CN109713006B - 一种制作磁性随机存储器单元阵列及其周围电路的方法 - Google Patents

一种制作磁性随机存储器单元阵列及其周围电路的方法 Download PDF

Info

Publication number
CN109713006B
CN109713006B CN201711007730.4A CN201711007730A CN109713006B CN 109713006 B CN109713006 B CN 109713006B CN 201711007730 A CN201711007730 A CN 201711007730A CN 109713006 B CN109713006 B CN 109713006B
Authority
CN
China
Prior art keywords
bottom electrode
metal
hole
copper
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711007730.4A
Other languages
English (en)
Other versions
CN109713006A (zh
Inventor
肖荣福
张云森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Information Technologies Co ltd
Original Assignee
Shanghai Information Technologies Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Information Technologies Co ltd filed Critical Shanghai Information Technologies Co ltd
Priority to CN201711007730.4A priority Critical patent/CN109713006B/zh
Publication of CN109713006A publication Critical patent/CN109713006A/zh
Application granted granted Critical
Publication of CN109713006B publication Critical patent/CN109713006B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Memories (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本发明提供了一种制作磁性随机存储器单元阵列及其周围电路的方法,包括如下步骤:(1)提供表面抛光的带金属连线的CMOS基底,并在基底上制作底电极通孔,接着在底电极通孔中填满金属铜形成底电极通孔填充,然后移除底电极通孔顶部的部分金属铜;(2)沉积底电极金属将底电极通孔顶部被移除了金属铜的通孔空间填满,并使底电极金属覆盖整个底电极通孔周边电介质表面,然后磨平底电极金属并使底电极金属保持适当厚度;(3)在存储区域制作磁性隧道结结构单元;(4)在逻辑区域制作顶电极通孔和实现逻辑单元/存储单元相连接的金属铜连线。

Description

一种制作磁性随机存储器单元阵列及其周围电路的方法
技术领域
本发明涉及一种制作磁性随机存储器单元阵列及其周围电路的方法,属于磁性随机存储器(MRAM,Magnetic Radom Access Memory)制造技术领域。
背景技术
近年来,采用磁性隧道结(MTJ,Magnetic Tunnel Junction)的MRAM被人们认为是未来的固态非易失性记忆体,它具有高速读写、大容量以及低能耗的特点。铁磁性MTJ通常为三明治结构,其中有磁性记忆层,它可以改变磁化方向以记录不同的数据;位于中间的绝缘的隧道势垒层;磁性参考层,位于隧道势垒层的另一侧,它的磁化方向不变。
为能在这种磁电阻元件中记录信息,建议使用基于自旋动量转移或称自旋转移矩(STT,Spin Transfer Torque)转换技术的写方法,这样的MRAM称为STT-MRAM。根据磁极化方向的不同,STT-MRAM又分为面内STT-MRAM和垂直STT-MRAM(即pSTT-MRAM),后者有更好的性能。依此方法,即可通过向磁电阻元件提供自旋极化电流来反转磁性记忆层的磁化强度方向。此外,随着磁性记忆层的体积的缩减,写或转换操作需注入的自旋极化电流也越小。因此,这种写方法可同时实现器件微型化和降低电流。
同时,鉴于减小MTJ元件尺寸时所需的切换电流也会减小,所以在尺度方面pSTT-MRAM可以很好的与最先进的技术节点相契合。因此,期望是将pSTT-MRAM元件做成极小尺寸,并具有非常好的均匀性,以及把对MTJ磁性的影响减至最小,所采用的制备方法还可实现高良莠率、高精确度、高可靠性、低能耗,以及保持适于数据良好保存的温度系数。同时,非易失性记忆体中写操作是基于阻态变化,从而需要控制由此引起的对MTJ记忆器件寿命的破坏与缩短。然而,制备一个小型MTJ元件可能会增加MTJ电阻的波动,使得pSTT-MRAM的写电压或电流也会随之有较大的波动,这样会损伤MRAM的性能。
在现在的MRAM制造工艺中,为了实现MRAM电路缩微化的要求,通常在表面抛光的CMOS通孔(VIAx(x>=1))上直接制作MTJ单元,即:所谓的on-axis结构。在采用铜制程的CMOS电路中,所有通孔(VIA)和连线(M,Metal)所采用的材料都是金属铜。然而,由于MTJ结构单元的尺寸要比VIAx(x>=1)顶部开口尺寸小,在刻蚀磁性隧道结及其底电极的时候,为了使MTJ单元之间完全隔断,必须进行过刻蚀,在过刻蚀中,没有被磁性隧道结及其底电极覆盖的铜VIAx(x>=1)的区域将会被部分刻蚀,同时也会损伤其扩散阻挡层(Ta/TaN),这样将会形成铜VIAx(x>=1)到其外面的low-k电介质的扩散通道,Cu原子将会扩散到low-k电介质中,这势必会对磁性随机存储器的电学性能,比如:时间相关介质击穿(TDDB,TimeDependent Dielectric Breakdown)和电子迁移率(EM,Electron Mobility)等,造成损伤。
另外,在磁性隧道结及其底电极过刻蚀过程中,由于离子轰击(IonBombardment),将会把铜原子及其形成化合物溅射到磁性隧道结的侧壁和被刻蚀的low-k材料的表面,从而对整个MRAM器件造成污染。
发明内容
本发明的一种制作磁性随机存储器单元阵列及其周围电路的方法,提供在两层金属之间,进行磁性随机存储器件及其周围逻辑电路的制作工艺,和对准方式。在存储区域,采用在金属连线(Mx,Metalx(x>=1))上,依次制作底电极通孔(BEV,Bottom ElectrodeVia)、底电极(BEC,Bottom Electrode)、磁性隧道结结构单元(MTJ);BEV、BE和MTJ依次对齐;在逻辑电路区域,则采用顶电极通孔(TEV)和底电极通孔(BEV)直接相连接的方式实现,BEV和TEV依次对齐;最后,在顶电极通孔(TEV)上和MTJ顶部直接制作一层金属连线(Mx+1,x>=1)以实现磁性随机存储器逻辑区域和存储区域之间的连接。特别的,在生长磁性隧道结之前,采用化学移除工艺先将底电极通孔(BEV)中填充的铜顶部部分去除,填充一种非铜的金属材料。
本发明包括但不只限于制备磁性随机存储器(MRAM),也不限于任何工艺顺序或流程,只要制备得到的产品或装置与以下优选工艺顺序或流程制备得到的相同或相似方法,其具体技术方案如下:
一种制作磁性随机存储器单元阵列及其周围电路的方法,包括如下步骤:
步骤1:提供表面抛光的带金属连线的CMOS基底,并在基底上制作底电极通孔,接着在底电极通孔中填满金属铜形成底电极通孔填充,然后移除底电极通孔顶部的部分金属铜;
步骤2:沉积底电极金属将底电极通孔顶部被移除了金属铜的通孔空间填满,并使底电极金属覆盖整个底电极通孔周边电介质表面,然后磨平底电极金属并使底电极金属保持适当厚度;
步骤3:在存储区域制作磁性隧道结结构单元;
步骤4:在逻辑区域制作顶电极通孔和实现逻辑单元/存储单元相连接的金属铜连线。
进一步地,步骤1包括如下细分步骤:
步骤1.1:在基底上沉积扩散阻挡层和底电极通孔电介质;
步骤1.2:在存储区域和逻辑区域同时图形化定义底电极通孔图案,刻蚀形成底电极通孔,在刻蚀之后除去残留的杂质;
步骤1.3:填充金属铜到底电极通孔里面,磨平金属铜形成底电极通孔填充;
步骤1.4:移除底电极通孔顶部的部分铜金属,形成部分底电极通孔。
更进一步地,步骤1.2中,扩散阻挡层的厚度为10nm~50nm。扩散阻挡层的的材料选自SiN、SiC或SiCN。底电极通孔电介质的厚度为60nm~150nm。底电极通孔电介质的材料选自SiO2、SiON或低介电常数介电质,低介电常数介电质是指介电常数低于SiO2的材料。
更进一步地,步骤1.1中,在沉积金属铜之前,在底电极通孔内事先沉积一层Ti/TiN或Ta/TaN和铜种子层。
更进一步地,步骤1.4中,采用铜电镀反刻蚀、反应离子刻蚀回刻、阳极电抛光之中的一种方式实现移除。
进一步地,步骤2中,底电极金属的材料选自Ta、TaN、Ti、TiN、W或WN之中的一种。采用化学机械抛光磨平底电极金属。
本发明的有益效果:在生长磁性隧道结之前,采用化学移除工艺先将底电极通孔(BEV)中填充的铜顶部部分去除,填充一种非铜的金属材料,隔断了CMOS后段铜通孔和磁性隧道结阵列的直接接着,有效的防止了在MTJ刻蚀过程中刻蚀气体与BEV中铜的直接接着,节省了一道底电极接着层(BEC)的光刻制造工艺,通过自对准的方法一步IN-SITU制做MTJ和BE,进而减少了MTJ与BEV对准的误差,有利于器件电学性能和良率的提升。同时,由于没有在磁性隧道结上面,进行顶电极通孔(TEV,Top Electrode Via)的制作,这样极大的降低了工艺复杂程度和制造成本。
附图说明
附图是根据本发明优选实施例的一种制作磁性随机存器阵列及其周围电路的方法的各个步骤的示意图。其中:
图1(a)至图1(d)是制作底电极通孔填充的步骤示意图;
图2(a)至图2(b)是沉积底电极金属的步骤示意图;
图3(a)至图3(d)是制作磁性隧道结结构单元的步骤示意图;
图4(a)是两次单镶嵌工艺制作金属连线的结构示意图;
图4(b)是一次双镶嵌工艺制作金属连线的结构示意图;
附图标记说明:100-表面抛光的带金属连线(Mx(x>=1)的CMOS基底;201-底电极通孔(BEV)扩散阻挡层;202-底电极通孔(BEV)电介质;2031-底电极通孔(BEV)(存储区域);2032-底电极通孔(BEV)(逻辑区域);2041-底电极通孔(BEV)填充扩散阻挡层(存储区域);2042-底电极通孔(BEV)填充扩散阻挡层(逻辑区域);2051-底电极通孔(BEV)填充(存储区域);2052-底电极通孔(BEV)填充(逻辑区域);2061-再次形成的底电极通孔(存储区域);2062-部分移除的底电极通孔(逻辑区域);301-底电极(BE)金属层;302-包括种子层的磁性隧道结(MTJ);303-刻蚀硬掩模;304-电介质覆盖层;401-磁性隧道结电介质;402-顶电极通孔(TEV)填充扩散阻挡层(逻辑区域);403-顶电极通孔(TEV)(逻辑区域);501-金属连线(Mx+1(x>=1)扩散阻挡层,502-金属连线(Mx+1(x>=1)。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。需说明的是,本发明附图均采用简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
本发明的一种制作磁性随机存储器单元阵列及其周围电路的方法,提供在两层金属之间,进行磁性随机存储器件及其周围逻辑电路的制作工艺,和对准方式。在存储区域,采用在金属连线(Mx,Metalx(x>=1)上,依次制作底电极通孔(BEV,Bottom ElectrodeVia),底电极(BEC,Bottom Electrode),磁性隧道结结构单元(MTJ);BEV、BE和MTJ依次对齐;在逻辑电路区域,则采用顶电极通孔(TEV)和底电极通孔(BEV)直接相连接的方式实现,BEV和TEV依次对齐;最后,在顶电极通孔(TEV)上和MTJ顶部直接制作一层金属连线(Mx+1,x>=1)以实现磁性随机存储器逻辑区域和存储区域之间的连接。
特别的,在生长磁性隧道结之前,采用化学移除工艺先将底电极通孔(BEV)中填充的铜顶部部分去除,填充一种非铜的金属材料,隔断了CMOS后段铜通孔和磁性隧道结阵列的直接接着,有效的防止了在MTJ刻蚀过程中刻蚀气体与BEV中铜的直接接着,节省了一道底电极接着层(BEC)的光刻制造工艺,通过自对准的方法一步IN-SITU制做MTJ和BE,进而减少了MTJ与BEV对准的误差,有利于器件电学性能和良率的提升。同时,由于没有在磁性隧道结上面,进行顶电极通孔(TEV,Top Electrode Via)的制作,这样极大的降低了工艺复杂程度和制造成本。
本发明包括但不只限于制备磁性随机存储器(MRAM),也不限于任何工艺顺序或流程,只要制备得到的产品或装置与以下优选工艺顺序或流程制备得到的相同或相似方法,其具体步骤如下:
步骤1:提供表面抛光的带金属连线(Mx(x>=1)的CMOS基底100,并在其上制作底电极通孔(BEV,Bottom Electrode Via)2031、2032。然后,采用标准的单镶嵌(SD,SingleDamascene)工艺进行金属铜的填充,最后,采用移除工艺部分移除底电极通孔。
更进一步地,可以分为如下的形成步骤:
步骤1.1:沉积扩散阻挡层201和底电极通孔电介质202,如图1(a)所示,其中,扩散阻挡层201既可以作为阻挡金属连线(Mx)中铜向底电极通孔电介质202的扩散阻挡层,又可以做为BEV刻蚀的刻蚀阻挡层,其厚度为10nm~50nm,形成材料可以为SiN、SiC或SiCN等;底电极通孔电介质202的厚度为60nm~150nm,形成材料可以为SiO2、SiON或low-k等;
其中,低介电常数(low-k)介电质是指介电常数(k)低于二氧化硅(k=3.9)的材料,在具体实施时,low-k材料可以是含氢硅酸盐(Hydrogen Silsequioxane,HSQ,k=2.8~3.0),含有Si-CH3官能基的含甲基硅酸盐类(Methylsilsesquioxane,MSQ,k=2.5~2.7,综合含氢硅酸盐类HSQ和含甲基硅酸盐类MSQ所合成的混合式有机硅氧烷聚合物(HybridOrganic Siloxane Polymer,HOSP)薄膜(k=2.5),多孔SiOCH薄膜(k=2.3~2.7),甚至可以采用超低介电常数(k<2.0)的多孔性硅酸盐(Porous Silicate)等有机类高分子化合物及介电常数(k)为1.9的多孔SiOCH薄膜。
步骤1.2:在存储区域和逻辑区域同时图形化定义底电极通孔(BEV)2031,3032图案,刻蚀形成底电极通孔(BEV)2031、2032,如图1(b)所示。在刻蚀之后,一般采用干法工艺和/或湿法清洗工艺除去残留的聚合物;
步骤1.3:填充金属铜到底电极通孔(BEV)2031、2032里面,并采用化学机械抛光(CMP,Chemical Mechanical Planarization)磨平,形成底电极通孔填充2051、2052,如图1(c)所示,其中,通常在电镀铜之前,都会事先沉积一层Ti/TiN或Ta/TaN防止扩散层2041、2042和铜种子层。
步骤1.4:采用化学移除工艺去除底电极通孔(BEV)中顶部的铜金属2051、2052,形成部分底电极通孔2061、2062,如图1(d)所示。其中,移除工艺可以采用铜电镀反刻蚀(关闭铜电镀的电源,或者交换铜电镀电压正负极),反应离子刻蚀(RIE,Reactive Ion Etching)回刻技术,或阳极电抛光等技术等方式实现。在整个化学移除工艺中,尽量保持BEV周边的电介质材料不被移除。
步骤2:沉积底电极(BE,Bottom Electrode)金属301,将BEV顶部被移除了铜材料的通孔空间填满,使其覆盖整个BEV周边电介质表面,如图2(a)所示。然后采用化学机械抛光(CMP)磨平并使底电极金属层保持一定厚度,如图2(b)所示。其中,底电极金属(BE)301可以是Ta、TaN、Ti、TiN、W或WN等;
其中,沉积底电极(BE)金属301为20nm~80nm,可以采用化学气相沉积(CVD,Chemical Vapor Deposition),物理气相沉积(PVD,Physical Vapor Deposition),原子层沉积(ALD,Atomic Layer Deposition)或离子束沉积(IBD,Ion Beam Deposition)等方式实现;
步骤3:在存储区域,制作包括底电极和顶部的硬掩膜层的磁性隧道结结构单元(MTJ)阵列;
更进一步地,可以分为如下的形成步骤:
步骤3.1:在磨平的底电极(BE)301上,依次形成种子层、磁性隧道结多层膜302和硬掩膜层303,如图3(a)所示。
磁性隧道结(MTJ)多层膜的总厚度为15nm~40nm,可以是由参考层、势垒层和记忆层的依次向上叠加的Bottom Pinned结构或者是由记忆层、势垒层和参考层的依次向上叠加的Top Pinned结构。
进一步地,参考层具有磁极化不变性,根据其是面内型(iSTT-MRAM)或垂直(pSTT-MRAM)结构有所不同。面内型(iSTT-MRAM)的参考层一般具有(IrMn或PtMn)/CoFe/Ru/CoFe/CoFeB结构,其优选总厚度为10~30nm;垂直型(pSTT-MRAM)的参考层一般具有TbCoFe或[Co/Pt]/Co/Ru/[CoPt]/CoFeBm超晶格多层膜结构,通常下面需要一层种子层,例如Ta/Pt,其优选参考层总厚度为8~20nm。
进一步地,势垒层为非磁性金属氧化物,优选MgO或Al2O3,其厚度为0.5nm~3nm。
更进一步地,可以采用双层MgO的结构。
进一步地,记忆层具有可变磁极化,根据其是面内型(iSTT-MRAM)或垂直(pSTT-MRAM)结构又所不同。面内型iSTT-MRAM的记忆层一般为CoFe/CoFeB或CoFe/NiFe,其优选厚度为2nm~6nm,垂直型pSTT-MRAM记忆层一般为CoFeB、CoFe/CoFeB、Fe/CoFeB、CoFeB(Ta,W,Mo)/CoFeB,其优选厚度为0.8nm~2nm。
顶部硬掩膜层302的厚度为20nm~100nm,选择Ta、TaN、W或WN等以期在卤素电浆中获得更好刻轮廓。
步骤3.2:图形化定义磁性隧道结图案,并对硬掩模303、磁性隧道结多层膜302和底电极301进行自对准一次性刻蚀,全部去除底电极通孔周边电介质上的底电极金属材料,仅保留底电极通孔中顶部的非铜金属材料,防止刻蚀气体直接与底电极通孔中下部的铜金属接着,如图3(b)所示;
在此过程中,采用一次光刻一次刻蚀(LE,lithography-etching)或者两次光刻两次刻蚀(LELE,lithography-etching-lithography-etching)的方法完成对磁性隧道结的定义和顶硬掩模303的反应离子(RIE)刻蚀,并同时采用RIE或湿法工艺除去残留的聚合物,以使图案转移到磁性隧道结的顶部。
采用反应离子刻蚀(RIE,Reactive Ion Etching)和/或者离子束刻蚀(IBE,IonBeam Etching)的方法完成对磁性隧道结302和底电极301的刻蚀;
其中,IBE主要采用Ar、Kr或者Xe等作为离子源;RIE主要采用CH3OH、CH4/Ar,C2H5OH、CH3OH/Ar或者CO/NH3等作为主要刻蚀气体;
步骤3.3:在底电极301、磁性隧道结402和顶硬掩膜层403周围沉积一层电介质覆盖保护层304并覆盖整个被刻蚀的区域,同时,包括顶部的硬掩膜层;如图3(c)所示;其中,电介质覆盖层304材料为SiC、SiN或者SiCN等,其形成方法可以采用化学气相沉积(CVD)、原子层沉积(ALD)或者离子束沉积(IBD)等方式实现。
步骤3.4:沉积磁性隧道结电介质401在电介质覆盖层周围304,并采用化学机械抛光(CMP)磨平磁性隧道结电介质401直到顶掩模顶303,如图3(d)所示。
其中,磁性隧道结电介质401可以为SiO2、SiON或low-k等。
步骤4:在逻辑区域,制作顶电极通孔(TEV,Top Electrode Via)和实现逻辑单元/存储单元相连接的金属铜连线(Mx+1)502。在此步骤中,可以采用两次单镶嵌(SD,SingleDamascene)或者一次双镶嵌(DD,Dual Damascene)工艺实现。
实施案例一:两次单镶嵌(SD,Single Damascene)工艺,如图4(a)所示;其步骤如下:
步骤4.1.1:在逻辑区域,图形化定义并采用刻蚀工艺形成顶电极通孔(TEV),使之连接到BEV 2052,在存储区域,使金属连线(Mx+1)502直接和硬掩模303直接连接;通常,在刻蚀之后采用清洗工艺除去聚合物;
步骤4.1.2:填充顶电极通孔金属403,并采用化学机械抛光(CMP)磨平;其中,通常在电镀(ECP,Electro Chemical Plating)铜之前,都会事先沉积一层Ti/TiN或Ta/TaN防止扩散层402和铜种子层。
步骤4.1.3:沉积金属连线(Mx+1)电介质,图形化定义并刻蚀形成连接逻辑区域和存储区域的金属连线槽,电镀铜到连线槽里面,并采用化学机械抛光磨平,以形成连接逻辑区域和存储区域的金属铜连线(Mx+1)502;其中,金属连线(Mx+1)电介质的厚度为50nm~300nm,其材料为SiO2、SiON或low-k等,通常在沉积之前,都会沉积一层厚度为几十纳米的刻蚀阻挡层,其材料为SiN、SiC或SiCN等;在电镀铜之前,都会事先沉积一层Ti/TiN或Ta/TaN防止扩散层501和铜种子层。
实施案例二:一次双镶嵌(DD,Dual Damascene)工艺,如图4(b)所示;其步骤如下:
步骤4.2.1:在表面抛光的磁性隧道结电介质401表面,沉积金属连线(Mx+1)电介质;金属连线(Mx+1)电介质602的厚度为50nm~300nm,其材料为SiO2、SiON或low-k等,通常在沉积之前,都会沉积一层厚度为几十纳米的刻蚀阻挡层,其材料为SiN、SiC或SiCN等;
步骤4.2.2:在逻辑区域,图形化定义并采用刻蚀工艺形成顶电极通孔(TEV)和连接逻辑区域和存储区域的金属连线槽,使TEV连接到BEV2052。在存储区域和逻辑区域,同时图形化定义并采用刻蚀工艺形成金属连线(Mx+1)502,使其和存储区域的硬掩模303和逻辑区域的顶电极通孔(TEV)直接连接;通常,在刻蚀之后采用清洗工艺除去聚合物;
步骤4.2.3:填充顶电极通孔铜金属403和金属铜连线(Mx+1)502,并采用化学机械抛光磨平;其中,通常在电镀铜之前,都会事先沉积一层Ti/TiN或Ta/TaN防止扩散层501和铜种子层。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (9)

1.一种制作磁性随机存储器单元阵列及其周围电路的方法,其特征在于,包括如下步骤:
步骤1:提供表面抛光的带金属连线的CMOS基底,并在所述基底上制作底电极通孔,接着在所述底电极通孔中填满金属铜形成底电极通孔填充,然后移除所述底电极通孔顶部的部分所述金属铜;
所述步骤1包括如下细分步骤:步骤1.1:在所述基底上沉积扩散阻挡层和底电极通孔电介质;步骤1.2:在存储区域和逻辑区域同时图形化定义所述底电极通孔图案,刻蚀形成所述底电极通孔,在刻蚀之后除去残留的杂质;步骤1.3:填充所述金属铜到所述底电极通孔里面,磨平所述金属铜形成底电极通孔填充;步骤1.4:移除所述底电极通孔顶部的部分所述金属铜,形成部分底电极通孔;
步骤2:沉积底电极金属将所述底电极通孔顶部被移除了所述金属铜的通孔空间填满,并使所述底电极金属覆盖整个所述底电极通孔周边电介质表面,然后磨平所述底电极金属并使所述底电极金属保持适当厚度;
步骤3:在存储区域制作磁性隧道结结构单元;
步骤4:在逻辑区域制作顶电极通孔和实现逻辑单元/存储单元相连接的金属铜连线。
2.根据权利要求1所述的一种制作磁性随机存储器单元阵列及其周围电路的方法,其特征在于,步骤1.1中所述扩散阻挡层的厚度为10nm~50nm。
3.根据权利要求1所述的一种制作磁性随机存储器单元阵列及其周围电路的方法,其特征在于,步骤1.1中所述扩散阻挡层的材料选自SiN、SiC或SiCN。
4.根据权利要求1所述的一种制作磁性随机存储器单元阵列及其周围电路的方法,其特征在于,步骤1.1中所述底电极通孔电介质的厚度为60nm~150nm。
5.根据权利要求1所述的一种制作磁性随机存储器单元阵列及其周围电路的方法,其特征在于,步骤1.1中所述底电极通孔电介质的材料选自SiO2、SiON或低介电常数介电质,所述低介电常数介电质是指介电常数低于SiO2的材料。
6.根据权利要求1所述的一种制作磁性随机存储器单元阵列及其周围电路的方法,其特征在于,步骤1.3中,在沉积所述金属铜之前,在所述底电极通孔内事先沉积一层Ti/TiN或Ta/TaN和铜种子层。
7.根据权利要求1所述的一种制作磁性随机存储器单元阵列及其周围电路的方法,其特征在于,步骤1.4中,采用铜电镀反刻蚀、反应离子刻蚀回刻、阳极电抛光之中的一种方式实现所述移除。
8.根据权利要求1所述的一种制作磁性随机存储器单元阵列及其周围电路的方法,其特征在于,步骤2中所述底电极金属的材料选自Ta、TaN、Ti、TiN、W或WN之中的一种。
9.根据权利要求1所述的一种制作磁性随机存储器单元阵列及其周围电路的方法,其特征在于,步骤2中,采用化学机械抛光磨平所述底电极金属。
CN201711007730.4A 2017-10-25 2017-10-25 一种制作磁性随机存储器单元阵列及其周围电路的方法 Active CN109713006B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711007730.4A CN109713006B (zh) 2017-10-25 2017-10-25 一种制作磁性随机存储器单元阵列及其周围电路的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711007730.4A CN109713006B (zh) 2017-10-25 2017-10-25 一种制作磁性随机存储器单元阵列及其周围电路的方法

Publications (2)

Publication Number Publication Date
CN109713006A CN109713006A (zh) 2019-05-03
CN109713006B true CN109713006B (zh) 2023-03-24

Family

ID=66253362

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711007730.4A Active CN109713006B (zh) 2017-10-25 2017-10-25 一种制作磁性随机存储器单元阵列及其周围电路的方法

Country Status (1)

Country Link
CN (1) CN109713006B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112086555B (zh) * 2019-06-14 2024-04-23 上海磁宇信息科技有限公司 一种制备磁性隧道结单元阵列的方法
CN110112288B (zh) * 2019-06-14 2022-11-04 上海磁宇信息科技有限公司 一种制备磁性隧道结单元阵列的方法
CN112133822A (zh) * 2019-06-25 2020-12-25 中电海康集团有限公司 自对准的mram底电极制备方法
CN112447900A (zh) * 2019-09-03 2021-03-05 浙江驰拓科技有限公司 电极组件制备方法
CN112635658A (zh) * 2019-09-24 2021-04-09 浙江驰拓科技有限公司 磁随机存储器的制备方法
US11462583B2 (en) * 2019-11-04 2022-10-04 International Business Machines Corporation Embedding magneto-resistive random-access memory devices between metal levels

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7183199B2 (en) * 2003-12-01 2007-02-27 Taiwan Semiconductor Manufacturing Co., Ltd. Method of reducing the pattern effect in the CMP process
JP5243746B2 (ja) * 2007-08-07 2013-07-24 ルネサスエレクトロニクス株式会社 磁気記憶装置の製造方法および磁気記憶装置
US9159910B2 (en) * 2008-04-21 2015-10-13 Qualcomm Incorporated One-mask MTJ integration for STT MRAM
CN102931205B (zh) * 2011-08-12 2016-02-17 中芯国际集成电路制造(上海)有限公司 一种存储器件及其的形成方法
CN102364673A (zh) * 2011-11-10 2012-02-29 上海华力微电子有限公司 一种铜互连的形成方法
US10008538B2 (en) * 2015-11-20 2018-06-26 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure and method of forming the same

Also Published As

Publication number Publication date
CN109713006A (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
CN108232009B (zh) 一种制作磁性随机存储器的方法
CN109713006B (zh) 一种制作磁性随机存储器单元阵列及其周围电路的方法
CN109994602B (zh) 一种制备磁性随机存储器存储单元与逻辑单元的方法
CN108232008B (zh) 一种磁性随机存储器底电极接触及其制备方法
EP3772117B1 (en) Method for forming a semiconductor structure
CN109545744B (zh) 一种磁性随机存储器单元阵列及周边电路连线的制造方法
CN109713121B (zh) 一种制作磁性随机存储器单元阵列及其周围电路的方法
CN109545745A (zh) 一种磁性随机存储器单元阵列及周边电路连线的制造方法
CN109545958A (zh) 一种磁性随机存储器单元阵列及周边电路连线的制造方法
CN109545957A (zh) 一种磁性随机存储器单元阵列及周边电路连线的制造方法
CN108735895B (zh) 磁性随机存储器底电极接触及其形成方法
CN111613572A (zh) 一种磁性随机存储器存储单元及其***电路的制备方法
CN109713120A (zh) 一种磁性随机存储器单元阵列及周边电路连线的制造方法
CN109994600B (zh) 一种磁性随机存储器的制作方法
CN109713119A (zh) 一种磁性随机存储器单元阵列及周边电路连线的制造方法
CN109994601B (zh) 一种制作磁性随机存储器电路连接的方法
CN111613719A (zh) 一种制作磁性随机存储器单元阵列的方法
CN111668368B (zh) 一种假磁性隧道结单元结构制备方法
CN111613571B (zh) 一种制作磁性随机存储器单元阵列的方法
CN108735893B (zh) 一种磁性随机存储器底电极接触及其形成方法
CN110098320B (zh) 一种刻蚀磁性隧道结导电硬掩模的方法
CN111816763B (zh) 一种磁性隧道结存储阵列单元及其***电路的制备方法
CN109994476B (zh) 一种制备磁性随机存储器阵列单元的方法
CN111816224B (zh) 一种磁性隧道结存储阵列单元及其***电路的制备方法
CN112086555B (zh) 一种制备磁性隧道结单元阵列的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant