CN110124706A - 碳化钛/硫化铟锌复合可见光催化剂的制备方法 - Google Patents

碳化钛/硫化铟锌复合可见光催化剂的制备方法 Download PDF

Info

Publication number
CN110124706A
CN110124706A CN201910481748.0A CN201910481748A CN110124706A CN 110124706 A CN110124706 A CN 110124706A CN 201910481748 A CN201910481748 A CN 201910481748A CN 110124706 A CN110124706 A CN 110124706A
Authority
CN
China
Prior art keywords
titanium carbide
indium sulfide
visible light
sulfide zinc
light catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910481748.0A
Other languages
English (en)
Other versions
CN110124706B (zh
Inventor
李忠玉
赵彩霞
姜海伦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201910481748.0A priority Critical patent/CN110124706B/zh
Publication of CN110124706A publication Critical patent/CN110124706A/zh
Application granted granted Critical
Publication of CN110124706B publication Critical patent/CN110124706B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J35/23
    • B01J35/39
    • B01J35/399
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Abstract

本发明涉及碳化钛/硫化铟锌复合可见光催化剂的制备方法,包括新型二维层状材料碳化钛和碳化钛/硫化铟锌复合光催化剂的制备,本发明的有益效果是:该制备方法简单,易于操作,且制备条件容易控制,所制备的碳化钛/硫化铟锌复合可见光催化剂为绿色无污染高性能催化剂,且光催化降解效率高,具有一定应用前景。

Description

碳化钛/硫化铟锌复合可见光催化剂的制备方法
技术领域
本发明属于光催化纳米材料技术领域,涉及一种碳化钛/硫化铟锌复合可见光催化剂的制备方法。
背景技术
由于全球环境污染问题,利用太阳能降解废水中的染料这一技术受到越来越多的关注。到目前为止,专家学者已经探索了各种半导体材料,包括金属氧化物,硫化物,氧化氮化物和无金属半导体,用于光催化降解。在所有已经报道的光催化剂中,金属硫化物由于其在可见光区域的强吸收而被认为是光催化制氢的良好候选物。硫化铟锌是三元硫属元素化物,具有与可见光吸收相对应的合适的带隙(2.34-2.48 eV)。相关研究表明,硫化铟锌在可见光照射下具有降解活性,并显示出较高的化学稳定性。然而,光激发电荷载体的分离效率差和迁移能力低,导致纯硫化铟锌的光催化降解活性较低。
近年来,石墨烯和其他二维材料因其特殊的结构和优异的物理化学性质,在储能、光电、传感和催化等领域获得了广泛的应用。其中类石墨二维层状材料具有较大的比表面积、较多的活性位点以及原子层厚度等特性, 成了近十年的研究热点。 2011 年, Gogotsi和 Barsoum 发现一种新型二维层状材料 MXenes,为二维层状材料增添了很多新成员。与石墨烯、硫化钼等典型的二维材料相比, MXenes 不仅具有比表面积大、活性位点多以及原子层厚度等特性,还拥有良好的亲水性,化学组成可调等优势。理论预测这类材料具有高弹性模量及高载流子迁移率,在导电材料及功能增强复合材料等方面有良好的应用前景。
本专利先采用溶液法制备碳化钛,然后通过热注射法得到硫化铟锌纳米颗粒,再通过超声搅拌得到碳化钛/硫化铟锌复合可见光催化剂,这种催化剂可应用于光催化降解技术中。
发明内容
本发明要解决的技术问题是:基于上述问题,本发明提供一种制备高效碳化钛/硫化铟锌复合可见光催化剂的制备方法。
本发明解决其技术问题所采用的一个技术方案是:一种碳化钛/硫化铟锌复合可见光催化剂的制备方法,包括以下步骤:
(1)碳化钛的制备: 将钛碳化铝(Ti3AlC2)加入到40% 氢氟酸中,50℃油浴24 h条件下刻蚀得到手风琴状碳化铝(Ti3C2)。
(2)碳化钛/硫化铟锌复合可见光催化剂的制备:首先,将10 mmol硫粉与10 mL油酸混合,115℃油浴20 min,升温至150℃,继续油浴10~20 min后,制得1mol/L OA-S溶液。然后在三口圆底烧瓶中加入乙酸锌、三氯化铟、油胺和三正锌基氧膦,在氮气保护下,110℃油浴20 min,继续升温至200℃,5 min后快速注入OA-S溶液,30 min后立即注入乙醇,冷却至室温,9000 r/min离心2 min,得到硫化铟锌纳米颗粒,随后将其溶解于三氯甲烷中,加入一定量的碳化钛粉末,超声30 min,再加入乙醇,继续超声2 h,常温搅拌12 h后,再次离心,得到碳化钛/硫化铟锌复合可见光催化剂。
进一步地,所述的步骤(1)中每克钛碳化铝需用30 mL氢氟酸刻蚀。
进一步地,所述的步骤(2)中1mmol硫化铟锌溶液中分别加入45、60、75、90 mg碳化钛,乙酸锌、三氯化铟与硫粉的摩尔比为1:2:4。
本发明的有益效果是:该制备方法简单,易于操作,且制备条件容易控制,所制备的碳化钛/硫化铟锌复合可见光催化剂为绿色无污染高性能催化剂,且催化效率高,具有一定应用前景。
附图说明
下面结合附图对本发明进一步说明。
图1是本发明实施例1-3制备得到的碳化钛/硫化铟锌复合可见光催化剂的X射线衍射图;
图2是本发明实施例3制备得到的碳化钛/硫化铟锌复合可见光催化剂的扫描电镜图;
图3是本发明实施例1-3制备得到的碳化钛/硫化铟锌复合可见光催化剂的降解效果图。
具体实施方式
现在结合具体实施例对本发明作进一步说明,以下实施例旨在说明本发明而不是对本发明的进一步限定。
实施例1
(1) 碳化钛的制备: 将1 g钛碳化铝加入到30 mL 40% 氢氟酸中,50℃油浴24 h条件下刻蚀得到手风琴状碳化铝(Ti3C2)。
(2)碳化钛/硫化铟锌复合可见光催化剂的制备:首先,将10 mmol硫粉与10 mL油酸混合,115℃油浴20 min,升温至150℃,继续油浴10~20 min后,制得1mol/L OA-S溶液。然后在三口圆底烧瓶中加入1 mmol乙酸锌、2 mmol三氯化铟、10 mL油胺和4 g三正锌基氧膦,在氮气保护下,110℃油浴20 min,继续升温至200℃,5 min后快速注入4 mL OA-S溶液,30min后立即注入20~30 mL乙醇,冷却至室温,9000 r/min离心2 min,得到硫化铟锌纳米颗粒,随后将其溶解于三氯甲烷中,加入60 mg的碳化钛粉末,超声30 min,再加入50 mL乙醇,继续超声2 h,常温搅拌12 h后,再次离心,得到碳化钛/硫化铟锌复合可见光催化剂。
实施例2
(1) 碳化钛的制备: 将1 g钛碳化铝加入到30 mL 40% 氢氟酸中,50℃油浴24 h条件下刻蚀得到手风琴状碳化铝(Ti3C2)。
(2)碳化钛/硫化铟锌复合可见光催化剂的制备:首先,将10 mmol硫粉与10 mL油酸混合,115℃油浴20 min,升温至150℃,继续油浴10~20 min后,制得1mol/L OA-S溶液。然后在三口圆底烧瓶中加入1 mmol乙酸锌、2 mmol三氯化铟、10 mL油胺和4 g三正锌基氧膦,在氮气保护下,110℃油浴20 min,继续升温至200℃,5 min后快速注入4 mL OA-S溶液,30min后立即注入20~30 mL乙醇,冷却至室温,9000 r/min离心2 min,得到硫化铟锌纳米颗粒,随后将其溶解于三氯甲烷中,加入75 mg的碳化钛粉末,超声30 min,再加入50 mL乙醇,继续超声2 h,常温搅拌12 h后,再次离心,得到碳化钛/硫化铟锌复合可见光催化剂。
实施例3
(1) 碳化钛的制备: 将1 g钛碳化铝加入到30 mL 40% 氢氟酸中,50℃油浴24 h条件下刻蚀得到手风琴状碳化铝(Ti3C2)。
(2)碳化钛/硫化铟锌复合可见光催化剂的制备:首先,将10 mmol硫粉与10 mL油酸混合,115℃油浴20 min,升温至150℃,继续油浴10~20 min后,制得1mol/L OA-S溶液。然后在三口圆底烧瓶中加入1 mmol乙酸锌、2 mmol三氯化铟、10 mL油胺和4 g三正锌基氧膦,在氮气保护下,110℃油浴20 min,继续升温至200℃,5 min后快速注入4 mL OA-S溶液,30min后立即注入20~30 mL乙醇,冷却至室温,9000 r/min离心2 min,得到硫化铟锌纳米颗粒,随后将其溶解于三氯甲烷中,加入90 mg的碳化钛粉末,超声30 min,再加入50 mL乙醇,继续超声2 h,常温搅拌12 h后,再次离心,得到碳化钛/硫化铟锌复合可见光催化剂。
碳化钛/硫化铟锌复合可见光催化剂的性能测定
实施例1-3所制备的碳化钛/硫化铟锌复合可见光催化剂的晶相结构由日本理学D/max2500PC自转X-射线衍射仪分析,其中,X射线为Cu靶Kα(λ=1.54056Å),电压40kV,电流100mA,步长为0.02°,扫描范围10°~80°。X射线衍射图谱如图1所示,在(003)、(011)、(110)等位置的峰形充分表明了硫化铟锌的成功合成。复合材料良好匹配的强烈衍射峰证明该样品是不含其他杂质的两相结构且具有高结晶度。
采用日本JSM-6360A型扫描电子显微镜观察实施例2制备的碳化钛/硫化铟锌复合可见光催化剂的形貌,扫描电镜图如图2所示,从图可以看出,本实施方式制备的复合可见光催化剂中手风琴状碳化钛片层结构中均匀负载着硫化铟锌纳米颗粒。
碳化钛/硫化铟锌复合可见光催化剂的光催化性能以及潜在应用性研究
将实施例1-3中制备的碳化钛/硫化铟锌和纯硫化铟锌作为光催化剂降解孔雀石绿染料。取10 mg光催化剂加入30 mg/L 孔雀石绿水溶液。用带有420 nm滤光片的1000 W氙灯作为光源,进行光催化降解反应。暗反应时间为1 h,光照以后,依次20 min,40 min,60 min,80 min,100 min,120 min取6次样,并在10000 rpm 条件下高速离心,取上层清液用紫外可见分光光度计测其浓度变化。由图3可见,在120 min内碳化钛/硫化铟锌-90降解孔雀石绿的降解率可以达到98 %,可见所制备的碳化钛/硫化铟锌复合光催化剂具有较高的光催化活性。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (5)

1.一种碳化钛/硫化铟锌复合可见光催化剂的制备方法,其特征是:包括以下步骤:
(1)碳化钛的制备: 将钛碳化铝(Ti3AlC2)加入到氢氟酸中,油浴刻蚀,得到手风琴状碳化铝(Ti3C2)。
2.(2)碳化钛/硫化铟锌复合可见光催化剂的制备:首先,将硫粉与油酸混合,加热油浴制得OA-S溶液。
3.然后在圆底烧瓶中加入乙酸锌、三氯化铟、油胺和三正锌基氧膦,在氮气保护下,加热至200℃后快速注入OA-S溶液,一段时间后立即注入乙醇,冷却至室温,离心得到硫化铟锌纳米颗粒,随后将其溶解于三氯甲烷中,加入一定量的碳化钛粉末,超声,再加入乙醇,继续超声,常温搅拌一段时间后,再次离心,得到碳化钛/硫化铟锌复合可见光催化剂。
4.根据权利要求1所述的碳化钛的制备方法,其特征是:所述的步骤(1)中每克钛碳化铝需用30 mL 40%氢氟酸刻蚀。
5.根据权利要求1所述的碳化钛/硫化铟锌复合可见光催化剂的制备方法,其特征是:所述的步骤(2)中1mmol硫化铟锌溶液中分别加入60、75、90 mg碳化钛,乙酸锌、三氯化铟与硫粉的摩尔比为1:2:4。
CN201910481748.0A 2019-06-04 2019-06-04 碳化钛/硫化铟锌复合可见光催化剂的制备方法 Active CN110124706B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910481748.0A CN110124706B (zh) 2019-06-04 2019-06-04 碳化钛/硫化铟锌复合可见光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910481748.0A CN110124706B (zh) 2019-06-04 2019-06-04 碳化钛/硫化铟锌复合可见光催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN110124706A true CN110124706A (zh) 2019-08-16
CN110124706B CN110124706B (zh) 2022-03-25

Family

ID=67580089

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910481748.0A Active CN110124706B (zh) 2019-06-04 2019-06-04 碳化钛/硫化铟锌复合可见光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN110124706B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110624595A (zh) * 2019-10-15 2019-12-31 中国计量大学 一种钙铟硫/碳化钛光催化复合材料及其制备方法
CN110735151A (zh) * 2019-06-20 2020-01-31 常州大学 一种碳化钛复合硫化铟锌光阳极的制备方法
CN112246263A (zh) * 2020-09-21 2021-01-22 华南理工大学 一种非金属表面等离子体催化剂及其制备方法和应用
CN112827503A (zh) * 2020-12-01 2021-05-25 南京工业大学 一种2D/2D硫化铟锌/MXene光催化异质结产氢材料及其制备方法
CN112844412A (zh) * 2021-01-13 2021-05-28 华南师范大学 一种硫铟锌-MXene量子点复合光催化剂及其制备方法和应用
CN113070074A (zh) * 2021-03-31 2021-07-06 青岛大学 一种Ti3C2-MXene/ZnIn2S4复合光催化剂的制备方法及其应用
CN113351227A (zh) * 2021-06-24 2021-09-07 中南民族大学 一种超薄Ti3C2纳米片/ZnIn2S4花球复合光催化剂的制备方法
CN115888780A (zh) * 2022-09-30 2023-04-04 扬州大学 一种CuFeS2/MXene复合纳米材料及其制备方法
CN116273060A (zh) * 2023-03-01 2023-06-23 常州大学 一种硫化锌镉和碳化钛复合光催化剂的制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050036938A1 (en) * 2003-08-13 2005-02-17 Taegwhan Hyeon Method for synthesizing nanoparticles of metal sulfides
CN103112885A (zh) * 2012-12-12 2013-05-22 南京工业大学 铜基纳米太阳能电池材料的制备方法
CN109046431A (zh) * 2018-08-30 2018-12-21 河南师范大学 球状氮掺杂硫化锌复合碳化钛光催化剂及其制备方法和在光催化分解水制备氢气中的应用
CN109746011A (zh) * 2018-12-10 2019-05-14 济南大学 一种mof基衍生的复合光催化剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050036938A1 (en) * 2003-08-13 2005-02-17 Taegwhan Hyeon Method for synthesizing nanoparticles of metal sulfides
CN103112885A (zh) * 2012-12-12 2013-05-22 南京工业大学 铜基纳米太阳能电池材料的制备方法
CN109046431A (zh) * 2018-08-30 2018-12-21 河南师范大学 球状氮掺杂硫化锌复合碳化钛光催化剂及其制备方法和在光催化分解水制备氢气中的应用
CN109746011A (zh) * 2018-12-10 2019-05-14 济南大学 一种mof基衍生的复合光催化剂及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HOU WANG等: "Electrical promotion of spatially photoinduced charge separation via interfacial-built-in quasi-alloying effect in hierarchical Zn2In2S5/Ti3C2(O,OH)x hybrids toward efficient photocatalytic hydrogen evolution and environmental remediation", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 *
HOU WANG等: "Formation of quasi-core-shell In2S3/anataseTiO2@metallic Ti3C2Tx hybrids with favorable charge transfer channels for excellent visible-light-photocatalytic performance", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 *
韩俊峰主编: "《薄膜化合物太阳能电池》", 30 September 2017, 北京理工大学出版社第1版 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110735151A (zh) * 2019-06-20 2020-01-31 常州大学 一种碳化钛复合硫化铟锌光阳极的制备方法
CN110624595A (zh) * 2019-10-15 2019-12-31 中国计量大学 一种钙铟硫/碳化钛光催化复合材料及其制备方法
CN112246263A (zh) * 2020-09-21 2021-01-22 华南理工大学 一种非金属表面等离子体催化剂及其制备方法和应用
CN112827503A (zh) * 2020-12-01 2021-05-25 南京工业大学 一种2D/2D硫化铟锌/MXene光催化异质结产氢材料及其制备方法
CN112844412A (zh) * 2021-01-13 2021-05-28 华南师范大学 一种硫铟锌-MXene量子点复合光催化剂及其制备方法和应用
CN113070074A (zh) * 2021-03-31 2021-07-06 青岛大学 一种Ti3C2-MXene/ZnIn2S4复合光催化剂的制备方法及其应用
CN113351227A (zh) * 2021-06-24 2021-09-07 中南民族大学 一种超薄Ti3C2纳米片/ZnIn2S4花球复合光催化剂的制备方法
CN113351227B (zh) * 2021-06-24 2022-02-18 中南民族大学 一种超薄Ti3C2纳米片/ZnIn2S4花球复合光催化剂的制备方法
CN115888780A (zh) * 2022-09-30 2023-04-04 扬州大学 一种CuFeS2/MXene复合纳米材料及其制备方法
CN115888780B (zh) * 2022-09-30 2024-04-26 扬州大学 一种CuFeS2/MXene复合纳米材料及其制备方法
CN116273060A (zh) * 2023-03-01 2023-06-23 常州大学 一种硫化锌镉和碳化钛复合光催化剂的制备方法及应用

Also Published As

Publication number Publication date
CN110124706B (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
CN110124706A (zh) 碳化钛/硫化铟锌复合可见光催化剂的制备方法
Hafeez et al. Construction of ternary hybrid layered reduced graphene oxide supported g-C3N4-TiO2 nanocomposite and its photocatalytic hydrogen production activity
Zhong et al. Two-dimensional MXene-based and MXene-derived photocatalysts: Recent developments and perspectives
Han et al. Ti3C2 MXene-derived carbon-doped TiO2 coupled with g-C3N4 as the visible-light photocatalysts for photocatalytic H2 generation
Yang et al. Rational design of carbon-doped TiO2 modified g-C3N4 via in-situ heat treatment for drastically improved photocatalytic hydrogen with excellent photostability
Chen et al. Two-dimensional heterojunction photocatalysts constructed by graphite-like C3N4 and Bi2WO6 nanosheets: enhanced photocatalytic activities for water purification
Song et al. Construction of 2D SnS2/g-C3N4 Z-scheme composite with superior visible-light photocatalytic performance
Hieu et al. TiO2/Ti3C2/g-C3N4 ternary heterojunction for photocatalytic hydrogen evolution
Liu et al. Two-dimensional/two-dimensional Z-scheme photocatalyst of graphitic carbon nitride/bismuth vanadate for visible-light-driven photocatalytic synthesis of imines
Sun et al. Mesoporous g-C3N4/Zn–Ti LDH laminated van der Waals heterojunction nanosheets as remarkable visible-light-driven photocatalysts
Wang et al. TiO2 modified g-C3N4 with enhanced photocatalytic CO2 reduction performance
Luo et al. ZnCr LDH nanosheets modified graphitic carbon nitride for enhanced photocatalytic hydrogen production
Jin et al. SrTiO3 nanoparticle/SnNb2O6 nanosheet 0D/2D heterojunctions with enhanced interfacial charge separation and photocatalytic hydrogen evolution activity
Huang et al. 3D nanospherical CdxZn1− xS/reduced graphene oxide composites with superior photocatalytic activity and photocorrosion resistance
Song et al. MoS2-MoO3-x hybrid cocatalyst for effectively enhanced H2 production photoactivity of AgIn5S8 nano-octahedrons
Zhang et al. Ferroelectric polarization effect promoting the bulk charge separation for enhance the efficiency of photocatalytic degradation
Wu et al. Preparation of g-C3N4/TiO2 by template method and its photocatalytic performance
Jiang et al. Wide-spectrum response urchin-like Bi2S3 spheres and ZnS quantum dots co-decorated mesoporous g-C3N4 nanosheets heterojunctions for promoting charge separation and enhancing photothermal-photocatalytic performance
Yadav et al. Synthesis of Ag2S–TiO2 nanocomposites and their catalytic activity towards rhodamine B photodegradation
Luo et al. Synthesis and characterization of Cu2O–modified Bi2O3 nanospheres with enhanced visible light photocatalytic activity
Dang et al. Hydrothermal preparation and characterization of nanostructured CNTs/ZnFe2O4 composites for solar water splitting application
Zhan et al. g-C3N4/ZnWO4 films: preparation and its enhanced photocatalytic decomposition of phenol in UV
Shi et al. 2D/1D protonated g-C3N4/α-MnO2 Z-scheme heterojunction with enhanced visible-light photocatalytic efficiency
Pei et al. Enhancing visible-light degradation performance of g-C3N4 on organic pollutants by constructing heterojunctions via combining tubular g-C3N4 with Bi2O3 nanosheets
Zhang et al. WO3/TiO2 heterojunction photocatalyst prepared by reactive magnetron sputtering for Rhodamine B dye degradation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant