CN109279891B - 一种铁酸铋基电致应变陶瓷及其制备方法和应用 - Google Patents

一种铁酸铋基电致应变陶瓷及其制备方法和应用 Download PDF

Info

Publication number
CN109279891B
CN109279891B CN201811145258.5A CN201811145258A CN109279891B CN 109279891 B CN109279891 B CN 109279891B CN 201811145258 A CN201811145258 A CN 201811145258A CN 109279891 B CN109279891 B CN 109279891B
Authority
CN
China
Prior art keywords
ceramic
bismuth ferrite
temperature
zro
ball milling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811145258.5A
Other languages
English (en)
Other versions
CN109279891A (zh
Inventor
翟继卫
刘星
沈波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201811145258.5A priority Critical patent/CN109279891B/zh
Publication of CN109279891A publication Critical patent/CN109279891A/zh
Application granted granted Critical
Publication of CN109279891B publication Critical patent/CN109279891B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

本发明涉及一种铁酸铋基电致应变陶瓷及其制备方法和应用,陶瓷的组分为(0.67‑x)Bi1.02FeO3‑0.33BaTiO3‑x(Ba0.8Ca0.2)ZrO3,其中x=0~0.06,采用固相烧结法制备,包括将原料按配方进行混料、一次球磨和800~900℃煅烧后得到预合成前驱体粉体。经过二次球磨、烘干造粒后压制成型得到陶瓷生坯,排胶后经950‑1100℃高温烧结得到致密的高性能铁酸铋基陶瓷样品。与传统的铅基电致应变材料相比,本发明最显著的优点为环境友好型材料,且具有高动态压电系数、低应变滞回和优异的高温稳定性,可广泛用于制造驱动器和高精度位移传感器。

Description

一种铁酸铋基电致应变陶瓷及其制备方法和应用
技术领域
本发明涉及驱动器陶瓷材料领域,尤其是涉及一种铁酸铋基电致应变陶瓷及其制备方法和应用。
背景技术
电致应变是压电材料逆压电效应的直接体现,主要应用于驱动器和位移传感器,其中动态压电系数(d33 *)是评价驱动器材料的主要指标。传统的铅基锆钛酸铅(PZT)陶瓷因其高压电性能、高应变与优异的温度稳定性而被广泛使用,然而PZT及其改性陶瓷中含有大量有毒的氧化铅,不仅会对环境也会对人体造成巨大损伤,因而必须探索高性能的无铅陶瓷体系以替代铅基材料。近年来,铋基无铅钙钛矿材料受到广泛研究,其中以钛酸铋钠(Bi0.5Na0.5TiO3,BNT)为代表的一系列无铅体系具有高的电致应变和无滞后电致伸缩性能,该性能的实现主要是通过掺入其他元素或ABO3钙钛矿复合材料,将铁电-弛豫相转变温度降至室温以下。然而,BNT基陶瓷虽然具有0.3~0.5%的高应变输出,其应变滞回也高达60~70%,这种大的滞后会大幅降低驱动器或位移器的探测精度,不利于实际应用。同时,BNT基材料的温度稳定性较低,在升温至100℃后,其性能仅为室温下的~50%。因此,有必要开发新型的高性能、低滞回无铅电致应变陶瓷以替代铅基材料。
铁酸铋(BiFeO3)基无铅钙钛矿材料具有超高的居里温度(Tc~830℃)和铁电极化强度(Pr~100μC/cm2),其在高温压电和新型铁电器件领域具有广泛应用前景。然而纯的铁酸铋陶瓷在高温烧结时易形成二次相,且烧结温区过窄而难以制备。通过快速淬火工艺可以在一定程度上降低铁酸铋陶瓷的漏导,然而该工艺容易造成大的内应力而使陶瓷开裂,不利于实际应用。一系列研究表明,将铁酸铋与其他ABO3钙钛矿材料进行复合可有效降低体系的漏电流,其中BiFeO3-BaTiO3体系具有相对较高的剩余极化和居里温度,在x=0.33时呈现出准同型相界,然而其电致应变性能较低(0.1~0.2%),无法满足实际应用需求。目前针对铁酸铋基高电致应变陶瓷的报道极少。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种可获得低滞回、温度稳定高电致应变的铁酸铋基陶瓷。
本发明的另一目的是提供铁酸铋基电致应变陶瓷的制备方法。
本发明的另一目的是提供铁酸铋基电致应变陶瓷的应用。
本发明的目的可以通过以下技术方案来实现:
一种铁酸铋基电致应变陶瓷,该铁酸铋基电致应变陶瓷的化学组成为(0.67-x)Bi1.02FeO3-0.33BaTiO3-x(Ba0.8Ca0.2)ZrO3,其中x=0~0.06,作为优选的技术方案,x=0.02。
铁酸铋基电致应变陶瓷的制备方法,使用固相反应法制备得到陶瓷材料,具体采用以下步骤:
(1)选取纯度大于99%的Bi2O3、Fe2O3、BaCO3、TiO2、CaCO3和ZrO2作为制备铁酸铋基陶瓷的原料;
(2)按照(0.67-x)Bi1.02FeO3-0.33BaTiO3-x(Ba0.8Ca0.2)ZrO3,x=0~0.06的化学配比称取原料、经过一次球磨后烘干得到前驱体粉;
(3)将前驱体粉在800-900℃下煅烧2-6h得到预合成粉体;
(4)将预合成粉体进行二次球磨、烘干、造粒,并在60-100MPa压力下压制成陶瓷坯体,在500-600℃下进行排胶处理,保温6-12h;
(5)排胶后的坯体于950~1100℃进行烧结2-6h,随炉冷却到室温后得到钛酸铋钠基电致伸缩陶瓷。
步骤(2)与步骤(4)在球磨时采用无水乙醇和ZrO2球作为球磨介质,ZrO2球与球磨料的质量比为1.1~1.4:1,无水乙醇与原料的质量比1.1~2.4:1。
步骤(2)与步骤(4)的球磨参数设置为:球磨转速280-400r/min,球磨时间10-20h。
步骤(4)中的粉料造粒时使用5wt%的PVA,压制得到的陶瓷坯体尺寸为直径10~12mm,厚度0.8~1mm。
步骤(5)中采用的烧结温度优选为1000℃,保温时间优选为3h。
该铁酸铋基陶瓷低滞回的高电致应变性能,在驱动器和位移传感器方面,该性能有助于控制极小尺寸位移的变化,具有响应时间快和温度稳定性高等特点,具有极高的实际应用价值。
本发明专利创新性地在BiFeO3-BaTiO3陶瓷中掺入(Ba0.8Ca0.2)ZrO3,构建了(0.67-x)Bi1.02FeO3-0.33BaTiO3-x(Ba0.8Ca0.2)ZrO3新型三元系陶瓷,该种陶瓷在室温附近具有特殊的高活性弛豫相结构,该弛豫相与铁电相的势垒差较小,因此在场致相变过程中产生的滞回大幅降低,有利于驱动器精度的提升。此外,该三元系陶瓷的高活性弛豫相具有较高的稳定性,在较宽的温区范围内可实现与铁电相的有效转化,提升了电致应变性能的温度稳定性,因而该铁酸铋基陶瓷体系是一种在驱动器和传感器中具有广泛应用前景的新型无铅材料。
与现有技术相比,本发明构建了新型的三元系铁酸铋基无铅陶瓷(0.67-x)Bi1.02FeO3-0.33BaTiO3-x(Ba0.8Ca0.2)ZrO3。尤其当x=0.02时,可获得高达640pm/V的动态压电系数,显著高于其他文献报道的铁酸铋陶瓷,且相应的应变滞回仅为33%,相较于BNT基电致应变陶瓷降低了一半,大幅提高了驱动器的探测精度。同时,该电致应变性能在室温至120℃的较宽温区内能够保持稳定,体现了优异的温度稳定性。本发明制备的铁酸铋基电致应变陶瓷可在驱动器和高精度位移控制器中获得应用,该类铁酸铋基材料的发现对取代铅基电致应变材料具有重大意义。
附图说明
图1为实施例1-4制得的铁酸铋基电致应变陶瓷在1kHz下的介电温谱;
图2为实施例1-4制得的铁酸铋基电致应变陶瓷的单向电致应变曲线
图3为实施例2制得的铁酸铋基电致应变陶瓷在不同温度下的电致应变曲线;
图4为实施例2制得的铁酸铋基电致应变陶瓷的动态d33 *系数和应变滞回随温度的变化。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1
一种铁酸铋基无铅陶瓷,该铁酸铋基电致应变陶瓷的化学组成为(0.67-x)Bi1.02FeO3-0.33BaTiO3-x(Ba0.8Ca0.2)ZrO3,其中x=0,其制备方法采用以下步骤:
(1)选取纯度大于99%的Bi2O3、Fe2O3、BaCO3、TiO2、CaCO3和ZrO2作为铁酸铋基电致应变陶瓷的原料;
(2)按照0.67Bi1.02FeO3-0.33BaTiO3的配方组成称料、一次球磨后烘干,球磨时采用无水乙醇和ZrO2球作为球磨介质,ZrO2球与原料的质量比为1.3:1,无水乙醇与原料的质量比为1.5:1,球磨转速为280r/min,球磨时间为10h;
(3)烘干后的前驱体粉在800℃下预烧4h得到煅烧粉体;
(4)将煅烧粉体进行二次球磨,采用无水乙醇和ZrO2球作为球磨介质,ZrO2球与原料的质量比为1.3:1,无水乙醇与原料的质量比1.5:1,球磨转速为280r/min,球磨时间为10h。然后烘干,加入5wt%的PVA造粒,并在60MPa压力下压制成直径10mm、厚度0.8mm的陶瓷坯体,在550℃下进行排胶,保温时间为12h;
(5)排胶后的坯体于950℃进行烧结3h,烧结时的升温速率为3℃/min,将样品进行减薄、抛光后得到铁酸铋基电致应变陶瓷。可以应用于驱动器和高精度位移传感器中。
实施例2
一种高电致应变铁酸铋基陶瓷,该铁酸铋基陶瓷的化学组成为(0.67-x)Bi1.02FeO3-0.33BaTiO3-x(Ba0.8Ca0.2)ZrO3,其中x=0.02,其制备方法采用以下步骤:
(1)选取纯度大于99%的Bi2O3、Fe2O3、BaCO3、TiO2、CaCO3和ZrO2作为铁酸铋基电致应变陶瓷的原料;
(2)按照0.65Bi1.02FeO3-0.33BaTiO3-0.02(Ba0.8Ca0.2)ZrO3的配方组成称料、经过一次球磨后烘干,球磨时采用无水乙醇和ZrO2球作为球磨介质,ZrO2球与原料的质量比为1.4:1,无水乙醇与原料的质量比1.7:1,球磨转速为300r/min,球磨时间为12h;
(3)将烘干后的前驱体粉料在800℃下预烧4h;
(4)将煅烧后的粉料进行二次球磨,球磨时采用无水乙醇和ZrO2球作为球磨介质,ZrO2球与原料的质量比为1.4:1,无水乙醇与原料的质量比1.7:1,球磨转速为300r/min,球磨时间为12h,然后烘干的料加入5wt%的PVA进行造粒,并在80MPa压力下压制成直径10mm,厚度0.9mm的陶瓷坯体,在550℃下进行排胶,保温10h;
(5)将坯体于1000℃进行高温烧结4h,升温速率为3℃/min,随炉冷却到室温后将陶瓷进行减薄、抛光,得到铁酸铋基电致应变陶瓷样品。该陶瓷可以应用于驱动器和高精度位移传感器中。
实施例3
一种铁酸铋基电致应变陶瓷,该铁酸铋基陶瓷的原料组成为(0.67-x)Bi1.02FeO3-0.33BaTiO3-x(Ba0.8Ca0.2)ZrO3,其中x=0.04,其制备方法采用以下步骤:
(1)选取纯度大于99%的Bi2O3、Fe2O3、BaCO3、TiO2、CaCO3和ZrO2作为铁酸铋基电致应变陶瓷的原料;
(2)按照0.63Bi1.02FeO3-0.33BaTiO3-0.04(Ba0.8Ca0.2)ZrO3的配方组成称量原料、经过球磨后烘干,球磨时采用无水乙醇和ZrO2球作为球磨介质,ZrO2球与原料的质量比为1.4:1,无水乙醇与原料的质量比2:1,球磨转速控制在350r/min,球磨时间为15h;
(3)烘干后的原料在875℃下预烧3h;
(4)预烧后的粉料进行二次球磨,球磨时采用无水乙醇和ZrO2球作为球磨介质,ZrO2球与原料的质量比为1.4:1,无水乙醇与原料的质量比2.5:1,球磨转速控制在350r/min,球磨时间为15h。烘干的料加入5wt%的PVA进行造粒,并在100MPa压力下压制成直径10mm,厚度1mm的陶瓷坯体,在600℃下进行排胶,排胶时的升温速率为1℃/min,保温时间为8h;
(5)排胶后的坯体于1050℃进行烧结5h,烧结时控制升温速度为3℃/min,再自然冷却到室温,并将烧结成瓷的样品进行减薄、抛光,得到铁酸铋基电致应变陶瓷。该陶瓷可以应用于驱动器和高精度位移传感器中。
实施例4
一种铁酸铋基电致应变陶瓷,该铁酸铋基陶瓷的原料组成为0.61Bi1.02FeO3-0.33BaTiO3-0.06(Ba0.8Ca0.2)ZrO3,其中x=0.06,其制备方法采用以下步骤:
(1)选取纯度大于99%的Bi2O3、Fe2O3、BaCO3、TiO2、CaCO3和ZrO2作为铁酸铋基陶瓷的原料;
(2)按照0.61Bi1.02FeO3-0.33BaTiO3-0.06(Ba0.8Ca0.2)ZrO3的配方组成称量原料、经过球磨后烘干,球磨时采用无水乙醇和ZrO2球作为球磨介质,ZrO2球与原料的质量比为1.4:1,无水乙醇与原料的质量比2.4:1,球磨转速控制在400r/min,球磨时间为20h;
(3)烘干后的原料在900℃下煅烧5h;
(4)煅烧后的粉料进行二次球磨,球磨时采用无水乙醇和ZrO2球作为球磨介质,ZrO2球与原料的质量比为1.4:1,无水乙醇与原料的质量比为2.4:1,球磨转速控制在400r/min,球磨时间为20h。然后烘干、造粒,造粒前还加入5wt%的PVA,并在100MPa压力下压制成直径10mm,厚度1mm的陶瓷坯体,在600℃下进行排胶,保温5h;
(5)排胶后的坯体于1100℃进行烧结5h,烧结时控制升温速度为3℃/min,随炉冷却到室温,将样品进行减薄、抛光,得到铁酸铋基电致应变陶瓷。该陶瓷可以应用于驱动器和高精度位移传感器中。
图1为本发明制备的铁酸铋基电致应变陶瓷在1kHz下的介电温谱,x=0组分的介温峰较为尖锐,居里温度为425℃。随着x含量的升高,介温峰逐渐向低温区移动,x=0.02组分的居里温度为360℃。同时介温峰逐渐宽化弥散,呈现弛豫铁电体的特征。
图2为本发明制备的铁酸铋基电致应变陶瓷的单向电致应变曲线。实施例2制备的陶瓷,即x=0.02组分具有最高的电致应变性能,相应的动态d33 *系数达到640pm/V,而应变滞回为33%。该低滞后高电致应变性能与x=0.02组分在室温下的遍历弛豫相结构有关,且主要来源于场致可逆的遍历弛豫至铁电相转变。
图3为本发明实施例2制备的铁酸铋基电致应变陶瓷在不同温度下的电致应变示意图,测试电场为6kV/mm。随着温度的升高,应变滞回大幅降低,而单向应变值逐渐升高。
图4为实施例2制得的铁酸铋基电致应变陶瓷的动态压电d33 *系数与滞回随温度的变化。随着温度的升高,d33 *系数逐渐升高而滞回大幅降低。在120℃时,动态压电系数达到717pm/V,而滞回降低至13%,说明本发明制备的铁酸铋基电致应变陶瓷具有优异的高温电致应变性能,并有望取代传统的铅基电致应变材料。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (7)

1.一种铁酸铋基电致应变陶瓷,其特征在于,该陶瓷的化学组成为(0.67-x)Bi1.02FeO3-0.33BaTiO3-x(Ba0.8Ca0.2)ZrO3,其中x=0.02,
采用以下步骤制备得到:
(1)以Bi2O3、Fe2O3、BaCO3、TiO2、CaCO3和ZrO2作为铁酸铋基陶瓷的原料;
(2)按照(0.67-x)Bi1.02FeO3-0.33BaTiO3-x(Ba0.8Ca0.2)ZrO3的化学配方进行称料,经过一次球磨后获得原料前驱体粉体;
(3)将前驱体粉体在800-900℃的温度下煅烧2-5h,得到预合成粉体;
(4)将煅烧粉体进行二次球磨,烘干后的粉料经造粒、模压成型得到陶瓷坯体;
(5)将陶瓷坯体在500-600℃下排除胶体有机物,保温时间为5-12h,排胶后进行高温烧结,烧结温度为950~1100℃,升温速率为2-6℃/min,保温时间为2-5h,随炉冷却到室温后得到铁酸铋基电致应变陶瓷;
步骤(2)与步骤(4)在球磨时采用无水乙醇和ZrO2球作为球磨介质,ZrO2球与球磨料的质量比为1.1~1.4:1,无水乙醇与原料的质量比1.1~2.4:1。
2.如权利要求1所述的一种铁酸铋基电致应变陶瓷的制备方法,其特征在于,该方法采用以下步骤:
(1)以Bi2O3、Fe2O3、BaCO3、TiO2、CaCO3和ZrO2作为铁酸铋基陶瓷的原料;
(2)按照(0.67-x)Bi1.02FeO3-0.33BaTiO3-x(Ba0.8Ca0.2)ZrO3的化学配方进行称料,经过一次球磨后获得原料前驱体粉体;
(3)将前驱体粉体在800-900℃的温度下煅烧2-5h,得到预合成粉体;
(4)将煅烧粉体进行二次球磨,烘干后的粉料经造粒、模压成型得到陶瓷坯体;
(5)将陶瓷坯体在500-600℃下排除胶体有机物,保温时间为5-12h,排胶后进行高温烧结,烧结温度为950~1100℃,升温速率为2-6℃/min,保温时间为2-5h,随炉冷却到室温后得到铁酸铋基电致应变陶瓷;
步骤(2)与步骤(4)在球磨时采用无水乙醇和ZrO2球作为球磨介质,ZrO2球与球磨料的质量比为1.1~1.4:1,无水乙醇与原料的质量比1.1~2.4:1。
3.根据权利要求2所述的一种铁酸铋基电致应变陶瓷的制备方法,其特征在于,步骤(2)与步骤(4)在球磨时控制球磨的转速为280-400 r/min,时间为10-20h。
4.根据权利要求2所述的一种铁酸铋基电致应变陶瓷的制备方法,其特征在于,步骤(4)中的粉料在造粒过程中加入PVA,加入量为粉料的5wt%。
5.根据权利要求2所述的一种铁酸铋基电致应变陶瓷的制备方法,其特征在于,步骤(4)中陶瓷生坯进行模压成型时控制成型压力为60-100MPa。
6.根据权利要求2所述的一种铁酸铋基电致应变陶瓷的制备方法,其特征在于,步骤(5)中烧结温度为1000℃,保温时间为3h。
7.如权利要求1所述的一种铁酸铋基电致应变陶瓷在制造驱动器和高精度位移传感器中的应用。
CN201811145258.5A 2018-09-29 2018-09-29 一种铁酸铋基电致应变陶瓷及其制备方法和应用 Active CN109279891B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811145258.5A CN109279891B (zh) 2018-09-29 2018-09-29 一种铁酸铋基电致应变陶瓷及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811145258.5A CN109279891B (zh) 2018-09-29 2018-09-29 一种铁酸铋基电致应变陶瓷及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109279891A CN109279891A (zh) 2019-01-29
CN109279891B true CN109279891B (zh) 2022-02-18

Family

ID=65182130

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811145258.5A Active CN109279891B (zh) 2018-09-29 2018-09-29 一种铁酸铋基电致应变陶瓷及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109279891B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112062551A (zh) * 2020-08-06 2020-12-11 同济大学 一种高退极化温度、高压电性能的铁酸铋基压电陶瓷材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106977196A (zh) * 2017-03-24 2017-07-25 同济大学 一种非化学计量比钛酸铋钠基陶瓷及其制备方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106977196A (zh) * 2017-03-24 2017-07-25 同济大学 一种非化学计量比钛酸铋钠基陶瓷及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A Novel BiFeO3–BaTiO3–BaZrO3 Lead-Free Relaxor Ferroelectric Ceramic with Low-Hysteresis and Frequency-Insensitive Large Strains;Zheng Donggeng等;《Journal of the American Ceramic Society》;20150918;第98卷(第12期);第3670-3672页 *
Lead-free Bi1/2(Na0.82K0.18)1/2TiO3 ceramics exhibiting large strain with small hysteresis;Lee H B等;《Ceramics International》;20130530;第39卷(第1期);第1-4页 *

Also Published As

Publication number Publication date
CN109279891A (zh) 2019-01-29

Similar Documents

Publication Publication Date Title
CN109534810B (zh) 钛酸铋钠基无铅驱动器陶瓷及其制备方法和应用
CN111302797B (zh) 一种铌酸钾钠基无铅压电陶瓷及其制备方法
CN108147813B (zh) 一种高压电系数钛酸铋钠基无铅压电陶瓷及其制备方法
CN109796205B (zh) 一种铋层状结构钛钽酸铋高温压电陶瓷材料及其制备方法
CN111072385A (zh) 一种锆酸钙和钽掺杂的铌酸钾钠基压电陶瓷、其制备方法及应用
CN112062551A (zh) 一种高退极化温度、高压电性能的铁酸铋基压电陶瓷材料及其制备方法
CN116573936B (zh) 一种阴离子改性的压电陶瓷及其制备方法
CN110550953A (zh) 一种钛酸铋钠基无铅压电陶瓷及其制备方法
CN113582667B (zh) 一种可低温共烧的高储能反铁电陶瓷材料及其制备方法和应用
CN106977196B (zh) 一种非化学计量比钛酸铋钠基陶瓷及其制备方法和应用
CN112552048B (zh) 一种具有高压电性能和高剩余极化强度铌酸钾钠陶瓷的制备方法
CN107903055B (zh) 一种梯度掺杂钛酸铋钠基多层无铅压电陶瓷
CN109279891B (zh) 一种铁酸铋基电致应变陶瓷及其制备方法和应用
CN107056290B (zh) 一种调控铁电陶瓷居里温度的方法
CN103482973A (zh) 无铅四元体系电致应变压电陶瓷材料及制备方法和产品
CN107162585A (zh) 一种钛酸铋钠基电致伸缩陶瓷及其制备方法和应用
CN115385675B (zh) 一种高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料及其制备方法
CN102432285B (zh) 钛镍酸铋-钛锌酸铋-钛酸铅三元系高温压电陶瓷及其制备方法
CN111217596B (zh) 一种高居里温度、大电致应变无铅压电陶瓷材料及其制备方法
CN114478007A (zh) 一种具有良好工艺容忍性的高压电及高介电性能的铌酸钠基陶瓷材料及其制备方法与应用
CN103539447B (zh) 一种低温烧结的压电陶瓷材料及其制备方法
CN113248247A (zh) 一种三元压电陶瓷及其制备方法和应用
KR101806207B1 (ko) 변형율이 높고 저온소성이 가능한 삼성분계 무연 압전 세라믹스 및 이의 제조방법
KR20180003277A (ko) 전계유기 변형특성이 우수한 무연 압전 세라믹스의 제조방법
CN114736015B (zh) 一种采用真空热压烧结炉制备的插层锆钛酸钡钙基无铅压电陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant