CN110146075A - 一种增益补偿自适应滤波的sins/dvl组合定位方法 - Google Patents

一种增益补偿自适应滤波的sins/dvl组合定位方法 Download PDF

Info

Publication number
CN110146075A
CN110146075A CN201910488837.8A CN201910488837A CN110146075A CN 110146075 A CN110146075 A CN 110146075A CN 201910488837 A CN201910488837 A CN 201910488837A CN 110146075 A CN110146075 A CN 110146075A
Authority
CN
China
Prior art keywords
error
filtering
sins
dvl
moment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910488837.8A
Other languages
English (en)
Other versions
CN110146075B (zh
Inventor
杨一鹏
闫锋刚
罗清华
焉晓贞
彭宇
彭喜元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology Weihai
Original Assignee
Harbin Institute of Technology Weihai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology Weihai filed Critical Harbin Institute of Technology Weihai
Priority to CN201910488837.8A priority Critical patent/CN110146075B/zh
Publication of CN110146075A publication Critical patent/CN110146075A/zh
Application granted granted Critical
Publication of CN110146075B publication Critical patent/CN110146075B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/86Combinations of sonar systems with lidar systems; Combinations of sonar systems with systems not using wave reflection

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Acoustics & Sound (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)

Abstract

一种增益补偿自适应滤波的SINS/DVL组合定位方法,涉及高精度SINS/DVL组合定位。本发明是为了有效解决由于传统SINS/DVL组合导航的滤波算法灵活性不足的影响,导致定位精度较低的问题。本发明所述的一种增益补偿自适应滤波的SINS/DVL组合定位方法,首先基于捷联惯导***和多普勒计程仪传感器的信息,获取相应状态初值和观测值;然后建立基于组合导航误差模型对应的***方程和观测方程,用增益补偿改进自适应滤波算法对误差进行校正,并获取校正后目标的速度和位置误差信息;最后将获得的误差信息和捷联惯导与多普勒计程仪的观测信息进行融合,得出高精度的定位结果。

Description

一种增益补偿自适应滤波的SINS/DVL组合定位方法
技术领域
本发明涉及高精度的水下定位技术
背景技术
在实际的水下定位过程中,由于水下环境的复杂多变,使得捷联惯导与多普勒计程仪组合定位(SINS/DVL)***的***噪声和量测噪声的统计特性往往具有一定的时变性。为了对卡尔曼滤波算法进行合理的改进使其对噪声统计特性的变化具有一定的自适应能力,从而来进一步提高滤波精度,达到高精度的定位。本发明采用滤波增益补偿方法对改进自适应滤波算法进行优化,采用优化后的滤波算法对定位***误差发散的情况进行抑制,从而实现提高定位精度的目的。
发明内容
本发明的目的是为了解决由于复杂水下环境下SINS/DVL组合定位方法***噪声时变特性,导致定位精度较低的问题,提出一种增益补偿自适应滤波的SINS/DVL组合定位方法。
本发明所述的一种增益补偿自适应滤波的SINS/DVL组合定位方法包括以下步骤:
步骤一、***建立SINS/DVL组合定位误差模型状态变量X=[δvE δvN α β γ δL δλ εE εN εU δvd δΔ δC]T,其中δvE和δvN为东、北向速度误差,α、β、γ为平台失准角,δL和δλ为经度误差和纬度误差,εE、εN、εU为东、北、天方向陀螺漂移,δvd为多普勒测量速度偏移误差,δΔ为偏流角误差,δC为刻度系数误差;
步骤二、***通过惯性导航组件中的陀螺仪敏感载体的三轴角速度信息和加速度计测得三轴(东、北、天)加速度信息aE、aN、aH,由多普勒计程仪获得速度vd、偏流角Δ和姿态等导航信息;
步骤三、***将这三个方向的加速度分量aE、aN、aH带入公式(1)分别进行积分,即可得到载体沿这三个方向的速度分量vE、vN、vH。再将三个速度分量带入公式(2)进行积分得到载体的经度L、纬度λ和深度d,其中R为地球半径,t0为运动初始时刻,tk为运动过程中某时刻;
***将这些信息带入公式(3)~(15)中求出误差模型对应的各状态变量X=[δvEδvN α β γ δL δλ εE εN εU δvd δΔ δC]T
其中,Ω为陀螺振动频率为常量,g为重力加速度为常量,ΔaN,ΔaE为加速度误差;
东向和北向速度误差公式:
平台失准角:
位置误差:
陀螺漂移:
εE=-βEεE+wE (10)
εN=-βNεN+wN (11)
εU=-βUεU+wU (12)
为陀螺仪在东、北、天方向的误差相关时间,wE
wN、wU为高斯白噪声;
多普勒计程仪的速度、偏流角和刻度误差:
δvd=-βdδvd+wd (13)
δΔ=-βΔδΔ+wΔ (14)
δC=0 (15)
其中为速度偏移误差和偏流角误差的相关时间,wd、wΔ为高斯白噪声;
步骤四、***建立***状态方程和***量测方程,如公式(16)和式(21)所示:
状态方程描述为:
式中:
WSINS=[0 0 aE aN 0 0 0 wE wN wU wd wΔ 0]T (17)
根据式(3)~(15)建立状态传递阵FSINS/DVL
其中:
有:
对于F6×6有:
***量测方程为:
对于HSINS/DVL和VSINS/DVL有:
VSINS/DVL=[vE vN]T (23)
这里***噪声方差阵:
量测噪声方差阵:
步骤五、***建立滤波增益改进自适应滤波算法,并对滤波增益改进自适应卡尔曼滤波算法***的状态方程和量测方程进行描述,如公式(26)、(27):
状态方程描述为:
Xk=FkXk-1+GWk (26)
***量测方程为:
其中,Xk为k时刻的状态变量值;Xk-1为k-1时刻的状态变量;F为作用在Xk-1上的状态变换系数;Wk为k时刻的状态噪声值;G为作用在上Wk的系数;Hk为观测模型系数,把真实状态空间映射成观测空间;Zk为k时刻的观测值,由捷联惯导的东向、北向速度误差和多普勒计程仪东向北向速度误差的差构成;Vk为k时刻的观测噪声值;
步骤六、将Fk,Gk,Wk,Hk,Vk,以及初始的状态变量X带入***的状态方程和量测方程进行一步预测,求出k时刻预测的量测值 为k时刻量测值的误差;
步骤七、***根据稳定性判据,判断若成立则***发散,执行步骤八,采用增益补偿自适应滤波;若不成立则***收敛,执行步骤九,采用增益补偿强跟踪卡尔曼滤波;
步骤八、***将对应参数及量代入公式(28)~(37)中进行计算,
其中,为k时刻的状态变量值;为由k-1时刻的状态变量所得到的k时刻的预测值;Fk,k-1为作用在上的状态变换系数;Kk为作用在上的滤波增益补偿卡尔曼系数;Hk为观测模型系数,把真实状态空间映射成观测空间;Zk为k时刻的观测值,k时刻预测的量测值为Pk,k-1为先验估计误差协方差值;Pk为后验估计误差协方差值;在(28)~(33)式子中分别由时变噪声估值方程所计算得式(34)~(37):
实现增益补偿自适应滤波,得到下一时刻状态变量估计值执行步骤十。
步骤九、***将对应参数及参量代入公式(38)~(46)中进行计算:
λk+1=diag[λ1(k+1)2(k+1),…,λm(k+1)] (41)
实现增益补偿强跟踪卡尔曼滤波,得到下一时刻状态变量估计值执行步骤十;
步骤十、***更新变换k=k+1,将得到的状态变量估计值记为新的状态变量值
步骤十一、***判断k是否等于n,如果是,则执行步骤十二,否则执行步骤六;
步骤十二、***得到生成的***状态变量序列 输出的最终结果即为当前时刻经过滤波校正后的状态结果。包含是误差量的校正结果,再结合当前时刻SINS/DVL组合定位***的观测值Yn=[vEn vNn Lnλn vdn]T,得到校正后的航行器东向、北向速度和经纬度信息以及多普勒计程仪的速度信息其中,
步骤十三、***判断SINS/DVL组合定位任务是否完成,如果是,执行步骤十四,否则执行步骤二;
步骤十四、***结束增益补偿自适应滤波的SINS/DVL组合定位任务。
附图说明
图1为一种增益补偿自适应滤波的SINS/DVL组合定位方法的流程图。
具体实施方式
具体实施方式一
步骤一、***建立SINS/DVL组合定位误差模型状态变量X=[δvE δvN α β γ δL δλ εE εN εU δvd δΔ δC]T,其中δvE和δvN为东、北向速度误差,α、β、γ为平台失准角,δL和δλ为经度误差和纬度误差,εE、εN、εU为东、北、天方向陀螺漂移,δvd为多普勒测量速度偏移误差,δΔ为偏流角误差,δC为刻度系数误差;
步骤二、***通过惯性导航组件中的陀螺仪敏感载体的三轴角速度信息和加速度计测得三轴(东、北、天)加速度信息aE、aN、aH,由多普勒计程仪获得速度vd、偏流角Δ和姿态等导航信息;
步骤三、***将这三个方向的加速度分量aE、aN、aH带入公式(1)分别进行积分,即可得到载体沿这三个方向的速度分量vE、vN、vH。再将三个速度分量带入公式(2)进行积分得到载体的经度L、纬度λ和深度d,其中R为地球半径,t0为运动初始时刻,tk为运动过程中某时刻;
***将这些信息带入公式(3)~(15)中求出误差模型对应的各状态变量X=[δvEδvN α β γ δL δλ εE εN εU δvd δΔ δC]T
其中,Ω为陀螺振动频率为常量,g为重力加速度为常量,ΔaN,ΔaE为加速度误差;
东向和北向速度误差公式:
平台失准角:
位置误差:
陀螺漂移:
εE=-βEεE+wE (10)
εN=-βNεN+wN (11)
εU=-βUεU+wU (12)
为陀螺仪在东、北、天方向的误差相关时间,wE
wN、wU为高斯白噪声;
多普勒计程仪的速度、偏流角和刻度误差:
δvd=-βdδvd+wd (13)
δΔ=-βΔδΔ+wΔ (14)
δC=0 (15)
其中为速度偏移误差和偏流角误差的相关时间,wd、wΔ为高斯白噪声;
步骤四、***建立***状态方程和***量测方程,如公式(16)和式(21)所示:
状态方程描述为:
式中:
WSINS=[0 0 aE aN 0 0 0 wE wN wU wd wΔ 0]T (17)
根据式(3)~(15)建立状态传递阵FSINS/DVL
其中:
有:
对于F6×6有:
***量测方程为:
对于HSINS/DVL和VSINS/DVL有:
VSINS/DVL=[vE vN]T (23)
这里***噪声方差阵:
量测噪声方差阵:
步骤五、***建立滤波增益改进自适应滤波算法,并对滤波增益改进自适应卡尔曼滤波算法***的状态方程和量测方程进行描述,如公式(26)、(27):
状态方程描述为:
Xk=FkXk-1+GWk (26)
***量测方程为:
其中,Xk为k时刻的状态变量值;Xk-1为k-1时刻的状态变量;F为作用在Xk-1上的状态变换系数;Wk为k时刻的状态噪声值;G为作用在上Wk的系数;Hk为观测模型系数,把真实状态空间映射成观测空间;Zk为k时刻的观测值,由捷联惯导的东向、北向速度误差和多普勒计程仪东向北向速度误差的差构成;Vk为k时刻的观测噪声值;
步骤六、将Fk,Gk,Wk,Hk,Vk,以及初始的状态变量X带入***的状态方程和量测方程进行一步预测,求出k时刻预测的量测值 为k时刻量测值的误差;
步骤七、***根据稳定性判据,判断若成立则***发散,执行步骤八,采用增益补偿自适应滤波;若不成立则***收敛,执行步骤九,采用增益补偿强跟踪卡尔曼滤波;
步骤八、***将对应参数及量代入公式(28)~(37)中进行计算,
其中,为k时刻的状态变量值;为由k-1时刻的状态变量所得到的k时刻的预测值;Fk,k-1为作用在上的状态变换系数;Kk为作用在上的滤波增益补偿卡尔曼系数;Hk为观测模型系数,把真实状态空间映射成观测空间;Zk为k时刻的观测值,k时刻预测的量测值为Pk,k-1为先验估计误差协方差值;Pk为后验估计误差协方差值;在(28)~(33)式子中分别由时变噪声估值方程所计算得式(34)~(37):
实现增益补偿自适应滤波,得到下一时刻状态变量估计值执行步骤十。
步骤九、***将对应参数及参量代入公式(38)~(46)中进行计算:
λk+1=diag[λ1(k+1)2(k+1),…,λm(k+1)] (41)
实现增益补偿强跟踪卡尔曼滤波,得到下一时刻状态变量估计值执行步骤十;
步骤十、***更新变换k=k+1,将得到的状态变量估计值记为新的状态变量值
步骤十一、***判断k是否等于n,如果是,则执行步骤十二,否则执行步骤六;
步骤十二、***得到生成的***状态变量序列 输出的最终结果即为当前时刻经过滤波校正后的状态结果。包含是误差量的校正结果,再结合当前时刻SINS/DVL组合定位***的观测值Yn=[vEn vNn Lnλn vdn]T,得到校正后的航行器东向、北向速度和经纬度信息以及多普勒计程仪的速度信息其中,
步骤十三、***判断SINS/DVL组合定位任务是否完成,如果是,执行步骤十四,否则执行步骤二;
步骤十四、***结束增益补偿自适应滤波的SINS/DVL组合定位任务。
具体实施方案二,本实施方式是对具体实施方式一所述的一种增益补偿自适应滤波的SINS/DVL组合定位方法的步骤七进一步说明,其特征在于判断滤波是否发散的判据,根据滤波估计的误差与期望误差的大小关系来判断。
具体实施方案三,本实施方式是对具体实施方式一所述的一种增益补偿自适应滤波的SINS/DVL组合定位方法的做出进一步说明,其特征在于采用的滤波增益补偿算法,针对水下海流的外部干扰或者水下航行器的航速航向发生突变,会使得滤波过程得估计值在跟踪水下航行器得真实状态时有轻微的延迟,从而使得导航精度和质量下降的问题,可以实现快速对***状态进行实时跟踪并减小误差的积累速度。
具体实施方案四,本实施方式是对具体实施方式一所述的一种增益补偿自适应滤波的SINS/DVL组合定位方法做出进一步说明,其特征在于采用改进自适应卡尔曼滤波,既可以获得既能保证滤波精度,又可以有效阻止滤波过程发散。
具体实施方案五,本实施方式是对具体实施方式一所述的一种增益补偿自适应滤波的SINS/DVL组合定位方法做出进一步说明,其特征在于采用增益补偿改进自适应滤波算法,将增益补偿算法和改进自适应卡尔曼算法融合,融合算法的精确度相比于融合之前的算法要高出一个数量级。

Claims (5)

1.一种增益补偿自适应滤波的SINS/DVL组合定位方法,其特征在于所述方法包括以下步骤:
步骤一、***建立SINS/DVL组合定位误差模型状态变量X=[δvE δvN α β γ δL δλ εEεN εU δvd δΔ δC]T,其中δvE和δvN为东、北向速度误差,α、β、γ为平台失准角,δL和δλ为经度误差和纬度误差,εE、εN、εU为东、北、天方向陀螺漂移,δvd为多普勒测量速度偏移误差,δΔ为偏流角误差,δC为刻度系数误差;
步骤二、***通过惯性导航组件中的陀螺仪敏感载体的三轴角速度信息和加速度计测得三轴(东、北、天)加速度信息aE、aN、aH,由多普勒计程仪获得速度vd、偏流角Δ和姿态等导航信息;
步骤三、***将这三个方向的加速度分量aE、aN、aH带入公式(1)分别进行积分,即可得到载体沿这三个方向的速度分量vE、vN、vH。再将三个速度分量带入公式(2)进行积分得到载体的经度L、纬度λ和深度d,其中R为地球半径,t0为运动初始时刻,tk为运动过程中某时刻;
***将这些信息带入公式(3)~(15)中求出误差模型对应的各状态变量X=[δvE δvN αβ γ δL δλ εE εN εU δvd δΔ δC]T
其中,Ω为陀螺振动频率为常量,g为重力加速度为常量,ΔaN,ΔaE为加速度误差;
东向和北向速度误差公式:
平台失准角:
位置误差:
陀螺漂移:
εE=-βEεE+wE (10)
εN=-βNεN+wN (11)
εU=-βUεU+wU (12)
为陀螺仪在东、北、天方向的误差相关时间,wE、wN、wU为高斯白噪声;
多普勒计程仪的速度、偏流角和刻度误差:
δvd=-βdδvd+wd (13)
δΔ=-βΔδΔ+wΔ (14)
δC=0 (15)
其中为速度偏移误差和偏流角误差的相关时间,wd、wΔ为高斯白噪声;
步骤四、***建立***状态方程和***量测方程,如公式(16)和式(21)所示:
状态方程描述为:
式中:
WSINS=[0 0 aE aN 0 0 0 wE wN wU wd wΔ 0]T (17)
根据式(3)~(15)建立状态传递阵FSINS/DVL
其中:
有:
对于F6×6有:
***量测方程为:
对于HSINS/DVL和VSINS/DVL有:
VSINS/DVL=[vE vN]T (23)
这里***噪声方差阵:
量测噪声方差阵:
步骤五、***建立滤波增益改进自适应滤波算法,并对滤波增益改进自适应卡尔曼滤波算法***的状态方程和量测方程进行描述,如公式(26)、(27):
状态方程描述为:
Xk=FkXk-1+GWk (26)
***量测方程为:
其中,Xk为k时刻的状态变量值;Xk-1为k-1时刻的状态变量;F为作用在Xk-1上的状态变换系数;Wk为k时刻的状态噪声值;G为作用在上Wk的系数;Hk为观测模型系数,把真实状态空间映射成观测空间;Zk为k时刻的观测值,由捷联惯导的东向、北向速度误差和多普勒计程仪东向北向速度误差的差构成;Vk为k时刻的观测噪声值;
步骤六、将Fk,Gk,Wk,Hk,Vk,以及初始的状态变量X带入***的状态方程和量测方程进行一步预测,求出k时刻预测的量测值 为k时刻量测值的误差;
步骤七、***根据稳定性判据,判断若成立则***发散,执行步骤八,采用增益补偿自适应滤波;若不成立则***收敛,执行步骤九,采用增益补偿强跟踪卡尔曼滤波;
步骤八、***将对应参数及量代入公式(28)~(37)中进行计算,
其中,为k时刻的状态变量值;为由k-1时刻的状态变量所得到的k时刻的预测值;Fk,k-1为作用在上的状态变换系数;Kk为作用在上的滤波增益补偿卡尔曼系数;Hk为观测模型系数,把真实状态空间映射成观测空间;Zk为k时刻的观测值,k时刻预测的量测值为Pk,k-1为先验估计误差协方差值;Pk为后验估计误差协方差值;在(28)~(33)式子中分别由时变噪声估值方程所计算得式(34)~(37):
实现增益补偿自适应滤波,得到下一时刻状态变量估计值执行步骤十。
步骤九、***将对应参数及参量代入公式(38)~(46)中进行计算:
λk+1=diag[λ1(k+1)2(k+1),…,λm(k+1)] (41)
实现增益补偿强跟踪卡尔曼滤波,得到下一时刻状态变量估计值执行步骤十;
步骤十、***更新变换k=k+1,将得到的状态变量估计值记为新的状态变量值
步骤十一、***判断k是否等于n,如果是,则执行步骤十二,否则执行步骤六;
步骤十二、***得到生成的***状态变量序列 输出的最终结果即为当前时刻经过滤波校正后的状态结果。包含是误差量的校正结果,再结合当前时刻SINS/DVL组合定位***的观测值Yn=[vEn vNn Ln λn vdn]T,得到校正后的航行器东向、北向速度和经纬度信息以及多普勒计程仪的速度信息其中,
步骤十三、***判断SINS/DVL组合定位任务是否完成,如果是,执行步骤十四,否则执行步骤二;
步骤十四、***结束增益补偿自适应滤波的SINS/DVL组合定位任务。
2.根据权利要求1所述的一种增益补偿自适应滤波的SINS/DVL组合定位方法的步骤七进一步说明,其特征在于判断滤波是否发散的判据,根据滤波估计的误差与期望误差的大小关系来判断。
3.根据权利要求1所述的一种增益补偿自适应滤波的SINS/DVL组合定位方法的做出进一步说明,其特征在于采用的滤波增益补偿算法,针对水下海流的外部干扰或者水下航行器的航速航向发生突变,会使得滤波过程得估计值在跟踪水下航行器得真实状态时有轻微的延迟,从而使得导航精度和质量下降的问题,可以实现快速对***状态进行实时跟踪并减小误差的积累速度。
4.根据权利要求1所述的一种增益补偿自适应滤波的SINS/DVL组合定位方法做出进一步说明,其特征在于采用改进自适应卡尔曼滤波,既可以获得既能保证滤波精度,又可以有效阻止滤波过程发散。
5.根据权利要求1所述的一种增益补偿自适应滤波的SINS/DVL组合定位方法做出进一步说明,其特征在于采用增益补偿改进自适应滤波算法,将增益补偿算法和改进自适应卡尔曼算法融合,融合算法的精确度相比于融合之前的算法要高出一个数量级。
CN201910488837.8A 2019-06-06 2019-06-06 一种增益补偿自适应滤波的sins/dvl组合定位方法 Active CN110146075B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910488837.8A CN110146075B (zh) 2019-06-06 2019-06-06 一种增益补偿自适应滤波的sins/dvl组合定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910488837.8A CN110146075B (zh) 2019-06-06 2019-06-06 一种增益补偿自适应滤波的sins/dvl组合定位方法

Publications (2)

Publication Number Publication Date
CN110146075A true CN110146075A (zh) 2019-08-20
CN110146075B CN110146075B (zh) 2022-06-21

Family

ID=67590666

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910488837.8A Active CN110146075B (zh) 2019-06-06 2019-06-06 一种增益补偿自适应滤波的sins/dvl组合定位方法

Country Status (1)

Country Link
CN (1) CN110146075B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110763872A (zh) * 2019-11-21 2020-02-07 中国船舶重工集团公司第七0七研究所 一种多普勒测速仪多参数在线标定方法
CN111024064A (zh) * 2019-11-25 2020-04-17 东南大学 一种改进Sage-Husa自适应滤波的SINS/DVL组合导航方法
CN111024076A (zh) * 2019-12-30 2020-04-17 北京航空航天大学 一种基于仿生偏振的水下组合导航***
CN111504324A (zh) * 2020-04-27 2020-08-07 西北工业大学 一种噪声自适应滤波的水下组合导航方法
CN112683271A (zh) * 2020-12-17 2021-04-20 东南大学 一种考虑可观测性的水域观测平台的组合定位方法
CN112710304A (zh) * 2020-12-17 2021-04-27 西北工业大学 一种基于自适应滤波的水下自主航行器导航方法
CN112729291A (zh) * 2020-12-29 2021-04-30 东南大学 一种深潜长航潜水器sins/dvl洋流速度估计方法
CN113311463A (zh) * 2020-02-26 2021-08-27 北京三快在线科技有限公司 Gps延迟时间在线补偿方法、装置、电子设备和存储介质
CN115112154A (zh) * 2022-08-30 2022-09-27 南开大学 一种水下自主导航定位***的标定方法
CN116068540A (zh) * 2023-02-17 2023-05-05 哈尔滨工程大学 一种声学多普勒测速径向波束角校正方法
CN116165885A (zh) * 2022-11-29 2023-05-26 华东交通大学 一种高速列车的无模型自适应鲁棒控制方法及***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101393025A (zh) * 2008-11-06 2009-03-25 哈尔滨工程大学 Auv组合导航***无迹切换方法
CN102607330A (zh) * 2012-03-23 2012-07-25 东南大学 惯导***传递对准中基准信息的优化处理方法
CN103389095A (zh) * 2013-07-24 2013-11-13 哈尔滨工程大学 一种用于捷联惯性/多普勒组合导航***的自适应滤波方法
CN108828950A (zh) * 2018-07-23 2018-11-16 广东工业大学 一种自适应自抗扰控制方法、装置及设备
CN109737959A (zh) * 2019-03-20 2019-05-10 哈尔滨工程大学 一种基于联邦滤波的极区多源信息融合导航方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101393025A (zh) * 2008-11-06 2009-03-25 哈尔滨工程大学 Auv组合导航***无迹切换方法
CN102607330A (zh) * 2012-03-23 2012-07-25 东南大学 惯导***传递对准中基准信息的优化处理方法
CN103389095A (zh) * 2013-07-24 2013-11-13 哈尔滨工程大学 一种用于捷联惯性/多普勒组合导航***的自适应滤波方法
CN108828950A (zh) * 2018-07-23 2018-11-16 广东工业大学 一种自适应自抗扰控制方法、装置及设备
CN109737959A (zh) * 2019-03-20 2019-05-10 哈尔滨工程大学 一种基于联邦滤波的极区多源信息融合导航方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MIKAEL BLIKSTED LARSEN: "High Performance Doppler-Inertial Navigation - Experimental Results", 《: OCEANS 2000 MTS/IEEE CONFERENCE AND EXHIBITION. CONFERENCE PROCEEDINGS 》 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110763872A (zh) * 2019-11-21 2020-02-07 中国船舶重工集团公司第七0七研究所 一种多普勒测速仪多参数在线标定方法
CN111024064A (zh) * 2019-11-25 2020-04-17 东南大学 一种改进Sage-Husa自适应滤波的SINS/DVL组合导航方法
CN111024064B (zh) * 2019-11-25 2021-10-19 东南大学 一种改进Sage-Husa自适应滤波的SINS/DVL组合导航方法
CN111024076A (zh) * 2019-12-30 2020-04-17 北京航空航天大学 一种基于仿生偏振的水下组合导航***
CN113311463A (zh) * 2020-02-26 2021-08-27 北京三快在线科技有限公司 Gps延迟时间在线补偿方法、装置、电子设备和存储介质
CN111504324A (zh) * 2020-04-27 2020-08-07 西北工业大学 一种噪声自适应滤波的水下组合导航方法
CN111504324B (zh) * 2020-04-27 2022-07-26 西北工业大学 一种噪声自适应滤波的水下组合导航方法
CN112683271A (zh) * 2020-12-17 2021-04-20 东南大学 一种考虑可观测性的水域观测平台的组合定位方法
CN112710304A (zh) * 2020-12-17 2021-04-27 西北工业大学 一种基于自适应滤波的水下自主航行器导航方法
CN112710304B (zh) * 2020-12-17 2022-12-13 西北工业大学 一种基于自适应滤波的水下自主航行器导航方法
CN112683271B (zh) * 2020-12-17 2023-10-27 东南大学 一种考虑可观测性的水域观测平台的组合定位方法
CN112729291A (zh) * 2020-12-29 2021-04-30 东南大学 一种深潜长航潜水器sins/dvl洋流速度估计方法
CN112729291B (zh) * 2020-12-29 2022-03-04 东南大学 一种深潜长航潜水器sins/dvl洋流速度估计方法
CN115112154A (zh) * 2022-08-30 2022-09-27 南开大学 一种水下自主导航定位***的标定方法
CN115112154B (zh) * 2022-08-30 2022-11-18 南开大学 一种水下自主导航定位***的标定方法
CN116165885A (zh) * 2022-11-29 2023-05-26 华东交通大学 一种高速列车的无模型自适应鲁棒控制方法及***
CN116165885B (zh) * 2022-11-29 2023-11-14 华东交通大学 一种高速列车的无模型自适应鲁棒控制方法及***
CN116068540A (zh) * 2023-02-17 2023-05-05 哈尔滨工程大学 一种声学多普勒测速径向波束角校正方法
CN116068540B (zh) * 2023-02-17 2023-09-12 哈尔滨工程大学 一种声学多普勒测速径向波束角校正方法

Also Published As

Publication number Publication date
CN110146075B (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
CN110146075A (zh) 一种增益补偿自适应滤波的sins/dvl组合定位方法
CN110146076A (zh) 一种无逆矩阵自适应滤波的sins/dvl组合定位方法
CN112254718B (zh) 一种运动约束辅助的基于改进Sage-Husa自适应滤波的水下组合导航方法
US7778111B2 (en) Methods and systems for underwater navigation
US7142983B2 (en) Method for the processing of non-continuous atom interferometer intertial instrument measurements and continuous wide bandwidth instrument measurements with a gravity database
CN110779521A (zh) 一种多源融合的高精度定位方法与装置
CN110398257A (zh) Gps辅助的sins***快速动基座初始对准方法
CN109029454A (zh) 一种基于卡尔曼滤波的横坐标系捷联惯导***阻尼算法
US20090119016A1 (en) Vehicular present position detection apparatus and program storage medium
CN109000640A (zh) 基于离散灰色神经网络模型的车辆gnss/ins组合导航方法
JP6413946B2 (ja) 測位装置
CN103278837A (zh) 基于自适应滤波的sins/gnss多级容错组合导航方法
WO2001011318A1 (en) Vibration compensation for sensors
CN108761512A (zh) 一种弹载bds/sins深组合自适应ckf滤波方法
CN108931791A (zh) 卫惯紧组合钟差修正***和方法
CN110849360A (zh) 面向多机协同编队飞行的分布式相对导航方法
CN114877915B (zh) 一种激光陀螺惯性测量组件g敏感性误差标定装置及方法
KR101402767B1 (ko) 적응필터와 외란검출기법을 적용한 관성항법장치용 견실 급속 정렬 메커니즘
CN108279025B (zh) 一种基于重力信息的光纤陀螺罗经快速精对准方法
CN110736459A (zh) 惯性量匹配对准的角形变测量误差评估方法
RU2202102C2 (ru) Способ определения местоположения подвижных объектов и устройство для его реализации
CN106054227A (zh) 惯导辅助下的伪距差值单星高动态定位方法
CN114111792A (zh) 一种车载gnss/ins/里程计组合导航方法
Zhang Autonomous underwater vehicle navigation using an adaptive Kalman filter for sensor fusion
CN113790724B (zh) 一种基于速度阻尼的惯性/多普勒组合导航方法及***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant