CN109449410B - 一种氮、硫共掺杂二硫化钨钠离子电池负极材料的制备方法 - Google Patents

一种氮、硫共掺杂二硫化钨钠离子电池负极材料的制备方法 Download PDF

Info

Publication number
CN109449410B
CN109449410B CN201811280597.4A CN201811280597A CN109449410B CN 109449410 B CN109449410 B CN 109449410B CN 201811280597 A CN201811280597 A CN 201811280597A CN 109449410 B CN109449410 B CN 109449410B
Authority
CN
China
Prior art keywords
sulfur
nitrogen
ion battery
sodium ion
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811280597.4A
Other languages
English (en)
Other versions
CN109449410A (zh
Inventor
黄剑锋
罗晓敏
曹丽云
李嘉胤
王蓉
徐培光
王泽坤
王芳敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201811280597.4A priority Critical patent/CN109449410B/zh
Publication of CN109449410A publication Critical patent/CN109449410A/zh
Application granted granted Critical
Publication of CN109449410B publication Critical patent/CN109449410B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

一种氮、硫共掺杂二硫化钨钠离子电池负极材料的制备方法,将六氯化钨加入乙醇中磁力搅拌至完全溶解形成澄清溶液,然后加入硫代乙酰胺、三聚氰胺和三聚硫氰酸,在200~240℃下进行均相反应4~48h,得到黑色粉体;将黑色粉体在氩气气氛保护下煅烧,得到氮、硫共掺杂二硫化钨钠离子电池负极材料。本发明以六氯化钨、硫代乙酰胺和碳布原料,通过三聚氰胺和三聚硫氰酸协助的溶剂热和热处理等方法成功地制备出氮、硫共掺杂的WS2电极材料。本发明操作过程简单,反应温度也易控制。氮、硫共掺杂给电极材料本身提供了更多的活性位点,有利于离子、电子的传输,从而提升电池的电化学性能。

Description

一种氮、硫共掺杂二硫化钨钠离子电池负极材料的制备方法
技术领域
本发明涉及WS2纳米材料制备的技术领域,具体涉及一种氮、硫共掺杂二硫化钨钠离子电池负极材料的制备方法。
背景技术
WS2纳米材料因为具有独特的二维纳米结构,常规片状的二硫化钨晶体由S=W=S组成的单元层构成。在单元层中,每个W原子靠强共价键和两个S结合,晶体中原子通过排列组成网状平面结构,平面间通过较弱的范德华力结合。不溶于酸、碱、醇,具有一定的还原性,可与王水、硝酸和热的浓硫酸等具有强氧化性物质反应。同时具有较高的比表面积、表面效应、量子尺寸效应及小尺寸效应,广泛应用于电学材料、纳米传感器、纳米催化材料、纳米润滑材料等多个领域,是近年来国外研究的热门新型功能材料之一。
二硫化钨由于其独特的层状结构和较大的层间距利于电池在电化学充放电过程中离子的脱嵌,是一种很好的电极材料,但是由于其本身导电性差且在充放电过程中存在着较大的体积膨胀,导致材料的结构稳定性较差。根据国内外的研究进展,以碳材料作为基体,有利于电子的传输,并且可以缓解二硫化钨在充放电过程中的体积膨胀,有效的提高复合材料作为锂离子电池负极材料的电化学性能。例如Guowei Huang等人将二硫化钨与三维氧化石墨烯复合(Huang G,Liu H,Wang S,et al.Hierarchical architecture of WS2nanosheets on graphene frameworks with enhanced electrochemical propertiesfor lithium storage and hydrogen evolution[J].Journal of Materials ChemistryA,2015,3(47):24128-24138.)将其作为锂离子电池负极材料,复合之后的二硫化钨其电化学性能大幅提升,在100mA/g的电流密度下循环100圈,其容量保持在766mAh/g。但是,二硫化钨材料还存在着本身导电性差的问题,掺杂往往可以解决这一问题,材料中引入缺陷,有效提升了电解液接触的活性位点,控制载流子的数量,以提升材料的导电性,从而加快电子的传输提升材料的电化学性能。
发明内容
本发明的目的在于提供了一种氮、硫共掺杂二硫化钨钠离子电池负极材料的制备方法。
为实现上述目的,本发明采用如下的技术方案:
一种氮、硫共掺杂二硫化钨钠离子电池负极材料的制备方法,包括以下步骤:
步骤一:将六氯化钨加入乙醇中磁力搅拌至完全溶解形成黄色的澄清溶液,然后加入硫代乙酰胺、三聚氰胺和三聚硫氰酸,在200~220℃下进行均相反应4~48h,洗涤,干燥,得到黑色粉体;
步骤二:将黑色粉体在氩气气氛保护下煅烧,得到氮、硫共掺杂二硫化钨钠离子电池负极材料。
本发明进一步的改进在于,黄色的澄清溶液的浓度为0.025~0.1mol/L。
本发明进一步的改进在于,搅拌的速度为600~1000r/min,时间为5~15min。
本发明进一步的改进在于,六氯化钨与硫代乙酰胺的摩尔比为10:1;六氯化钨、三聚氰胺和三聚硫氰酸的质量比为(7~10):(0.5~2):(0.5~2)。
本发明进一步的改进在于,煅烧的温度为600~1000℃,时间为1~3h。
本发明进一步的改进在于,煅烧在低温管式炉中进行。
与现有技术相比,本发明具有的有益效果:本发明以六氯化钨、硫代乙酰胺和碳布原料,通过三聚氰胺和三聚硫氰酸协助的溶剂热和热处理等方法成功地制备出氮、硫共掺杂的WS2电极材料。本发明操作过程简单,反应温度也易控制,可快速制备出高纯度氮、硫共掺杂的WS2复合储钠电极材料。氮、硫共掺杂给电极材料本身提供了更多的活性位点,有利于离子、电子的传输,从而提升电池的电化学性能,使用本方法制得的氮、硫共掺杂的WS2电极材料在电化学领域中有广阔的研究价值和应用价值。
附图说明
图1为实施例3所制备的氮、硫共掺杂的WS2复合电极材料的X-射线衍射(XRD)图谱;
图2为实施例3所制备的氮、硫共掺杂的WS2复合电极材料的扫描电镜(SEM)照片。
图3为实施例3所制备的氮、硫共掺杂的WS2复合电极材料的循环性能图,电流密度为100mA g-1
具体实施方式
下面结合附图对本发明进行详细描述。
本发明包括以下步骤:
步骤一:将六氯化钨加入30~60mL乙醇溶液中磁力搅拌至完全溶解形成黄色的澄清溶液A,搅拌速度为600~1000r/min,搅拌时间5~15min。控制溶液浓度为0.025~0.1mol/L;
步骤二:在溶液A中加入硫代乙酰胺,控制摩尔比n(WCl6):n(CH3CSNH2)=10:1,再加入三聚氰胺和三聚硫氰酸,控制质量比m(WCl6):m(C3H6N6):m(C3H3N3S3)=(7~10):(0.5~2):(0.5~2),搅拌0.5-3h,形成均一混合溶液;
步骤三:将上述溶液转移至100mL聚四氟乙烯反应釜进行均相反应,反应温度为200~220℃,反应时间为4~48h,反应结束后自然冷却至室温。
步骤四:打开反应釜,取出产物依次采用无水乙醇和去离子水洗涤并离心分离,重复洗涤4~6次后置于温度为-40~-70℃,真空度为10~40Pa冷冻干燥机内干燥8~12h,即得到黑色粉体。
步骤五:将黑色粉体放入磁舟中,在低温管式炉中氩气气氛保护下,煅烧温度为600~1000℃,时间为1~3h,得到氮、硫共掺杂WS2电极材料。
实施例1
步骤一:将0.2975g六氯化钨加入30mL乙醇溶液中磁力搅拌至完全溶解形成黄色的澄清溶液A,搅拌速度为700r/min,搅拌时间8min。控制溶液浓度为0.025mol/L;
步骤二:在溶液A中加入0.5625g硫代乙酰胺,控制摩尔比n(WCl6):n(CH3CSNH2)=10:1,再加入三聚氰胺和三聚硫氰酸,控制质量比m(WCl6):m(C3H6N6):m(C3H3N3S3)=10:1:1,搅拌0.5h,形成均一混合溶液;
步骤三:将上述溶液转移至100mL聚四氟乙烯反应釜进行均相反应,反应温度为200℃,反应时间为12h,反应结束后自然冷却至室温。
步骤四:打开反应釜,取出产物依次采用无水乙醇和去离子水洗涤并离心分离,重复洗涤4次后置于温度为-60℃,真空度为10Pa冷冻干燥机内干燥8h,即得到黑色粉体。
步骤五:将黑色粉体放入磁舟中,在低温管式炉中氩气气氛保护下,600℃煅烧1h后得到氮、硫共掺杂WS2电极材料。
实施例2
步骤一:将0.595g六氯化钨加入40mL乙醇溶液中磁力搅拌至完全溶解形成黄色的澄清溶液A,搅拌速度为800r/min,搅拌时间5min。控制溶液浓度为0.0375mol/L;
步骤二:在溶液A中加入1.127g硫代乙酰胺,控制摩尔比n(WCl6):n(CH3CSNH2)=10:1,再加入三聚氰胺和三聚硫氰酸,控制质量比m(WCl6):m(C3H6N6):m(C3H3N3S3)=7:0.5:1,搅拌1.5h,形成均一混合溶液;
步骤三:将上述溶液转移至100mL聚四氟乙烯反应釜进行均相反应,反应温度为210℃,反应时间为4h,反应结束后自然冷却至室温。
步骤四:打开反应釜,取出产物依次采用无水乙醇和去离子水洗涤并离心分离,重复洗涤6次后置于温度为-40℃,真空度为35Pa冷冻干燥机内干燥10h,即得到黑色粉体。
步骤五:将黑色粉体放入磁舟中,在低温管式炉中氩气气氛保护下,700℃煅烧2h后得到氮、硫共掺杂WS2电极材料。
实施例3
步骤一:将1.19g六氯化钨加入60mL乙醇溶液中磁力搅拌至完全溶解形成黄色的澄清溶液A,搅拌速度为700r/min,搅拌时间8min。控制溶液浓度为0.05mol/L;
步骤二:在溶液A中加入2.25g硫代乙酰胺,控制摩尔比n(WCl6):n(CH3CSNH2)=10:1,再加入三聚氰胺和三聚硫氰酸,控制质量比m(WCl6):m(C3H6N6):m(C3H3N3S3)=9:2:1,搅拌3h,形成均一混合溶液;
步骤三:将上述溶液转移至100mL聚四氟乙烯反应釜进行均相反应,反应温度为200℃,反应时间为24h,反应结束后自然冷却至室温。
步骤四:打开反应釜,取出产物依次采用无水乙醇和去离子水洗涤并离心分离,重复洗涤5次后置于温度为-60℃,真空度为60Pa冷冻干燥机内干燥12h,即得到黑色粉体。
步骤五:将黑色粉体放入磁舟中,在低温管式炉中氩气气氛保护下,800℃煅烧3h后得到氮、硫共掺杂WS2电极材料。
用日本理学D/max2000PCX-射线衍射仪分析样品(氮、硫共掺杂的WS2电极材料),参见图1,发现样品与JCPDS编号为08-0237的六方晶系的WS2结构一致,说明该方法制得的产物为纯相。将该样品用场发射扫描电子显微镜(FESEM)进行观察,参见图2,可以看出所制备的产物分散性较好,尺寸分布均匀,呈现纳米片状。
参见图3,将其作为钠离子电池负极材料,在100mAg-1的电流密度下,循环100圈后,容量还剩485mAh g-1,从图3中可看出其循环稳定性较好。
实施例4
步骤一:将2.38g六氯化钨加入60mL乙醇溶液中磁力搅拌至完全溶解形成黄色的澄清溶液A,搅拌速度为700r/min,搅拌时间8min。控制溶液浓度为0.1mol/L;
步骤二:在溶液A中加入4.5g硫代乙酰胺,控制摩尔比n(WCl6):n(CH3CSNH2)=10:1,再加入三聚氰胺和三聚硫氰酸,控制质量比m(WCl6):m(C3H6N6):m(C3H3N3S3)=10:1.5:2,搅拌0.5h,形成均一混合溶液;
步骤三:将上述溶液转移至100mL聚四氟乙烯反应釜进行均相反应,反应温度为220℃,反应时间为10h,反应结束后自然冷却至室温。
步骤四:打开反应釜,取出产物依次采用无水乙醇和去离子水洗涤并离心分离,重复洗涤5次后置于温度为-70℃,真空度为20Pa冷冻干燥机内干燥8h,即得到黑色粉体。
步骤五:将黑色粉体放入磁舟中,在低温管式炉中氩气气氛保护下,1000℃煅烧1.5h后得到氮、硫共掺杂WS2电极材料。
实施例5
步骤一:将1.037g六氯化钨加入40mL乙醇溶液中磁力搅拌至完全溶解形成黄色的澄清溶液A,搅拌速度为700r/min,搅拌时间8min。控制溶液浓度为0.065mol/L;
步骤二:在溶液A中加入1.965g硫代乙酰胺,控制摩尔比n(WCl6):n(CH3CSNH2)=10:1,再加入三聚氰胺和三聚硫氰酸,控制质量比m(WCl6):m(C3H6N6):m(C3H3N3S3)=9:2:2,搅拌3h,形成均一混合溶液;
步骤三:将上述溶液转移至100mL聚四氟乙烯反应釜进行均相反应,反应温度为200℃,反应时间为12h,反应结束后自然冷却至室温;
步骤四:打开反应釜,取出产物依次采用无水乙醇和去离子水洗涤并离心分离,重复洗涤4次后置于温度为-60℃,真空度为10Pa冷冻干燥机内干燥8h,即得到黑色粉体;
步骤五:将黑色粉体放入磁舟中,在低温管式炉中氩气气氛保护下,600℃煅烧2h后得到氮、硫共掺杂WS2电极材料。
实施例6
步骤一:将1.037g六氯化钨加入40mL乙醇溶液中磁力搅拌至完全溶解形成黄色的澄清溶液A,搅拌速度为700r/min,搅拌时间8min。控制溶液浓度为0.065mol/L;
步骤二:在溶液A中加入1.965g硫代乙酰胺,控制摩尔比n(WCl6):n(CH3CSNH2)=10:1,再加入三聚氰胺和三聚硫氰酸,控制质量比m(WCl6):m(C3H6N6):m(C3H3N3S3)=10:2:0.5,搅拌3h,形成均一混合溶液;
步骤三:将上述溶液转移至100mL聚四氟乙烯反应釜进行均相反应,反应温度为220℃,反应时间为48h,反应结束后自然冷却至室温;
步骤四:打开反应釜,取出产物依次采用无水乙醇和去离子水洗涤并离心分离,重复洗涤4次后置于温度为-60℃,真空度为10Pa冷冻干燥机内干燥8h,即得到黑色粉体;
步骤五:将黑色粉体放入磁舟中,在低温管式炉中氩气气氛保护下,1000℃煅烧1h后得到氮、硫共掺杂WS2电极材料。
实施例7
步骤一:将1.037g六氯化钨加入40mL乙醇溶液中磁力搅拌至完全溶解形成黄色的澄清溶液A,搅拌速度为700r/min,搅拌时间8min。控制溶液浓度为0.065mol/L;
步骤二:在溶液A中加入1.965g硫代乙酰胺,控制摩尔比n(WCl6):n(CH3CSNH2)=10:1,再加入三聚氰胺和三聚硫氰酸,控制质量比m(WCl6):m(C3H6N6):m(C3H3N3S3)=7:1:2,搅拌3h,形成均一混合溶液;
步骤三:将上述溶液转移至100mL聚四氟乙烯反应釜进行均相反应,反应温度为215℃,反应时间为30h,反应结束后自然冷却至室温;
步骤四:打开反应釜,取出产物依次采用无水乙醇和去离子水洗涤并离心分离,重复洗涤4次后置于温度为-60℃,真空度为10Pa冷冻干燥机内干燥8h,即得到黑色粉体;
步骤五:将黑色粉体放入磁舟中,在低温管式炉中氩气气氛保护下,600℃煅烧3h后得到氮、硫共掺杂WS2电极材料。
本发明以六氯化钨为钨源,硫代乙酰胺为硫源,采用溶剂热法得到氮、硫共掺杂的WS2电极材料。制备工艺简单,工艺参数易控制,重复性高,反应无需大型昂贵设备,大大的节约了能耗和生产成本,产物分散性较好,可快速制备出高纯度氮、硫共掺杂的WS2电极材料,且氮、硫共掺杂给电极材料本身提供了更多的活性位点,有利于离子、电子的传输,从而提升电池的电化学性能,使用本方法制得的氮、硫共掺杂的WS2电极材料尺寸小,纯度高,在电化学领域中有广阔的研究价值和应用价值。

Claims (6)

1.一种氮、硫共掺杂二硫化钨钠离子电池负极材料的制备方法,其特征在于,包括以下步骤:
步骤一:将六氯化钨加入乙醇中磁力搅拌至完全溶解形成黄色的澄清溶液,然后加入硫代乙酰胺、三聚氰胺和三聚硫氰酸,在水热釜中于200~220℃下进行反应4~48h,洗涤,干燥,得到黑色粉体;
步骤二:将黑色粉体在氩气气氛保护下煅烧,得到氮、硫共掺杂二硫化钨钠离子电池负极材料。
2.根据权利要求1所述的一种氮、硫共掺杂二硫化钨钠离子电池负极材料的制备方法,其特征在于,黄色的澄清溶液的浓度为0.025~0.1mol/L。
3.根据权利要求1所述的一种氮、硫共掺杂二硫化钨钠离子电池负极材料的制备方法,其特征在于,搅拌的速度为600~1000r/min,时间为5~15min。
4.根据权利要求1所述的一种氮、硫共掺杂二硫化钨钠离子电池负极材料的制备方法,其特征在于,六氯化钨与硫代乙酰胺的摩尔比为10:1;六氯化钨、三聚氰胺和三聚硫氰酸的质量比为(7~10):(0.5 ~2):(0.5 ~2)。
5.根据权利要求1所述的一种氮、硫共掺杂二硫化钨钠离子电池负极材料的制备方法,其特征在于,煅烧的温度为600~1000℃,时间为1~3h。
6.根据权利要求1所述的一种氮、硫共掺杂二硫化钨钠离子电池负极材料的制备方法,其特征在于,煅烧在低温管式炉中进行。
CN201811280597.4A 2018-10-30 2018-10-30 一种氮、硫共掺杂二硫化钨钠离子电池负极材料的制备方法 Active CN109449410B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811280597.4A CN109449410B (zh) 2018-10-30 2018-10-30 一种氮、硫共掺杂二硫化钨钠离子电池负极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811280597.4A CN109449410B (zh) 2018-10-30 2018-10-30 一种氮、硫共掺杂二硫化钨钠离子电池负极材料的制备方法

Publications (2)

Publication Number Publication Date
CN109449410A CN109449410A (zh) 2019-03-08
CN109449410B true CN109449410B (zh) 2021-08-17

Family

ID=65550265

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811280597.4A Active CN109449410B (zh) 2018-10-30 2018-10-30 一种氮、硫共掺杂二硫化钨钠离子电池负极材料的制备方法

Country Status (1)

Country Link
CN (1) CN109449410B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112758985B (zh) * 2019-10-21 2022-03-22 中国科学院福建物质结构研究所 一种ws2/氮掺杂碳的复合材料、其制备方法及其应用
CN112811469B (zh) * 2021-03-15 2022-10-14 陕西科技大学 一种单层或少层二硫化钨纳米材料的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103861632B (zh) * 2014-04-07 2016-01-20 吉林大学 一种硫掺杂的多孔氮化碳光催化材料的制备方法
CN104409706B (zh) * 2014-12-22 2017-03-29 湖南大学 一种二硫化钼/硫、氮掺杂石墨烯纳米片复合材料及其制备方法和应用
CN105327708B (zh) * 2015-10-10 2017-11-14 岭南师范学院 一种Se掺杂少层数WS2纳米片/氮、磷共掺杂石墨烯复合纳米材料的制备方法
CN106186073A (zh) * 2016-07-12 2016-12-07 兰州大学 具有大比表面积的n掺杂ws2纳米片制备方法
FR3058418B1 (fr) * 2016-11-10 2020-07-10 Centre National De La Recherche Scientifique - Cnrs - Nanocomposites nanomateriau/ systeme polymoleculaire colloidaux, et methodes de preparation
CN108565434B (zh) * 2018-05-02 2020-10-23 南昌大学 一种二硫化钨/氮硫共掺杂石墨烯复合物的制备方法

Also Published As

Publication number Publication date
CN109449410A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
CN110627037B (zh) 一种氮掺杂生物质多孔碳纳米电极材料的制备方法
CN104916826A (zh) 一种石墨烯包覆硅负极材料及其制备方法
CN109326787B (zh) 一种二硫化钨/go复合电极材料的制备方法
CN108172782B (zh) 一种具有壳-核结构碳包裹多孔氧化亚钴纳米材料的制备方法及应用
CN106229503B (zh) 一种氧化镍/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池
Sun et al. Hollow silica–copper–carbon anodes using copper metal–organic frameworks as skeletons
CN109301204B (zh) 一种空心球结构硫化锡/氧化锡锂离子电池负极材料的制备方法
CN108423711B (zh) 一种四方相NaV2O5·H2O纳米片状粉体及其制备方法和应用
CN109449411B (zh) 一种限域合成二硫化钨@c复合电极材料的方法
CN105905908A (zh) 一种基于埃洛石原料制备纳米硅的方法
CN110474034B (zh) 一种氮掺多孔纳米片硅碳复合材料及其制备方法和应用
CN111276679A (zh) 用于钠离子电池负极材料的双碳复合硫化钼复合材料及制备方法
CN109449410B (zh) 一种氮、硫共掺杂二硫化钨钠离子电池负极材料的制备方法
CN112786865A (zh) 一种MoS2准量子点/氮硫共掺杂生物质碳复合纳米材料的制备方法和应用
CN112661157A (zh) 一种应用于锂离子电池负极的Ti3C2-Mxene材料制备方法
CN109755542B (zh) 一种钠硫电池正极材料及其制备方法
CN105845920B (zh) 一种高循环稳定性纳米棒自组装三氧化钼材料及其制备方法
CN102437334B (zh) 一种碳纳米管/LiFePO4锂离子电池正极材料的微波水热合成方法
CN107959024B (zh) 一种钠离子电池负极用片状Sb2Se3纳米晶的制备方法
CN108275724B (zh) 一种三氧化钼自组装纳米颗粒电极材料的制备方法
CN107706407B (zh) 一种纯相锂离子电池负极材料Mo4O11的合成方法
CN110739449A (zh) 制备内嵌FeS2纳米颗粒的氮/硫共掺杂碳纳米片围成的三维微球的方法
CN111799458B (zh) 一种锡单质复合二硫化钨/还原氧化石墨烯复合电极材料及其制备方法和应用
CN113044883B (zh) 一种三维绣花球状二硫化钨电极材料的制备方法
CN114784244A (zh) 一种三维中空ws2/c复合电极材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant