CN109746435A - 一种表面改性的高激光反射率金属粉体及3d打印方法 - Google Patents

一种表面改性的高激光反射率金属粉体及3d打印方法 Download PDF

Info

Publication number
CN109746435A
CN109746435A CN201910091838.9A CN201910091838A CN109746435A CN 109746435 A CN109746435 A CN 109746435A CN 201910091838 A CN201910091838 A CN 201910091838A CN 109746435 A CN109746435 A CN 109746435A
Authority
CN
China
Prior art keywords
powder
alloy
metal
copper
high laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910091838.9A
Other languages
English (en)
Inventor
杨亚锋
耿康
李少夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Process Engineering of CAS
Original Assignee
Institute of Process Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Process Engineering of CAS filed Critical Institute of Process Engineering of CAS
Priority to CN201910091838.9A priority Critical patent/CN109746435A/zh
Publication of CN109746435A publication Critical patent/CN109746435A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/008Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression characterised by the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1637Composition of the substrate metallic substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1658Process features with two steps starting with metal deposition followed by addition of reducing agent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • C23C18/50Coating with alloys with alloys based on iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Automation & Control Theory (AREA)
  • Plasma & Fusion (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Chemically Coating (AREA)

Abstract

本发明属于金属材料制备领域,涉及一种表面改性的高激光反射率金属粉体及其在3D打印中的应用。本发明将高激光反射率的铝、铜、铝合金或铜合金粉体表面通过化学镀的方法包覆上高激光吸收率的镍、钴或铁金属颗粒,即将原本高激光反射率的粉体改性为高激光吸收率的粉体,增强高激光反射率金属粉体在3D打印过程中的打印性能,以实现高激光反射率金属粉体的3D打印。相比3D打印所使用的常规商业铝、铜、铝合金或铜合金粉体,表面改性包覆后,其激光吸收率和打印性能得到提高,粉体的球形度改变不大,铺粉过程不受影响,并且打印得到的金属零件致密,机械性能良好。

Description

一种表面改性的高激光反射率金属粉体及3D打印方法
技术领域
本发明属于金属材料制备领域,涉及一种表面改性的高激光反射率金属粉体及3D打印方法,具体涉及高激光反射率的铝、铜、铝合金或铜合金粉体的表面改性包覆,以及表面改性后粉体的3D打印方法。
背景技术
选区激光熔化(Selective Laser Melting,SLM)是一种典型的增材制造技术(Additive Manufacturing,AM),俗称3D打印。该技术利用激光逐层选择性地熔化金属粉床,然后逐层堆积,最终成型金属零件,可实现传统加工技术难以实现的复杂薄壁精密构件的制造,具有成型精度高,力学性能优良等优点。除此之外,使用激光成型的3D打印机还有选区激光烧结(Selective Laser Sintering,SLS),直接金属粉末激光烧结(Direct MetalLaser Sinter,DMLS),激光近净成型(Laser Engineered Net Shaping,LENS)和激光熔覆堆积(Laser Cladding Deposition,LCD)等。目前限制3D打印技术发展的其中一个因素是可打印的金属种类不多,可打印的金属种类目前主要限制在铁基,钛基,钴基和镍基这几种合金中。可以打印的铝基和铜基金属种类较少,比如铝基金属基本限制在熔体流动性良好的Al-Si系合金。铝基和铜基金属无法用激光进行3D打印的主要原因是:铝基粉体和铜基粉体的高激光反射率使得激光照射的能量大部分被反射,金属粉体没有得到充分的熔化,易形成各种缺陷,导致金属零件无法成型或成型后零件的致密度和机械性能较差。此外,高激光反射率的锌、钽等金属和合金在激光3D打印中也会面临此类问题。
针对以上铝、铜、铝合金或铜合金在选区激光熔化过程中的高激光反射率问题,可以通过对高激光反射率的粉体进行表面改性包覆的方法来提高粉体表面的激光吸收率。目前常见的包覆方法主要有高压氢还原法、流化床气相沉积法、电镀法、机械化学法,但是这些方法中,高压氢还原法设备复杂,需要提供高压气氛,并且包覆不均匀不适合低含量的包覆;流化床气相沉积法使用金属羰基物作为原料,毒性大,挥发性强并且易燃易爆;电镀法工艺设备较为复杂;机械化学法包覆不均匀,并且会严重破坏粉体的球形度。因此,以上方法都不太适合选区激光熔化所使用的铝、铜、铝合金或铜合金粉体的表面改性包覆。
发明内容
本发明的目的在于,提供一种表面改性的高激光反射率金属粉体、粉体表面改性方法及其3D打印方法。本发明针对上述问题,采用化学镀对高激光反射率的金属粉体进行表面改性包覆,制备了镍、钴或铁包覆铝、铜、铝合金或铜合金粉体的表面改性包覆粉体,所述包覆粉体具有可显著提高激光吸收率,球形度高不影响铺粉,包覆金属含量可控,包覆金属可掺入磷或硼等优点。所述包覆粉体用于3D打印过程后制备的铝合金和铜合金材料具有气孔,缺陷减少,成型能力增强,机械性能提高等优点。本发明解决了高激光反射率金属粉体在3D打印过程中激光反射率高,成型能力差,气孔和缺陷多,机械性能差等问题。
本发明是通过如下技术方案实现的:
本发明的表面改性的高激光反射率金属粉体,其中,所述表面改性的高激光反射率金属粉体为将高激光反射率的金属铝、金属铜、铝合金和铜合金中的一种或几种的粉体表面通过化学镀的方法包覆上高激光吸收率的镍、钴和铁中的一种或几种的金属颗粒而形成的表面改性包覆粉体,其中,包覆上的金属颗粒占表面改性包覆粉体总重的重量百分比为0.1%~5.0%。其中,所述金属铝、金属铜、铝合金和铜合金本身即为具有较高激光反射率的物质,它们的激光反射率在3D打印机常用的激光波段1060~1070nm条件下,一般为90%~92%,由于粉体颗粒间孔隙的存在,激光在其中漫反射,其激光反射率会有降低,一般为50%~60%,但是仍然高于大部分3D打印常用的金属粉体(铁基粉体为30%~36%,钛基粉体为20%~23%,镍基粉体为28%~30%)。由于金属不是透光的物质,激光吸收率和反射率呈互补关系,相加为100%。
根据本发明所述的高反射率金属粉体,其中作为优选地,所述铝合金为AlSi10Mg、AlSi20、AlSi7Mg、AlSi12、Al-Cu合金、Al-Mg合金、Al-Mn合金、Al-Zn合金、Al-Li合金、Al6061和Al7075中的一种或几种;所述铜合金为Cu-Zn合金、Cu-Sn合金、Cu-W合金和Cu-Ni合金中的一种或几种。作为优选地,所述粉体的纯度均在99.9%以上,粒度分布为5~100μm。
根据本发明所述的高激光反射率金属粉体,其中,铜及铜合金粉体表面没有自催化活性,需要事先用前处理方法将其表面经过催化活性的活化敏化。
所述前处理方法可以是任意本领域公知的现有传统方法,进一步优选地,所述催化活性的活化敏化方法包括以下步骤:
a)先用质量浓度30%~37%的盐酸将铜或铜合金粉体进行酸化处理,然后用无水乙醇洗至中性;
b)将酸化后的铜或铜合金粉体加入含有5~40g/L的氯化亚锡和50~100mL/L的盐酸的混合溶液中浸泡10~20min,浸泡温度为18~30℃,然后用无水乙醇洗至中性;
c)再将铜或铜合金粉体加入含有1~5g/L的氯化钯和10~50mL/L的盐酸的混合溶液中浸泡10~20min,浸泡温度为18~30℃,然后用无水乙醇洗至中性,完成催化活性的活化敏化。
本发明还提供了一种上述任一所述表面改性的高激光反射率金属粉体的制备方法,包括以下步骤:
1)配置化学镀镀液和还原剂溶液:将络合剂和金属盐分别在两个容器中加水溶解,然后将两种溶液混合并向混合溶液中滴加碱性溶液,将pH调整到5~12,配成化学镀镀液;将还原剂放入另外一个容器中加水溶解配成还原剂溶液;其中,所述金属盐为镍盐、钴盐和铁盐中的一种或几种;
2)搭建化学镀装置并实施化学镀:将化学镀反应器,加热装置,搅拌装置,测温装置组装在一起,加入镀液,开启加热装置,待温度到指定温度时,开始搅拌,然后加入铝、铜、铝合金和铜合金中的一种或几种的粉体,最后将还原剂缓慢地滴入镀液与粉体的混合悬浊液中,反应到指定时间时,关闭整个装置,将混合悬浊液过滤,留在过滤装置中的粉体用水清洗干净后烘干,制得表面改性的高激光反射率金属粉体。在使用前,可以先将表面改性的高激光反射率金属粉体过筛后装入塑料瓶中充惰性气体密封保存。
根据本发明所述的制备方法,其中优选地,步骤1)所述络合剂为柠檬酸钠、柠檬酸、酒石酸钾钠、醋酸、苹果酸、醋酸钠、乳酸和硼酸中的一种或几种,进一步优选地,配置的镀液中络合剂浓度为0.005~0.15mol/L。
作为优选地,步骤1)中所述镍盐可以为氯化镍、硫酸镍、氨基磺酸镍、次磷酸镍、碳酸镍和硝酸镍中的一种或几种,所述钴盐可以为氯化钴、硫酸钴、氨基磺酸钴、次磷酸钴、碳酸钴和硝酸钴中的一种或几种,所述铁盐可以为氯化铁、硫酸铁、氨基磺酸铁、次磷酸铁、碳酸铁和硝酸铁中的一种或几种,以上试剂皆优选为分析纯,进一步优选地,金属盐在镀液中的浓度为0.005~0.15mol/L。
作为优选地,步骤1)所述碱性溶液可以为NaOH溶液、KOH溶液、Ba(OH)2溶液和氨水中的一种或几种,所述碱性溶液浓度优选为1~3mol/L。进一步优选地,所述镀液体积为450~1450mL。
根据本发明所述的制备方法,其中优选地,步骤1)所述还原剂为次亚磷酸钠、水合肼、硼氢化钠和硼氢化钾中的一种或几种,以上试剂皆优选为分析纯。进一步优选地,配置的还原剂溶液浓度为0.01~0.3mol/L,还原剂溶液体积为50~100mL。
根据本发明所述的制备方法,其中优选地,步骤2)中加热的指定温度为45~90℃,搅拌装置的转速为200~400r/min;加入粉体的量为50~350g。
进一步优选地,步骤2)所述还原剂滴加速度为0.01~0.09mL/s,化学镀反应的指定时间为15~60min;所述烘干的温度为40~100℃,烘干时间为12~24h。
根据本发明所述的制备方法,其中优选地,步骤2)所述的化学镀反应器容积为1000~2000mL,一般为玻璃容器,加热装置可以完全容纳化学镀反应器,搅拌装置与化学镀反应器大小匹配,搅拌过程中无剧烈晃动,加热装置应使化学镀反应器中的镀液得到均匀加热,加热装置优先考虑恒温水浴或恒温油浴加热装置,搅拌装置优先考虑可控制转速的机械搅拌装置。
有关本发明的反应装置,其中的化学镀反应器,加热装置,搅拌装置,测温装置四个装置均可以是本领域的常规装置。例如但不限于,化学镀反应装置可以是四口烧瓶,加热装置可以是恒温油浴锅,搅拌可以使用机械搅拌器,测温装置可以是普通酒精温度计,这些都是实验室常见设备,也可以用其它设备代替,而工业上有专业的化学镀渡槽,化学镀对装置的依赖不是很大,只要可以容纳镀液,加热,搅拌,测温就可以。
优选地,步骤2)中所述的高激光反射率金属粉体的表面改性包覆粉体过筛时的筛子目数为100~200目。
优选地,步骤2)中所述的化学镀制备的表面改性的高激光反射率金属粉体,包覆上的金属占所述表面改性包覆粉体总重的重量百分比可以通过控制金属盐浓度,粉体装载量,反应时间等参数来控制。
本发明还提了一种3D打印方法,使用上述任一表面改性的高激光反射率金属粉体进行3D打印。
作为优选地,所述3D打印方法,可以包括以下步骤:
在选区激光熔化成形机器的控制电脑中,将三维模型导入,并且设置选区激光熔化成形的参数,在成型仓内用高纯惰性气体洗气以降低氧含量,将基板加热为粉体除潮,在基板上逐层固化本发明的表面改性的高激光反射率金属粉体,最终得到相应的成型金属零件。
该表面改性包覆粉体的3D打印方法以选区激光熔化成形机器为例,但不限于选区激光熔化成形机器,可以运用于所有使用激光成型的3D打印机器。
根据本发明所述的3D打印方法,优选地,所述选区激光熔化的工艺参数为激光功率200~500W,扫描速度500~2000mm/s,加工层厚0.02~0.05mm,扫描间距0.04~0.1mm,激光光斑直径0.07~0.1mm,扫描方式为交叉角度67°~90°或岛状扫描(洗气使用的高纯惰性气体优选为纯度高于99.9999%,高纯惰性气体包括但不限于氩气,氮气,氦气,氖气等,可以是一切不与金属在高温下反应的气体,洗气后氧含量优选为体积百分比0.01%~0.5%,基板的加热温度为60~120℃。
与传统商业3D打印金属粉体及3D打印方法相比,本发明的优势在于:
本发明所述一种表面改性的高激光反射率金属粉体,使用化学镀方法对高激光反射率的铝、铜、铝合金或铜合金粉体进行表面改性,通过包覆高激光吸收率的镍,铁或钴金属来提高铝、铜、铝合金或铜合金粉体的激光吸收率,提高了高激光反射率金属粉体的打印成型能力,减少了缺陷,提高了打印成型材料的致密度和机械性能;表面改性包覆后的粉体球形度高不影响铺粉,包覆金属含量可以通过控制金属盐浓度,粉体装载量,反应时间等参数来控制,包覆金属可掺入磷或硼等元素,包覆金属在粉体表面分布均匀,与基体结合牢固不易脱落。本发明主要通过对高激光反射率金属粉体进行表面改性的方法来提高其激光吸收率,可以将40%~50%激光吸收率的铝基和铜基粉体的吸收率提高到60%~70%,该方法有效地解决了高激光反射率金属粉体3D打印成型问题,该表面改性使用的化学镀方法具有工艺简单,生产流程短,生产成本低等优点。
附图说明
图1为本发明实施例1中镍磷包覆纯铝的表面改性包覆粉体的SEM图像;
图2为本发明实施例1中镍磷包覆纯铝的包覆粉体打印后得到的小方块和拉伸条零件;
图3为本发明实施例2中镍硼包覆纯铝的表面改性包覆粉体的SEM图像;
图4为本发明实施例3中纯铁包覆纯铝的表面改性包覆粉体的SEM图像;
图5为本发明实施例4中钴磷包覆AlSi10Mg的表面改性包覆粉体的SEM图像。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所述实施例是本发明的一部分实施例,并不是全部实施例。
实施例1
1、制备镍含量约为5%,磷含量约为0.5%的镍磷包覆纯铝的表面改性包覆粉体,镀液中柠檬酸钠,氯化镍,次亚磷酸钠的摩尔浓度分别为0.15mol/L、0.15mol/L和0.3mol/L,计算得到镀液中需要加入的柠檬酸钠,氯化镍,次亚磷酸钠的质量分别为63.97g、51.69g和46.11g,均为分析纯。将柠檬酸钠和氯化镍分别放入两个烧杯中用700mL的去离子水溶解,然后将氯化镍溶液倒入柠檬酸钠溶液中,并不断搅拌使其充分络合。将电子pH计放入装有混合溶液的烧杯中,边搅拌边加入3mol/L的NaOH溶液,将pH调整到11~12,加入去离子水直到镀液体积达到1450mL,将次亚磷酸钠放入另外一个烧杯中加入去离子水至50mL,搅拌溶解配成还原剂溶液。
2、将2L的四口玻璃烧瓶放入水浴加热装置中,连接机械搅拌装置,将配置好的镀液倒入四口玻璃烧瓶内,固定好温度计后,开启水浴加热装置待温度到90℃时,开启机械搅拌装置,转速为400r/min,加入350g粒度为15~100μm的纯铝粉体。将配置好的还原剂溶液放入恒压滴定漏斗中固定在四口玻璃烧瓶上,打开恒压滴定漏斗,将次亚磷酸钠还原剂以0.09mL/s的速度滴入搅拌的镀液与铝粉的混合悬浊液中。反应进行到60min时,关闭机械搅拌装置和水浴加热装置,取出四口玻璃烧瓶,将悬浊液过滤得到粉体,用去离子水清洗粉体,再次过滤后将粉体置于真空干燥箱中在100℃烘干24h,最后将粉体用200目标准筛过筛处理后装入塑料瓶中充氩气密封待用。
3、在选区激光熔化成形机器的控制电脑中,将长度80mm,截面2.5×6mm,标距25mm的拉伸条三维模型导入,并且设置选区激光熔化的成形的工艺参数为激光功率200W,扫描速度500mm/s,加工层厚0.02mm,扫描间距0.04mm,扫描方式为交叉90o,将成型仓用99.9999%的高纯氩气洗气,降低氧含量至体积百分比0.01%,将基板加热至60℃以除去粉体潮气,在基板上逐层固化镍磷包覆纯铝的表面改性包覆粉体,得到选区激光熔化成形法制备的拉伸条零件。
图1为实施例1中镍磷包覆纯铝的表面改性包覆粉体的扫描电镜图,由图可见镍磷包覆纯铝的表面改性包覆粉体,镍颗粒分布均匀,球形度保持良好。
图2为本发明实施例1中镍磷包覆纯铝的包覆粉体打印后得到的小方块和拉伸条零件,由图可见零件表面较为光滑,有金属光泽,几何尺寸保持良好。
实施例2
本实施例2与实施例1的不同之处在于:还原剂由次亚磷酸钠改为硼氢化钠,即改变铝或铝合金粉体表面包覆的金属中的微元素,由包覆镍磷改为包覆镍硼,镍含量约为3%,硼含量约为0.3%。其它主要参数改变如下:柠檬酸钠,氯化镍,硼氢化钠的摩尔浓度为0.095mol/L、0.095mol/L和0.2mol/L,计算得到镀液中需要加入的柠檬酸钠,氯化镍,硼氢化钠质量分别为22.58g、27.94g、10.97g。络合剂和金属盐分别用400mL去离子水溶解,加入的KOH碱性溶液浓度2mol/L,pH调为9~10,镀液最终体积为950mL,还原剂配为50mL。在1500mL的四口烧瓶中加入100g粒度为20~50μm的纯铝粉,以70℃的温度,300r/min的转速,0.05mL/s的还原剂滴加速度反应30min。最终粉体在60℃烘干20h,并使用150目筛子过筛。选区激光熔化的成形的工艺参数为激光功率260W,扫描速度400mm/s,加工层厚0.04mm,扫描间距0.08mm,扫描方式为交叉67°,成型仓氧含量0.3%,基板除潮温度80℃。
图3为实施例2中镍硼包覆纯铝的表面改性包覆粉体的扫描电镜图,由图可见镍硼包覆纯铝的表面改性包覆粉体,镍颗粒分布均匀,球形度保持良好。
实施例3
本实施例3与实施例1的不同之处在于:金属盐由氯化镍改为硫酸亚铁,还原剂由次亚磷酸钠改为水合肼,即改变铝或铝合金粉体表面包覆的金属及其微元素含量,由包覆镍磷改为包覆纯铁,铁含量约为0.1%。此外,使用水合肼作为还原剂时,由于水合肼的毒性,需要做好相应防护措施,佩戴防毒面具,防护眼镜和手套,并且将产生的废气通入双氧水稀溶液反应掉水合肼蒸汽后再排入大气。其它主要参数改变如下:柠檬酸钠,硫酸亚铁,水合肼的摩尔浓度为0.005mol/L、0.005mol/L和0.01mol/L,计算得到镀液中需要加入的柠檬酸钠,硫酸亚铁,水合肼分别为0.66g、0.63g、0.22mL。络合剂和金属盐分别用200mL去离子水溶解,加入的氨水碱性溶液浓度1mol/L,pH调为5~6,镀液最终体积为450mL,还原剂配为100mL。在1000mL的四口烧瓶中加入50g粒度为5~50μm的纯铝粉,以45℃的温度,200r/min的转速,0.01mL/s的还原剂滴加速度反应15min。最终粉体在40℃烘干12h,并使用100目筛子过筛。选区激光熔化的成形的工艺参数为激光功率500W,扫描速度2000mm/s,加工层厚0.05mm,扫描间距0.1mm,扫描方式为岛状扫描,成型仓氧含量0.5%,基板除潮温度120℃。
图4为实施例3中纯铁包覆纯铝的表面改性包覆粉体的扫描电镜图,由图可见纯铁包覆纯铝的表面改性包覆粉体,铁颗粒分布均匀,球形度保持良好。
实施例4
本实施例4与实施例1的不同之处在于:所镀金属粉体由纯铝粉体改为AlSi10Mg粉体,金属盐由氯化镍改为硫酸钴,即改变被包覆粉体为AlSi10Mg粉,表面包覆的金属由镍磷改为钴磷,钴含量约为5%,磷含量约为0.5%。其它主要参数改变如下:硫酸钴加入质量为:61.15g,选区激光熔化的成形的工艺参数为激光功率270W,扫描速度1000mm/s。
图5为实施例4中钴磷包覆AlSi10Mg的表面改性包覆粉体的扫描电镜图,由图可见钴磷包覆AlSi10Mg的表面改性包覆粉体,钴颗粒分布均匀,球形度保持良好。
实施例5
本实施例5与实施例1的不同之处在于:所镀金属粉体由纯铝粉体改为纯铜粉体,即改变被包覆粉体为纯铜粉,镍含量约为5%,磷含量约为0.5%。此外,铜表面没有自催化活性,需要事先用前处理方法将其表面经过催化活性的活化敏化。纯铜粉体的前处理方法如下:先用质量浓度30%的盐酸将纯铜粉体进行酸化处理,然后用无水乙醇洗至中性,将纯铜粉体加入含有5g/L的氯化亚锡和50mL/L的盐酸混合溶液中浸泡10min,浸泡温度为18℃,然后用无水乙醇洗至中性,再将纯铜粉体加入含有1g/L的氯化钯和10mL/L的盐酸混合溶液中浸泡10min,浸泡温度为18℃,然后用无水乙醇洗至中性。其它主要参数改变如下:选区激光熔化的成形的工艺参数为激光功率280W,扫描速度1100mm/s,扫描间距0.06mm。
实施例6
本实施例5与实施例1的不同之处在于:所镀金属粉体由纯铝粉体改为黄铜粉体(Cu-Zn合金),即改变被包覆粉体为黄铜粉,镍含量约为5%,磷含量约为0.5%。此外,铜合金粉体表面没有自催化活性,需要事先用前处理方法将其表面经过催化活性的活化敏化。黄铜粉体的前处理方法如下:先用质量浓度37%的盐酸将黄铜粉体进行酸化处理,然后用无水乙醇洗至中性,将黄铜粉体加入含有40g/L的氯化亚锡和100mL/L的盐酸混合溶液中浸泡20min,浸泡温度为30℃,然后用无水乙醇洗至中性,再将黄铜粉体加入含有5g/L的氯化钯和50mL/L的盐酸混合溶液中浸泡20min,浸泡温度为30℃,然后用无水乙醇洗至中性。其它主要参数改变如下:选区激光熔化的成形的工艺参数为激光功率300W,扫描速度1250mm/s,扫描间距0.05mm。
使用实施例1-6的方法制备的长度80mm,截面2.5×6mm,标距25mm的拉伸条测得的力学性能结果如下表1所示。
表1拉伸条测得的力学性能结果
实施例1-6的表面改性前金属粉体原料的激光反射率及制备出的表面改性后粉体的激光反射率和吸收率结果各自如下表2所示。
表2原粉及制得粉体的激光反射率和吸收率结果
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应该理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

1.一种表面改性的高激光反射率金属粉体,其特征在于,所述表面改性的高激光反射率金属粉体为将高激光反射率的金属铝、金属铜、铝合金和铜合金中的一种或几种的粉体表面通过化学镀的方法包覆上高激光吸收率的镍、钴和铁中的一种或几种的金属颗粒而形成的表面改性包覆粉体,其中,包覆上的金属颗粒占表面改性包覆粉体总重的重量百分比为0.1%~5.0%。
2.根据权利要求1所述的表面改性的高激光反射率金属粉体,其特征在于,所述铝合金为AlSi10Mg、AlSi20、AlSi7Mg、AlSi12、Al-Cu合金、Al-Mg合金、Al-Mn合金、Al-Zn合金、Al-Li合金、Al6061和Al7075中的一种或几种;所述铜合金为Cu-Zn合金、Cu-Sn合金、Cu-W合金和Cu-Ni合金中的一种或几种。
3.根据权利要求1或2所述的表面改性的高激光反射率金属粉体,其特征在于,所述金属铜或铜合金的粉体表面经过催化活性的活化敏化;优选地,所述催化活性的活化敏化方法包括以下步骤:
a)先用质量浓度30%~37%的盐酸将铜或铜合金粉体进行酸化处理,然后用无水乙醇洗至中性;
b)将酸化后的铜或铜合金粉体加入含有5~40g/L的氯化亚锡和50~100mL/L的盐酸的混合溶液中浸泡10~20min,浸泡温度为18~30℃,然后用无水乙醇洗至中性;
c)再将铜或铜合金粉体加入含有1~5g/L的氯化钯和10~50mL/L的盐酸的混合溶液中浸泡10~20min,浸泡温度为18~30℃,然后用无水乙醇洗至中性,完成粉体表面催化活性的活化敏化。
4.一种权利要求1-3任一所述表面改性的高激光反射率金属粉体的制备方法,包括以下步骤:
1)配置化学镀镀液和还原剂溶液:将络合剂和金属盐分别在两个容器中加水溶解,然后将两种溶液混合并向混合溶液中滴加碱性溶液,将pH调整到5~12,配成化学镀镀液;将还原剂放入另外一个容器中加水溶解配成还原剂溶液;其中,所述金属盐为镍盐、钴盐和铁盐中的一种或几种;
2)搭建化学镀装置并实施化学镀:将化学镀反应器,加热装置,搅拌装置,测温装置组装在一起,加入镀液,开启加热装置,待温度到指定温度时,开始搅拌,然后加入铝、铜、铝合金和铜合金中的一种或几种的粉体,最后将还原剂缓慢地滴入镀液与粉体的混合悬浊液中,反应到指定时间时,关闭整个装置,将混合悬浊液过滤,留在过滤装置中的粉体用水清洗干净后烘干,制得表面改性的高激光反射率金属粉体。
5.根据权利要求4所述的制备方法,其特征在于,步骤1)所述络合剂为柠檬酸钠、柠檬酸、酒石酸钾钠、醋酸、苹果酸、醋酸钠、乳酸和硼酸中的一种或几种,配置的镀液中络合剂浓度为0.005~0.15mol/L;所述镍盐为氯化镍、硫酸镍、氨基磺酸镍、次磷酸镍、碳酸镍和硝酸镍中的一种或几种,所述钴盐为氯化钴、硫酸钴、氨基磺酸钴、次磷酸钴、碳酸钴和硝酸钴中的一种或几种,所述铁盐为氯化铁、硫酸铁、氨基磺酸铁、次磷酸铁、碳酸铁和硝酸铁中的一种或几种,金属盐在镀液中的浓度为0.005~0.15mol/L;所述碱性溶液为NaOH溶液、KOH溶液、Ba(OH)2溶液和氨水中的一种或几种,所述碱性溶液浓度为1~3mol/L;所述镀液体积为450~1450mL。
6.根据权利要求4所述的制备方法,其特征在于,步骤1)所述还原剂为次亚磷酸钠、水合肼、硼氢化钠和硼氢化钾中的一种或几种,配置的还原剂溶液浓度为0.01~0.3mol/L,还原剂溶液体积为50~100mL。
7.根据权利要求4所述的制备方法,其特征在于,步骤2)中加热的指定温度为45~90℃;加入粉体的量为50~350g;还原剂滴加速度为0.01~0.09mL/s,化学镀反应的指定时间为15~60min;所述烘干的温度为40~100℃,烘干时间为12~24h;搅拌装置的转速为200~400r/min。
8.一种3D打印方法,其特征在于,使用权利要求1-3任一所述的表面改性的高激光反射率金属粉体进行3D打印。
9.根据权利要求8所述的3D打印方法,其特征在于,所述3D打印方法包括以下步骤:
在选区激光熔化成形机器的控制电脑中,将三维模型导入,并且设置选区激光熔化成形的参数,在成型仓内用惰性气体洗气以降低氧含量,将基板加热以除去粉体潮气,在基板上逐层固化表面改性的高激光反射率金属粉体,最终得到相应的成型金属零件。
10.根据权利要求9所述的3D打印方法,其特征在于,选区激光熔化的工艺参数为激光功率200~500W,扫描速度500~2000mm/s,加工层厚0.02~0.05mm,扫描间距0.04~0.1mm,激光光斑直径0.07~0.1mm,扫描方式为交叉角度67°~90°或岛状扫描,洗气后氧含量为体积百分比0.01%~0.5%,基板的加热温度为60~120℃。
CN201910091838.9A 2019-01-30 2019-01-30 一种表面改性的高激光反射率金属粉体及3d打印方法 Pending CN109746435A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910091838.9A CN109746435A (zh) 2019-01-30 2019-01-30 一种表面改性的高激光反射率金属粉体及3d打印方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910091838.9A CN109746435A (zh) 2019-01-30 2019-01-30 一种表面改性的高激光反射率金属粉体及3d打印方法

Publications (1)

Publication Number Publication Date
CN109746435A true CN109746435A (zh) 2019-05-14

Family

ID=66406455

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910091838.9A Pending CN109746435A (zh) 2019-01-30 2019-01-30 一种表面改性的高激光反射率金属粉体及3d打印方法

Country Status (1)

Country Link
CN (1) CN109746435A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111001819A (zh) * 2019-12-16 2020-04-14 广东正德材料表面科技有限公司 一种提高铝合金粉体激光吸收率的方法
WO2020254108A1 (de) * 2019-06-19 2020-12-24 Infinite Flex GmbH Pulver zum lasersintern und verwendung
EP3795276A1 (en) * 2019-09-18 2021-03-24 Nabtesco Corporation Powder particle for shaped metal object
FR3106289A1 (fr) * 2020-01-20 2021-07-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives Particules metalliques nanostucturees pour la fabrication additive
WO2021160684A1 (en) * 2020-02-11 2021-08-19 Katholieke Universiteit Leuven Surface-modified metal or metal alloy powder and method of producing the same
CN113634745A (zh) * 2021-08-06 2021-11-12 金华职业技术学院 一种化学镀法制备NiCu双层合金粉末的方法及其应用
CN114855130A (zh) * 2022-04-27 2022-08-05 鑫合德(清远)智能科技发展有限公司 一种低激光反射率铬包铜复合粉体的制备方法及其制备装置
CN115156525A (zh) * 2022-06-22 2022-10-11 广东省科学院新材料研究所 一种基于静电自组装的活性修饰球形镁合金粉体及其制备方法和应用
CN115846689A (zh) * 2022-11-15 2023-03-28 哈尔滨工业大学(威海) 一种激光粉末床熔融gh3230合金的固溶处理方法及gh3230合金

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006036038A1 (en) * 2004-09-30 2006-04-06 Eo Technics Co., Ltd. Laser processing apparatus and method using tec module
CN1907602A (zh) * 2006-08-02 2007-02-07 南昌航空工业学院 一种选区激光烧结快速制造金属模具的方法
CN104029395A (zh) * 2014-05-31 2014-09-10 大连理工大学 一种激光近净成形过程中快速确定激光功率的方法
CN104226980A (zh) * 2014-07-29 2014-12-24 中国科学院重庆绿色智能技术研究院 增强金属粉体材料激光能量吸收效率的方法
CN107983956A (zh) * 2017-10-20 2018-05-04 杭州先临三维云打印技术有限公司 一种3d打印用粉料、制备方法及其用途
CN109332691A (zh) * 2018-10-31 2019-02-15 有研工程技术研究院有限公司 一种纳米铜粉3d打印激光烧结参数确定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006036038A1 (en) * 2004-09-30 2006-04-06 Eo Technics Co., Ltd. Laser processing apparatus and method using tec module
CN1907602A (zh) * 2006-08-02 2007-02-07 南昌航空工业学院 一种选区激光烧结快速制造金属模具的方法
CN104029395A (zh) * 2014-05-31 2014-09-10 大连理工大学 一种激光近净成形过程中快速确定激光功率的方法
CN104226980A (zh) * 2014-07-29 2014-12-24 中国科学院重庆绿色智能技术研究院 增强金属粉体材料激光能量吸收效率的方法
CN107983956A (zh) * 2017-10-20 2018-05-04 杭州先临三维云打印技术有限公司 一种3d打印用粉料、制备方法及其用途
CN109332691A (zh) * 2018-10-31 2019-02-15 有研工程技术研究院有限公司 一种纳米铜粉3d打印激光烧结参数确定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
朱晓云 等: "《有色金属特种功能 粉体材料制备技术及应用》", 31 October 2011, 冶金工业出版社 *
魏志刚: "化学镀法制备镍包铜包覆粉末的新研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020254108A1 (de) * 2019-06-19 2020-12-24 Infinite Flex GmbH Pulver zum lasersintern und verwendung
EP3795276A1 (en) * 2019-09-18 2021-03-24 Nabtesco Corporation Powder particle for shaped metal object
CN111001819A (zh) * 2019-12-16 2020-04-14 广东正德材料表面科技有限公司 一种提高铝合金粉体激光吸收率的方法
FR3106289A1 (fr) * 2020-01-20 2021-07-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives Particules metalliques nanostucturees pour la fabrication additive
WO2021160684A1 (en) * 2020-02-11 2021-08-19 Katholieke Universiteit Leuven Surface-modified metal or metal alloy powder and method of producing the same
CN113634745A (zh) * 2021-08-06 2021-11-12 金华职业技术学院 一种化学镀法制备NiCu双层合金粉末的方法及其应用
CN114855130A (zh) * 2022-04-27 2022-08-05 鑫合德(清远)智能科技发展有限公司 一种低激光反射率铬包铜复合粉体的制备方法及其制备装置
CN114855130B (zh) * 2022-04-27 2023-11-21 鑫合德(清远)智能科技发展有限公司 一种低激光反射率铬包铜复合粉体的制备方法及其制备装置
CN115156525A (zh) * 2022-06-22 2022-10-11 广东省科学院新材料研究所 一种基于静电自组装的活性修饰球形镁合金粉体及其制备方法和应用
CN115846689A (zh) * 2022-11-15 2023-03-28 哈尔滨工业大学(威海) 一种激光粉末床熔融gh3230合金的固溶处理方法及gh3230合金
CN115846689B (zh) * 2022-11-15 2023-08-18 哈尔滨工业大学(威海) 一种激光粉末床熔融gh3230合金的固溶处理方法及gh3230合金

Similar Documents

Publication Publication Date Title
CN109746435A (zh) 一种表面改性的高激光反射率金属粉体及3d打印方法
CN105598467B (zh) 一种具有核壳结构的耐高温银包镍包铜导电粉体的制备方法
CN100496814C (zh) 一种纳米镍包铝粉的制备方法
JP5639045B2 (ja) 固溶体型合金微粒子からなる微粒子群の製造方法
CN100549244C (zh) 一种长方形金核/钯壳双金属纳米棒及其制备方法
Muench Electroless plating of metal nanomaterials
CN102649201B (zh) 预涂用焊膏
ZOU et al. Size-dependent melting properties of Sn nanoparticles by chemical reduction synthesis
JP4128793B2 (ja) 無電解メッキプロセスにおける金属ナノ粒子活性化液の利用法
CN102161104A (zh) 一种铜银复合粉的制备方法
US8574338B2 (en) Reactor and continuous process for producing silver powders
CN103878366B (zh) 铜包覆铬复合粉末及其制备方法和应用
JP5895344B2 (ja) ハンダ粉末の製造方法及びこの方法により製造されたハンダ粉末を用いてハンダ用ペーストを製造する方法
JP2008138266A (ja) ハンダ粉末及び該粉末を用いたハンダ用ペースト
KR20140037951A (ko) 땜납 분말 및 이 분말을 사용한 땜납용 페이스트
US20080045397A1 (en) Noble metal alkali borosilicate glass composition
Ahn et al. Transforming noble‐metal nanocrystals into complex nanostructures through facet‐selective etching and deposition
CN109894610A (zh) 一种金属包覆球形铸造碳化钨粉末及其制备方法
JP5649932B2 (ja) 金属被覆金属酸化物微粒子の製造方法および金属被覆金属酸化物微粒子
Chimentão et al. Synthesis of silver-gold alloy nanoparticles by a phase-transfer system
CN107051429A (zh) 一种可调控结构的铂基双金属纳米催化剂及其制备方法和应用
JP5750913B2 (ja) ハンダ粉末及びこの粉末を用いたハンダ用ペースト
Guzman et al. Plasmon manipulation by post-transition metal alloying
CN107639235B (zh) 一种金铜纳米线材料的制备方法及其应用
JPH0372683B2 (zh)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190514