CN109428072A - 复合电极材料及其制作方法、复合电极、以及锂电池 - Google Patents

复合电极材料及其制作方法、复合电极、以及锂电池 Download PDF

Info

Publication number
CN109428072A
CN109428072A CN201710831979.0A CN201710831979A CN109428072A CN 109428072 A CN109428072 A CN 109428072A CN 201710831979 A CN201710831979 A CN 201710831979A CN 109428072 A CN109428072 A CN 109428072A
Authority
CN
China
Prior art keywords
combination electrode
core
carbon fiber
carbon
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710831979.0A
Other languages
English (en)
Inventor
曾永华
曾伟良
黄韦智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN109428072A publication Critical patent/CN109428072A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4418Methods for making free-standing articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明提供了一种新颖的复合电极材料及其制作方法、使用此复合电极材料制得的复合电极、及包含此复合电极的锂电池,其中,本发明的复合电极材料包含:一核心,该核心的材料为至少一选自由Sn、Sb、Si、Ge、C、及其化合物所组成的群组;以及一纳米碳管或一碳纤维,其中,该纳米碳管或该碳纤维成长于一表面,该表面包括该核心的表面。

Description

复合电极材料及其制作方法、复合电极、以及锂电池
技术领域
本发明涉及一种复合电极材料及其制作方法、包含该复合电极材料的复合电极、以及包含该复合电极的锂电池,尤其涉及一种以纳米碳管或碳纤维成长于硅表面并包覆的硅纳米颗粒作为复合电极材料及其制作方法、包含该复合电极材料的复合电极、以及包含该复合电极的锂电池。
背景技术
锂离子电池因具有高工作电压、高能量密度、高功率、存储寿命长、和多次充电和放电等优点,被视为现今最有效存储能源的方式之一。目前,商业上所使用的锂离子电池阳极材料大多为石墨,其理论电容值约为372mAhg-1,然而,因首次充电后表面会形成固态电解质膜(solid electrolyte interphase,SEI),造成不可逆的电容流失,因此实际上电容值会低于理论值。重复充电和放电的过程,也会造成层和层石墨结构间的缝隙,以致分离破碎,失去电容量。随着科技发展,单纯的石墨电极已无法符合大众需求。硅因具有高达4200mAhg-1的理论电容值,近年来尤其受到重视,然而,硅的充放电过程造成约高达420%的体积变化率,因此容易造成硅本身粉化(pulverization)碎裂,破碎硅之间失去导电性接触,导致锂离子无法顺利嵌入和脱嵌,电容量因而减少。同时,碎裂的硅所形成新的表面会消耗电解液并与之反应生成新的SEI膜,多次充放电后,电池内部电解液持续消耗并不断累积新的SEI膜,导致电池寿命缩短。
因此,目前急需要发展一种复合电极材料,还能克服重复充放电后带来的缺陷,以提升锂离子电池的电池寿命,也需要能拥有高电容值。
发明内容
本发明主要提供了一种新颖的复合电极材料及其制作方法、包含该复合电极材料的复合电极、以及包含该复合电极的锂电池。其中,本发明的新颖复合电极材料使用一种以纳米碳管(carbon nanotubes,CNT)或碳纤维(carbon fibers,CF)包覆的硅或以硅为主要成分的化合物的纳米颗粒,使锂电池经过多次充放电后仍能维持良好的电池容量、效率及循环寿命。
本发明提供了一种复合电极材料,包含:一核心,该核心的材料为至少一选自由Sn、Sb、Si、Ge、C、及其化合物所组成的群组;以及一纳米碳管或一碳纤维,其中,该纳米碳管或该碳纤维成长于一表面,该表面包含该核心的表面,该表面也可包含其他纳米碳管或碳纤维的表面,形成包覆核心的多孔洞三度空间的碳结构。
本发明提供了一种复合电极材料的制作方法,包含下列步骤:提供一核心,该核心的材料为至少一选自由Sn、Sb、Si、Ge、C、及其化合物所组成的群组;以一催化剂通过化学气相沉积法(chemical vapor deposition),于一表面成长一纳米碳管或一碳纤维,其中,该表面包括该核心的表面。
该纳米碳管或该碳纤维的表面,可通过该催化剂通过化学气相沉积法,再成长另一纳米碳管或另一碳纤维,形成包覆核心的多孔洞三度空间的碳结构。
在本发明的复合电极材料及其制作方法中,所使用的核心材料较佳为Si,如此可提供高电容值。核心的形状和大小并无特别限制,较佳为该核心为一扁平状颗粒,因扁平状硅颗粒较具弹性、可挠性,在充放电过程中不易破碎;且扁平状硅颗粒的表面积远小于将该扁平状硅颗粒碎裂后所形成的总体积相同的其他形状的多数硅颗粒,例如圆形、方形等,因此消耗用于硅表面形成SEI膜的电解液较少,有利延长电池寿命。核心的尺寸并无特别限制,其中该扁平状核心厚度可为50nm至500nm,较佳为50nm至250nm,和/或该核心长宽平均可为100nm至9μm,较佳为500nm至1200nm。
此外,该纳米碳管或该碳纤维垂直或以各种角度直立成长于该核心的表面,且多余的纳米碳管或碳纤维也可成长于其他纳米碳管或碳纤维上,形成包覆硅颗粒的纳米碳管或碳纤维的三度空间(3D)多孔(porous)网状或海绵状(sponge)结构。该3D多孔纳米碳管或碳纤维的结构具有多重、多方向膨胀收缩的缓冲功能,可以减少硅颗粒在充放电循环中因硅体积变化所导致的破碎。且因电子可以沿着导电的纳米碳管或碳纤维传导而提升传导路径的效率,因此即使硅颗粒在充放电循环中破碎成更小的颗粒,破碎颗粒上的纳米碳管或碳纤维也可提供额外所需的导电路径,使硅颗粒连接至相邻的硅颗粒及电池的集电器(current collector)。同时,纳米碳管或碳纤维也可保护硅避免其过度与电解液反应,可维持高电极容量及提升电池循环寿命。
在本发明的复合电极材料的制作方法中,该化学气相沉积法可包含:以一旋转或搅拌机构均匀混合,使纳米碳管或碳纤维更均匀地成长于各个核心上。在此,旋转或搅拌的速率无特殊限制,可依照所使用的旋转或搅拌机构而改变,只要能使纳米碳管或碳纤维可均匀成长于各个核心上即可。此外,该化学气相沉积法的实施条件并无特殊限制,可以依据所欲成长出的纳米碳管或碳纤维的外型及尺寸进行调整。
本发明的化学气相沉积法并无特别限制,可使用本领域已知的任何化学气相沉积法,例如热化学气相沉积法(thermal chemical vapor deposition)、等离子体辅助化学气相沉积法(plasma chemical vapor deposition)等,只要能使纳米碳管或碳纤维成长于各个核心上即可。
在本发明的一实施方案中,将二茂铁(ferrocene)蒸气渗透进硅纳米颗粒的间隙,覆盖在硅表面作为催化剂,再以樟脑(camphor)蒸气作为碳源渗透至附有二茂铁的硅纳米颗粒的间隙,通过热化学气相沉积法在硅纳米颗粒表面经催化剂协助下成长纳米碳管或碳纤维。本发明的另一实施方案中,预先均匀混合硅纳米颗粒及二茂铁粉末,并将其放入腔体(chamber)中使硅纳米颗粒镀上二茂铁,再将镀有二茂铁的硅纳米颗粒与樟脑粉末混合,在腔体中使纳米碳管或碳纤维成长于硅纳米颗粒上。本发明的另一实施方案中,硅纳米颗粒、二茂铁粉末、及樟脑粉末三者也可预先均匀混合,并将其放入腔体(chamber)中,在腔体中使纳米碳管或碳纤维成长于硅纳米颗粒上。
其中,可使用Fe、Mo、Ni、Pt、Co等来源作为催化剂,较佳为使用铁源作为催化剂;且更佳为室温下为固体,且具有低温下高挥发度的含铁源,在加热后可以气态方式存在于反应腔体中,例如氯化铁、二茂铁等,但本发明并不局限于此,只要能作为纳米碳管或碳纤维成长的催化剂即可。其中,本发明的碳源并无特别限制,可使用本领域已知的任何气体、固体、或液体碳源,例如甲烷、乙炔、樟脑等,只要能作为成长纳米碳管或碳纤维的碳源即可。较佳为室温下为固体,且具有低温下高挥发度的含碳源。
在本发明还提供了一种复合电极,包含:一基板,其上方设置一活性材料层,其中,该活性材料层包含:前述的复合电极材料、以及一粘着剂。
在本发明的复合电极中,基板可为一导电金属基板,其中,导电金属基板的材料并无特别限制,例如可为本技术领域常用的铜箔。且该铜箔的厚度亦无特别限制,可视需要进行调整。
在本发明的复合电极中,粘着剂并无特别限制,可为本领域常用的羧甲基纤维素钠(sodium carboxymethyl cellulose,NaCMC)、聚丙烯酸(poly acrylic acid,PAA)等,在本发明的一实施方案中,使用NaCMC作为粘着剂。
在本发明的复合电极中,复合电极材料由前述方法所制得,故在此不在赘述。
通常在制作硅基电极时,需要额外加入例如碳黑(carbon black)等辅助导电材料来帮助提升电子传导于硅颗粒之间和传导至集电器,然而,额外添加的碳黑会使电极增加更多的重量和体积,却不能像纳米碳管或碳纤维一样,提供硅颗粒体积膨胀收缩的缓冲功能。反之因为电子可以沿着纳米碳管或碳纤维传导,可以提供额外的导电路径,故在本发明的一实施例中,在制作复合电极时,即使不加入碳黑作为辅助导电路径,在定电容2000mAhg-1下,该复合电极经过100次的充放电仍能维持电容量,没有像未经成长纳米碳管或碳纤维的硅电极一样,电容量严重下降。
本发明还提供了一种锂电池,包含:前述的复合电极;一锂对电极;一隔离膜,设置于该复合电极与该锂对电极之间;以及一电解液,设置于该复合电极与该锂对电极之间,且设置于该隔离膜的两侧。
如前所述,本发明的复合电极材料具有一特殊结构,通过纳米碳管或碳纤维直接成长于该核心,并形成包覆硅纳米颗粒的3D多孔的纳米碳管或碳纤维,可缓冲核心材料充放电时的体积变化应力,且可避免核心与电解液过度反应,以提升电池的循环寿命,同时纳米碳管或碳纤维可以提供导电路径,使电子沿着纳米碳管或碳纤维传导而提升传导路径的效率,故在制作复合电极时,即使不加入碳黑也能维持良好的充放电特性。因此,本发明提供的锂电池具有高电池循环寿命及高电容量,在多次循环下仍具有良好的充放电特性及库伦效率。
附图说明
图1A及1B为本发明的一实施例的工艺示意图。
图2为本发明的另一实施例的工艺示意图。
图3A为本发明一较佳实施例的硅粉的SEM图。
图3B为本发明一较佳实施例的复合电极材料的SEM图。
图3C为本发明一较佳实施例的复合电极材料的拉曼光谱图。
图4为本发明一较佳实施例的锂电池的示意图。
图5A及5B为定电容下硅电极的充放电电容量与循环次数的关系图。
图6A及6B为定电容下复合电极的充放电电容量与循环次数的关系图。
图7A及7B为定电容且不添加碳黑下复合电极的充放电电容量与循环次数的关系图。
【符号说明】
100 热化学气相沉积*** 1 腔体
11 第一区域 12 第二区域
2 硅粉 3 二茂铁
4 樟脑 5 锂电池
51 下金属盖 52 复合电极
53 隔离膜 54 锂对电极
55 金属垫片 56 金属弹簧
57 上金属盖 58 电解液
A 气体通入方向
具体实施方式
以下通过特定的具体实施例说明本发明的实施方式,且以下具体实施例应被解释为仅仅是说明性的,而不以任何方式限制本说明书所揭示的其余部分,本领域的技术人员可由本说明书所揭示的内容轻易地了解本发明的其他优点与功效。本发明也可通过其他不同的具体实施例加以施行或应用,本说明书中的各项细节也可针对不同观点与应用,在不悖离本发明的精神下进行各种修饰与变更。
复合电极材料的制备-工艺1
图1A及1B为本实施例的工艺示意图。将厚度为100nm、长宽平均约850nm的硅粉2(1.86g)置于热化学气相沉积***100的第二区域12的腔体(chamber)1中,并将二茂铁3(3g)作为铁源置于腔体1的第一区域11中,先将腔体1抽至高真空后,再将氩气(600sccm,4分钟)以A方向回填腔体1,使腔体1维持于1大气压力。保持氩气(600sccm)从A方向通入下,开启高温炉确保第一区域11加热至约160℃、第二区域12加热至约850℃,使二茂铁3分解挥发,铁颗粒可以以蒸汽方式渗透到硅粉2间隙之间,沉积时间约为15分钟,最后关闭高温炉,并将腔体1冷却至室温,以获得沉积铁及铁化合物的硅粉。接着将樟脑4(13g)作为碳源置于第一区域11,再次将腔体1抽至真空,并将氩气(600sccm,4分钟)以A方向回填至1大气压。保持氩气(600sccm)从A方向通入下,开启高温炉加热第一区域11至约160℃、第二区域12加热至约850℃,使樟脑分解挥发,碳源(樟脑)可以渗透到硅粉之间以成长纳米碳管或碳纤维,沉积时间约为15-60分钟,最后关闭高温炉,将腔体冷却至室温,获得纳米碳管或碳纤维包覆的硅纳米颗粒。在本发明的另一实施方案中,可在第二区域12设置一旋转或搅拌机构(图未示)均匀混合,使纳米碳管或碳纤维更均匀地成长于该核心上。
复合电极材料的制备-工艺2
图2为本实施例的工艺示意图。将厚度为100nm、长宽平均约850nm的硅粉2(1.86g)、二茂铁3(3g)、及樟脑4(13g)置于热化学气相沉积***100的腔体1中,将腔体稀释去除腔体内的空气,以氩气或氮气从A方向回填腔体至约1大气压力后,关闭腔体的气体的入口和出口。开启高温炉加热腔体至约850℃,使二茂铁3、及樟脑4挥发,并保留气相二茂铁、及樟脑在腔体内,在铁源(二茂铁)催化下于硅粉上成长纳米碳管或碳纤维,沉积时间约为30分钟。最后关闭高温炉,将腔体冷却至室温,获得纳米碳管或碳纤维包覆的硅纳米颗粒。在本发明的另一实施方案中,可以设置一旋转或搅拌机构(图未示)以均匀混合硅粉2、二茂铁3、及樟脑4三者,使纳米碳管或碳纤维更均匀地成长于该核心上。
在前述的工艺1及工艺2中,在常压下成长纳米碳管或碳纤维。成长纳米碳管或碳纤维的气压不限,在本发明的其他实施方案中,也可在低真空,例如1Torr至1000Torr压力、或较高气压下成长纳米碳管或碳纤维。
复合电极材料
图3A为本实施例的硅粉的SEM图,其中,使用厚度约100nm、长宽平均约850nm的硅粉,且具有不规则外型。图3B为本实施例的复合电极材料的SEM图,由图中可明显看出通过热化学气相沉积后的硅粉,具有纳米碳管或碳纤维直立成长于硅粉上。图3C为本实施例的复合电极材料的拉曼光谱图,其为使用绿光雷射(λ=532nm)的拉曼光谱分析,从图中可看到1346cm-1的D带、1575cm-1的G带、以及证明硅表面成长纳米碳管或碳纤维的2682cm-1的2D带。通过上述实验结果证实,本实施例的复合电极材料确实具有纳米碳管或碳纤维成长于硅粉上。
复合电极的制备
将前述制得的本发明的复合电极材料、导电碳黑、粘着剂NaCMC以重量比6∶3∶1混合,加入去离子水,以直流搅拌机搅拌至均匀,制成活性材料。将搅拌均匀的活性材料放入真空腔中抽至低压,使内部的气泡去除,接着使用刮刀将30μm厚的活性材料涂布至10μm的铜箔上,以获得一电极。将涂布完的电极放入真空烘箱抽至真空,并在65℃下烘烤8-12小时以移除多余溶剂。待降温后,以滚压机滚压烘烤完的电极,以提升电极的封装密度。最后以裁刀裁出所需要的电极大小。在本发明的一实施方案中,用于制备复合电极的活性材料可不包含导电碳黑。本发明的涂布活性材料厚度及滚压施加的压力不限于本实施例。
锂半电池的制备
图4为本实施例的锂电池5的示意图。在此,将前述所制得的复合电极(作为阳极)52、一下金属盖51、一锂对电极54、一隔离膜(Celgard2352)53、一金属垫片55、一金属弹簧56、一上金属盖57置于一手套箱中,并使用溶于EC/DEC(1∶1v/v)的1M的LiPF6溶液作为电解液58,依据图4依序组装成钮扣型电池,使用电池封装机将电池密封,以形成本实施例的锂半电池。然而此实施例仅为例示性的说明,本发明的锂半电池并不局限于此。
如图4所示,本实施例的锂电池包含:如前述所制得的复合电极52;一锂对电极54;一隔离膜53,设置于该复合电极52与该锂对电极54之间;以及一电解液58,设置于该复合电极52与该锂对电极54之间,且设置于该隔离膜53的两侧。
循环充放电分析
本实施例使用定电流充放电法,前三圈的充放电速率为0.02C,之后充放电速率改为0.1C完成整个试验。复合电极材料和复合电极由前述方法所制得,故在此不再赘述。
图5A和5B分别为硅电极在定电容1200mAhg-1及2000mAhg-1下的电容量与循环次数的关系图。由图5A可发现硅电极在1200mAhg-1定电容下,可以充放电循环80圈;若将电容提高至2000mAhg-1,硅电极仅能维持10圈的充放电循环,如图5B。
图6A和6B分别为复合电极在定电容1200mAhg-1及2000mAhg-1下的电容量与循环次数的关系图。由图6A及6B可看出,复合电极不管是在低电容1200mAhg-1或高电容2000mAhg-1下,均能稳定维持100圈的充放电循环。证明具有纳米碳管或碳纤维成长的硅粉可以缓冲硅粉于充放电时的体积膨胀收缩,减少硅粉破碎的发生,因而延长循环寿命。
图7A和7B分别为本发明的另一实施例的复合电极在定电容1200mAhg-1及2000mAhg-1下的电容量与循环次数的关系图。其中,本实施例的用于制备复合电极的活性材料不包含导电碳黑,其余复合电极材料和复合电极由前述方法所制得,故在此不再赘述。一般在制作电极的活性材料时,会加入导电碳黑作为导电途径,然而由实验结果可以发现,本实施例的复合电极即使不加入导电碳黑,在高电容下仍然可维持100圈的充放电循环。因此证明纳米碳管或碳纤维确实可以提供额外的导电路径,而提升传导路径的效率。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (19)

1.一种复合电极材料,包含:
一核心,该核心的材料为至少一选自由Sn、Sb、Si、Ge、C、及其化合物所组成的群组;以及
一纳米碳管或一碳纤维,
其中,该纳米碳管或该碳纤维成长于一表面,该表面包含该核心的表面。
2.如权利要求1所述的复合电极材料,其中,该纳米碳管或该碳纤维直立成长于该表面。
3.如权利要求1所述的复合电极材料,其中,该核心为一扁平状颗粒。
4.如权利要求1所述的复合电极材料,其中,该核心厚度为50nm至500nm。
5.如权利要求1所述的复合电极材料,其中,该核心长宽平均为100nm至9μm。
6.如权利要求1所述的复合电极材料,其中,该纳米碳管或该碳纤维具有包覆该核心的3D多孔网状或海绵状结构。
7.一种复合电极材料的制作方法,包含下列步骤:
提供一核心,该核心的材料为至少一选自由Sn、Sb、Si、Ge、C、及其化合物所组成的群组;以及
以一催化剂通过一化学气相沉积法,于一表面成长一纳米碳管或一碳纤维,
其中,该表面包含该核心的表面。
8.如权利要求7所述的制作方法,其中,该化学气相沉积法包含:以一旋转或搅拌机构均匀混合。
9.如权利要求7所述的制作方法,其中,该化学气相沉积法为热化学气相沉积法。
10.如权利要求7所述的制作方法,其中,该催化剂为一铁源催化剂。
11.如权利要求7所述的制作方法,其中,该纳米碳管或该碳纤维直立成长于该表面。
12.如权利要求7所述的制作方法,其中,该核心为一扁平状颗粒。
13.如权利要求7所述的制作方法,其中,该核心厚度为50nm至500nm。
14.如权利要求7所述的制作方法,其中,该核心长宽平均为100nm至9μm。
15.如权利要求7所述的复合电极材料,其中,该纳米碳管或该碳纤维具有包覆该核心的3D多孔网状或海绵状结构。
16.一种复合电极,包含:
一基板,其上方设置一活性材料层,其中,该活性材料层包含:一如权利要求1至6任一所述的复合电极材料、以及一粘着剂。
17.如权利要求16所述的复合电极,其中,该基板为一导电金属板。
18.如权利要求16所述的复合电极,其中,该复合电极不包含碳黑。
19.一种锂电池,包含:
一如权利要求16至18任一所述的复合电极;
一锂对电极;
一隔离膜,设置于该复合电极与该锂对电极之间;以及
一电解液,设置于该复合电极与该锂对电极之间,且设置于该隔离膜的两侧。
CN201710831979.0A 2017-08-29 2017-09-15 复合电极材料及其制作方法、复合电极、以及锂电池 Pending CN109428072A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW106129288 2017-08-29
TW106129288A TWI690112B (zh) 2017-08-29 2017-08-29 複合電極材料及其製作方法、包含該複合電極材料之複合電極、以及包含該複合電極之鋰電池

Publications (1)

Publication Number Publication Date
CN109428072A true CN109428072A (zh) 2019-03-05

Family

ID=65434373

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710831979.0A Pending CN109428072A (zh) 2017-08-29 2017-09-15 复合电极材料及其制作方法、复合电极、以及锂电池

Country Status (3)

Country Link
US (1) US11005091B2 (zh)
CN (1) CN109428072A (zh)
TW (1) TWI690112B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112086627A (zh) * 2019-06-12 2020-12-15 曾永华 复合电极材料、其制备方法、包含其的复合电极及锂电池
CN112510180A (zh) * 2020-12-02 2021-03-16 江苏科技大学 一种氧化硅-碳丝活性材料及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI682574B (zh) * 2018-06-21 2020-01-11 國立成功大學 複合電極材料及其製作方法、包含該複合電極材料之複合電極、以及包含該複合電極之鋰電池

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004228059A (ja) * 2002-11-29 2004-08-12 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池用負極及びその製造方法並びに非水電解液二次電池
CN1967910A (zh) * 2005-11-14 2007-05-23 松下电器产业株式会社 非水电解质二次电池用负极及其制造方法、以及二次电池
CN101047236A (zh) * 2006-03-30 2007-10-03 索尼株式会社 集电体、负极和电池
US20090142665A1 (en) * 2007-11-22 2009-06-04 Kyeu-Yoon Sheem Active material for rechargeable lithium battery and rechargeable lithium battery including the same
CN101740811A (zh) * 2008-11-14 2010-06-16 索尼株式会社 二次电池和阳极
JP2011119263A (ja) * 2009-12-04 2011-06-16 Schott Ag バッテリ電極用の材料、これを含有したバッテリ電極、ならびにこれらの電極を具備したバッテリ、およびバッテリ電極用の材料の調製方法
WO2011114724A1 (ja) * 2010-03-19 2011-09-22 株式会社豊田自動織機 負極材料、非水電解質二次電池および負極材料の製造方法
CN104103807A (zh) * 2013-04-12 2014-10-15 华为技术有限公司 一种硅碳复合负极材料及其制备方法和锂离子电池
CN104885262A (zh) * 2012-11-02 2015-09-02 奈克松有限公司 装置和形成装置的方法
JP2015179592A (ja) * 2014-03-19 2015-10-08 株式会社豊田自動織機 負極および蓄電装置
CN106129367A (zh) * 2016-08-22 2016-11-16 浙江理工大学 一种硅/碳纳米复合纤维及其应用
US20170062804A1 (en) * 2015-08-28 2017-03-02 Samsung Electronics Co., Ltd. Composite, method of preparing the same, electrode including the composite, and lithium battery including the electrode

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8828481B2 (en) * 2007-04-23 2014-09-09 Applied Sciences, Inc. Method of depositing silicon on carbon materials and forming an anode for use in lithium ion batteries
KR101607232B1 (ko) * 2009-04-09 2016-03-29 삼성전자주식회사 복합 음극 활물질, 그의 제조방법 및 이를 채용한 리튬전지
CN101752605B (zh) * 2010-01-12 2012-10-31 东莞市金源电池科技有限公司 一种碳纳米管锂离子电池
CA2829605C (en) * 2013-10-07 2016-06-14 Springpower International Incorporated A method for mass production of silicon nanowires and/or nanobelts, and lithium batteries and anodes using the silicon nanowires and/or nanobelts
KR102204701B1 (ko) * 2014-02-07 2021-01-18 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 리튬 이차 전지
KR102368307B1 (ko) * 2015-09-16 2022-03-02 삼성전자주식회사 전극 활물질, 이를 포함하는 전극 및 이차전지, 및 상기 전극 활물질의 제조방법

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004228059A (ja) * 2002-11-29 2004-08-12 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池用負極及びその製造方法並びに非水電解液二次電池
CN1967910A (zh) * 2005-11-14 2007-05-23 松下电器产业株式会社 非水电解质二次电池用负极及其制造方法、以及二次电池
CN101047236A (zh) * 2006-03-30 2007-10-03 索尼株式会社 集电体、负极和电池
US20090142665A1 (en) * 2007-11-22 2009-06-04 Kyeu-Yoon Sheem Active material for rechargeable lithium battery and rechargeable lithium battery including the same
CN101740811A (zh) * 2008-11-14 2010-06-16 索尼株式会社 二次电池和阳极
JP2011119263A (ja) * 2009-12-04 2011-06-16 Schott Ag バッテリ電極用の材料、これを含有したバッテリ電極、ならびにこれらの電極を具備したバッテリ、およびバッテリ電極用の材料の調製方法
WO2011114724A1 (ja) * 2010-03-19 2011-09-22 株式会社豊田自動織機 負極材料、非水電解質二次電池および負極材料の製造方法
CN104885262A (zh) * 2012-11-02 2015-09-02 奈克松有限公司 装置和形成装置的方法
CN104103807A (zh) * 2013-04-12 2014-10-15 华为技术有限公司 一种硅碳复合负极材料及其制备方法和锂离子电池
JP2015179592A (ja) * 2014-03-19 2015-10-08 株式会社豊田自動織機 負極および蓄電装置
US20170062804A1 (en) * 2015-08-28 2017-03-02 Samsung Electronics Co., Ltd. Composite, method of preparing the same, electrode including the composite, and lithium battery including the electrode
CN106129367A (zh) * 2016-08-22 2016-11-16 浙江理工大学 一种硅/碳纳米复合纤维及其应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112086627A (zh) * 2019-06-12 2020-12-15 曾永华 复合电极材料、其制备方法、包含其的复合电极及锂电池
CN112086627B (zh) * 2019-06-12 2022-05-17 曾永华 复合电极材料、其制备方法、包含其的复合电极及锂电池
CN112510180A (zh) * 2020-12-02 2021-03-16 江苏科技大学 一种氧化硅-碳丝活性材料及其制备方法和应用
CN112510180B (zh) * 2020-12-02 2021-11-09 江苏科技大学 一种氧化硅-碳丝活性材料及其制备方法和应用

Also Published As

Publication number Publication date
TWI690112B (zh) 2020-04-01
US20190067681A1 (en) 2019-02-28
US11005091B2 (en) 2021-05-11
TW201914089A (zh) 2019-04-01

Similar Documents

Publication Publication Date Title
Yi et al. TiO2 coated Si/C interconnected microsphere with stable framework and interface for high-rate lithium storage
Zheng et al. High performance columnar-like Fe2O3@ carbon composite anode via yolk@ shell structural design
Zheng et al. Fabrication and understanding of Cu 3 Si-Si@ carbon@ graphene nanocomposites as high-performance anodes for lithium-ion batteries
Li et al. Encapsulated within graphene shell silicon nanoparticles anchored on vertically aligned graphene trees as lithium ion battery anodes
Zhu et al. Interfacial stabilizing effect of ZnO on Si anodes for lithium ion battery
Etacheri et al. Exceptional electrochemical performance of Si-nanowires in 1, 3-dioxolane solutions: a surface chemical investigation
Zhou et al. Preparation and characterization of core–shell structure Si/C composite with multiple carbon phases as anode materials for lithium ion batteries
CN108306009B (zh) 一种氧化硅碳复合负极材料、其制备方法及锂离子电池
Ren et al. Preparation and characterization of silicon monoxide/graphite/carbon nanotubes composite as anode for lithium-ion batteries
He et al. All binder-free electrodes for high-performance wearable aqueous rechargeable sodium-ion batteries
Yang et al. Porous FeP/C composite nanofibers as high-performance anodes for Li-ion/Na-ion batteries
Li et al. Effect of nano Cu coating on porous Si prepared by acid etching Al-Si alloy powder
Zhang et al. Nitrogen-plasma doping of carbon film for a high-quality layered Si/C composite anode
CN107170979A (zh) 一种用于锂离子电池负极材料的硅‑碳复合材料的制备方法
Deng et al. High-performance SiMn/C composite anodes with integrating inactive Mn4Si7 alloy for lithium-ion batteries
Park et al. Control of interfacial layers for high-performance porous Si lithium-ion battery anode
Wang et al. Carbon-coated SnO2@ carbon nanofibers produced by electrospinning-electrospraying method for anode materials of lithium-ion batteries
TWI682574B (zh) 複合電極材料及其製作方法、包含該複合電極材料之複合電極、以及包含該複合電極之鋰電池
Choi et al. Enhanced cycle stability of silicon nanoparticles coated with nitrogen-doped carbon layer for lithium-ion battery anode
Hong et al. Carbon nanosheets/MnO2/NiCo2O4 ternary composite for supercapacitor electrodes
CN109428072A (zh) 复合电极材料及其制作方法、复合电极、以及锂电池
Wang et al. Sulfur-doped biomass carbon as anode for high temperature potassium ion full cells
Shang et al. Interconnected porous NiO@ MnO2 nanosheets as anodes with excellent rate capability for lithium-ion batteries
Lan et al. Interconnected SnO2/graphene+ CNT network as high performance anode materials for lithium-ion batteries
Ding et al. Enhanced electrochemical performance of silicon monoxide anode materials prompted by germanium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190305