短期处于混合动力状态,此时所述发动机分流的机械功率通过所述右半轴齿轮输出到所述变速箱输入轴;同时所述电机控制器控制所述蓄电池通过路线向所述第二电机供电,电能通过所述第二电机转子转换为机械能,由所述第二电机空心输出轴、所述第二电机输出主动齿轮、所述第二电机输出从动齿轮、所述离合器输入轴、所述动力传递离合器输出轴、所述离合器输出主动齿轮、所述离合器输出从动齿轮传递到所述变速箱输入轴。
CN201910623256.0A 2019-07-11 2019-07-11 串联双电机差速功率分流的无级变速传动*** Active CN110303865B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910623256.0A CN110303865B (zh) 2019-07-11 2019-07-11 串联双电机差速功率分流的无级变速传动***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910623256.0A CN110303865B (zh) 2019-07-11 2019-07-11 串联双电机差速功率分流的无级变速传动***

Publications (2)

Publication Number Publication Date
CN110303865A CN110303865A (zh) 2019-10-08
CN110303865B true CN110303865B (zh) 2024-03-12

Family

ID=68080948

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910623256.0A Active CN110303865B (zh) 2019-07-11 2019-07-11 串联双电机差速功率分流的无级变速传动***

Country Status (1)

Country Link
CN (1) CN110303865B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005043953A1 (de) * 2005-09-15 2007-03-22 Voith Turbo Gmbh & Co. Kg Elektrisch mechanisches Leistungsverzweigungsgetriebe
KR20150052702A (ko) * 2013-11-06 2015-05-14 엘에스엠트론 주식회사 유성기어열 장치를 이용하는 무단변속기 및 무단변속기 동력제어방법
CN205326781U (zh) * 2016-01-08 2016-06-22 中国第一汽车股份有限公司 一种电动汽车动力***
CN210101297U (zh) * 2019-07-11 2020-02-21 广西玉柴机器股份有限公司 串联双电机差速功率分流的无级变速传动***

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003035421A1 (en) * 2001-10-22 2003-05-01 The Timken Company Electro-mechanical infinitely variable transmission
AU2007234883A1 (en) * 2006-04-03 2007-10-18 Bluwav Systems, Llc Vehicle power unit designed as retrofittable axle comprising motor, battery and suspension
US7967711B2 (en) * 2006-11-28 2011-06-28 GM Global Technology Operations LLC Highly configurable hybrid powertrain and control system therefor
US8523734B2 (en) * 2008-11-07 2013-09-03 Ricardo, Inc. Multi-mode hybrid transmission
CN101920652B (zh) * 2009-06-17 2014-06-25 上海捷能汽车技术有限公司 一种车用串/并联双电机多离合器混合动力驱动单元
CN104276050B (zh) * 2014-01-30 2015-08-26 比亚迪股份有限公司 车辆及其的制动回馈控制方法
CN108215761A (zh) * 2016-12-12 2018-06-29 郑州宇通客车股份有限公司 车辆、混联式混合动力***及混合动力***控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005043953A1 (de) * 2005-09-15 2007-03-22 Voith Turbo Gmbh & Co. Kg Elektrisch mechanisches Leistungsverzweigungsgetriebe
KR20150052702A (ko) * 2013-11-06 2015-05-14 엘에스엠트론 주식회사 유성기어열 장치를 이용하는 무단변속기 및 무단변속기 동력제어방법
CN205326781U (zh) * 2016-01-08 2016-06-22 中国第一汽车股份有限公司 一种电动汽车动力***
CN210101297U (zh) * 2019-07-11 2020-02-21 广西玉柴机器股份有限公司 串联双电机差速功率分流的无级变速传动***

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
液压机械无级变速器设计方案分析;朱镇;高翔;曹磊磊;潘道远;朱彧;机械传动;20151215(第12期);全文 *
行星齿轮功率分流式无级变速器的设计研究;罗绍新;王芙蓉;;机械设计与制造;20100408(第04期);全文 *

Also Published As

Publication number Publication date
CN110303865A (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
WO2022206059A1 (zh) 一种后挂电pto结构的电驱式拖拉机cvt动力总成
CN110962572B (zh) 混合动力驱动***及车辆
CN112937281A (zh) 多模式输出有中间轴的无级变速传动***
CN210509377U (zh) 串联双电机全域自动换挡传动***
CN110303862B (zh) 串联双电机行星功率分流的无级变速传动***
CN110303861B (zh) 并联双电机差速功率分流的无级变速传动***
CN210363337U (zh) 串联双电机行星功率分流的无级变速传动***
CN210101297U (zh) 串联双电机差速功率分流的无级变速传动***
CN210363336U (zh) 并联双电机差速功率分流的无级变速传动***
CN214775359U (zh) 多模式输出有中间轴的无级变速传动***
CN116968542A (zh) 一种emcvt太阳轮和行星轮架输入齿圈输出无级变速传动***
CN110303865B (zh) 串联双电机差速功率分流的无级变速传动***
CN110259896A (zh) 并联双电机行星功率分流的无级变速传动***
CN110307306B (zh) 混合动力串联双电机的动力换挡变速箱***
CN210164858U (zh) 并联双电机全域自动换挡传动***
CN211139014U (zh) 双转子串联电机功率分流分段的无级变速传动***
CN210371860U (zh) 并联双电机行星功率分流的无级变速传动***
CN110303863A (zh) 双电机串联的全域无级变速传动***
CN214607075U (zh) 双离合器分汇流的齿圈输出无级变速传动***
CN214607076U (zh) 双离合器差动分汇流的无级变速传动***
CN215153909U (zh) 多模式输出无中间轴的无级变速传动***
CN210706853U (zh) 双电机并联的全域无级变速传动***
CN214450249U (zh) 双模式功率分汇流的无级变速传动***
CN110230670B (zh) 并联双电机全域自动换挡传动***
CN210416190U (zh) 双电机串联的全域无级变速传动***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Yang Zhenzhong

Inventor after: Peng Tianquan

Inventor after: Cao Shaohua

Inventor before: Yang Zhenzhong

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant