CN109136760B - 一种可抗热处理的熔敷金属 - Google Patents

一种可抗热处理的熔敷金属 Download PDF

Info

Publication number
CN109136760B
CN109136760B CN201811107568.8A CN201811107568A CN109136760B CN 109136760 B CN109136760 B CN 109136760B CN 201811107568 A CN201811107568 A CN 201811107568A CN 109136760 B CN109136760 B CN 109136760B
Authority
CN
China
Prior art keywords
deposited metal
heat treatment
resistanceheat resistant
resistant processing
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811107568.8A
Other languages
English (en)
Other versions
CN109136760A (zh
Inventor
董利明
于照鹏
姜巍
左克生
胡顺安
邱型宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changshu Institute of Technology
Original Assignee
Changshu Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changshu Institute of Technology filed Critical Changshu Institute of Technology
Priority to CN201811107568.8A priority Critical patent/CN109136760B/zh
Publication of CN109136760A publication Critical patent/CN109136760A/zh
Application granted granted Critical
Publication of CN109136760B publication Critical patent/CN109136760B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Arc Welding In General (AREA)

Abstract

本发明公开了一种可抗热处理的熔敷金属,包括以下质量百分比组分:C≤0.05%,Si≤0.18%,Mn0.8~1.8%,S≤0.01%,P≤0.01%,Cu 0.1~0.25%,Cr 0.1~0.25%,Ni 1.0~3.0%,Mo0.5~1.5%,Ti+RE 0.02~0.1%,0.8≤RE/Ti≤1.2,1.5≤(Ti+RE)/O≤2.5,其余为Fe及不可避免的杂质元素。本发明熔敷金属能够满足在不同热处理工艺(650℃,1h;580℃,4h;620℃,10h)前后均具备稳定的强韧性能,热处理态的抗拉强度相比焊态下降15%以内,热处理态低温冲击功相比焊态下降30%以内。

Description

一种可抗热处理的熔敷金属
技术领域
本发明涉及一种熔敷金属,特别是涉及一种可抗热处理的熔敷金属。
背景技术
焊后热处理是一种常见的焊接后处理手段,主要目的在于松弛焊接残余应力,减小畸变,释放焊缝中有害气体,最终改善母材和接头性能。在现有相关技术领域中,通过焊后热处理,以获得强韧性良好的焊接结构性能是最普遍的要求。例如,在油气输送管线制造中,热煨弯管必须经过高温回火(550℃-650℃,1h)才能保证焊缝具备足够的抗拉强度和低温韧性(最低达-40℃);在低温压力容器制造中,焊接熔敷金属需经长时间热处理(580℃,4h)后,仍具备良好的抗拉强度和低温韧性(一般为-50℃);在压水堆核电站核岛主设备焊接中,蒸汽发生器等部件的焊接熔敷金属在热处理(620℃,10h)后强度和低温韧性没有明显降低,且达到核电设计技术条件。
但是,已有技术报道的低合金焊丝制备的熔敷金属(如公开号为CN103350289A、CN102728966A、CN1433869A等的中国专利)仅能保证焊态下的熔敷金属的强韧性满足要求,无法保证热处理后的熔敷金属性能。公开号为CN102019517A、CN108213770A、CN108188614A的中国专利报道了改善或者提高热处理后熔敷金属抗拉强度的方法,但这些都属于不锈钢或者镍基合金,不属于低合金范畴。公开号为CN106425164A的中国专利公布了一种-50℃低温球罐用高强度焊条,其制备的熔敷金属经热处理后仍具备优异的强韧性能,但是这种专用焊条制备的熔敷金属并不具备通用性,无法保证在更高温度(如620℃)热处理、或更长时间(如10h)后的熔敷金属性能。
发明内容
针对上述现有技术的缺陷,本发明提供了一种可抗热处理的熔敷金属,能够满足在不同热处理工艺(650℃,1h;580℃,4h;620℃,10h)前后均具备稳定的强韧性能,达到管线、低压容器、核电等领域的技术要求。
本发明技术方案如下:一种可抗热处理的熔敷金属,包括以下质量百分比组分:C≤0.05%,Si≤0.18%,Mn0.8~1.8%,S≤0.01%,P≤0.01%,Cu 0.1~0.25%,Cr 0.1~0.25%,Ni 1.0~3.0%,Mo0.5~1.5%,Ti+RE 0.02~0.1%,0.8≤RE/Ti≤1.2,1.5≤(Ti+RE)/O≤2.5,其余为Fe及不可避免的杂质元素。
优选的,所述Ti的质量百分比为0.01~0.05%,RE的质量百分比为0.01~0.05%。
优选的,所述O的质量百分比为0.02~0.04%。
优选的,所述RE为稀土元素La、Ce、Y中的一种或几种。
进一步的,所述熔敷金属的焊态组织中的晶粒尺寸≤3μm的铁素体占体积百分比≥81%,所述熔敷金属的热处理态组织中晶粒尺寸≤3μm的铁素体占体积百分比≥90%,所述热处理为580~650℃,1~10h回火处理。
进一步的,所述熔敷金属的焊态组织中的粗晶组织为晶界铁素体,所述晶界铁素体的晶粒尺寸≥10μm,占体积百分比≤1%,所述熔敷金属的热处理态组织中的粗晶组织为贝氏体,所述贝氏体晶粒尺寸≥10μm的,占体积百分比≤3.5%。
进一步的,所述熔敷金属的焊态组织中稀土氧化物夹杂所占面积百分比为0.04~0.06%,所述稀土氧化物夹杂的尺寸小于1μm。
进一步的,所述熔敷金属的热处理态组织中稀土氧化物夹杂所占面积百分比为0.02~0.04%,所述稀土氧化物夹杂的尺寸小于1μm。
本发明中各个元素的作用如下:
Ti,RE:钛和稀土元素在本发明中的关键元素。一方面,钛和稀土元素对净化熔敷金属的洁净度有利;另一方面,钛和稀土在熔敷金属中和氧结合,形成弥散分布的氧化物夹杂,为熔敷金属中细晶铁素体形核创造条件;此外,钛和稀土形成的氧化物夹杂具有较高熔点,受高温热处理的影响较小,成为细晶铁素体的二次形核中心,对高温热处理后的熔敷金属具有细晶强化和提高低温韧性的作用。控制RE/Ti在0.8~1.2,形成RE-Ti-O型复合夹杂物,保证了夹杂物尺寸在1μm以内,避免产生RE-O或者Ti-O型易集聚长大成对强韧性能有害的大尺寸夹杂物。并且作为优选的,熔敷金属中的O在0.02~0.04%,(RE+Ti)/O在1.5~2.5以内,可使纳米级夹杂物达到足够密度,从而保证熔敷金属在焊态和热处理态的强韧性能。
C:适量碳元素对熔敷金属有强化作用,且可形成弥散分布的碳化物提高材料的蠕变性能,但过高的碳含量会导致过多的合金元素析出,并使熔敷金属在后续热处理过程中强度、韧性稳定性变差。同时,较高的碳含量会使焊接性变差。
Si:焊接过程中的有效脱氧元素,并且在焊剂中也有硅元素添加。
Mn:锰元素是良好的脱氧和脱硫剂,可有效降低杂质含量,同时对熔敷金属有重要的强化作用,但锰元素含量太高会降低高温铁素体的稳定性。
S,P:硫和磷为熔敷金属中的杂质元素,一般易在晶界偏聚或形成低熔点产物,严重影响熔敷金属的强韧性能和抗热处理能力。
Cu:铜元素在焊态下以ε-Cu粒子析出,弥散分布在晶界和晶内,可阻止亚晶界的迁移而提高蠕变强度。但当铜含量过高时,ε-Cu在热处理中易聚集粗化,减弱强化效果,并且对韧性不利。
Cr:适量铬元素对熔敷金属高温热处理后性能有利,能显著提高高温持久强度和蠕变强度,在基体中起到固溶强化作用,但铬元素过高反而降低焊缝韧性。
Ni:镍元素在低合金钢焊缝中是提高熔敷金属低温韧性的关键元素,但镍含量过高时Ac1点显著降低,使熔敷金属在高温热处理后重新形成奥氏体,粗化再结晶晶粒的尺寸,且镍含量成本较高。
Mo:钼元素在低合金钢中具有提高熔敷金属强度,细化晶粒,改善焊缝韧性的效果。熔敷金属经高温热处理后,钼元素在晶界偏聚,能够有效净化晶界,避免S/P等杂质原子的聚集,从而提高熔敷金属高温热处理后的强韧性能。
本发明技术方案与现有技术相比,可实现以下有益效果:
熔敷金属焊态和不同工艺的热处理态均具有良好的强韧性能,其中焊态熔敷金属的抗拉强度为650~780MPa,低温冲击功为Akv-40℃≥132J,Akv-50℃≥110℃;热处理态熔敷金属的抗拉强度为625~755MPa,低温冲击功为Akv-40℃≥118J,Akv-50℃≥98J。
熔敷金属经不同工艺的热处理后,热处理态的抗拉强度相比焊态下降15%以内,热处理态低温冲击功相比焊态下降30%以内。
附图说明
图1为实施例1熔敷金属焊态组织典型SEM照片。
图2为实施例1熔敷金属热处理态组织典型SEM照片。
图3为实施例1熔敷金属夹杂物分布图。
图4为实施例1熔敷金属夹杂物统计图。
具体实施方式
下面结合实施例对本发明作进一步说明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等同形式的修改均落于本申请所附权利要求所限定的范围内。
实施例1
熔敷金属可抗热处理的低合金埋弧焊丝,包括以下质量百分比组分:C 0.05%,Si0.17%,Mn 1.7%,S 0.008%,P 0.006%,Cu 0.25%,Cr 0.20%,Ni 1.9%,Mo 0.8%,Ti0.03%,RE 0.025%,其余为Fe及不可避免的杂质元素。以管线领域的K65级别钢板作为母材,按照AWS标准开X型坡口制备熔敷金属,熔敷金属中O含量为0.03%,然后对熔敷金属以650℃、1h开展回火试验。对比焊态熔敷金属和热处理态熔敷金属的组织及性能:冲击试验在摆锤冲击试验机上进行,拉伸试验在250kN(Instron)拉伸试验机上进行;焊缝金属经过镶嵌、磨制、抛光和4%硝酸酒精腐蚀后,采用金相显微镜(ZEISS)和场发射扫描电子显微镜进行组织观察,并进行不同组织和夹杂物的尺寸和含量统计。
实施例2
熔敷金属可抗热处理的低合金埋弧焊丝,包括以下质量百分比组分:C 0.05%,Si0.17%,Mn 0.8%,S 0.008%,P 0.006%,Cu 0.1%,Cr 0.16%,Ni 1.0%,Mo 0.5%,Ti0.01%,RE 0.01%,其余为Fe及不可避免的杂质元素。以管线领域的K65级别钢板作为母材,按照AWS标准开X型坡口制备熔敷金属,熔敷金属中O含量为0.008%,然后对熔敷金属以650℃、1h开展回火试验。对比焊态熔敷金属和热处理态熔敷金属的组织及性能:冲击试验在摆锤冲击试验机上进行,拉伸试验在250kN(Instron)拉伸试验机上进行;焊缝金属经过镶嵌、磨制、抛光和4%硝酸酒精腐蚀后,采用金相显微镜(ZEISS)和场发射扫描电子显微镜进行组织观察,并进行不同组织和夹杂物的尺寸和含量统计。
实施例3
熔敷金属可抗热处理的低合金埋弧焊丝,包括以下质量百分比组分:C 0.04%,Si0.17%,Mn 1.5%,S 0.008%,P 0.005%,Cu 0.22%,Cr 0.19%,Ni 2.0%,Mo 1.0%,Ti0.03%,RE 0.03%,其余为Fe及不可避免的杂质元素。以低温压力容器领域的07MnNiMoDR钢板作为母材,按照AWS标准开X型坡口制备熔敷金属,熔敷金属中O含量为0.03%,然后对熔敷金属以580℃、4h开展回火试验。对比焊态熔敷金属和热处理态熔敷金属的组织及性能:冲击试验在摆锤冲击试验机上进行,拉伸试验在250kN(Instron)拉伸试验机上进行;焊缝金属经过镶嵌、磨制、抛光和4%硝酸酒精腐蚀后,采用金相显微镜(ZEISS)和场发射扫描电子显微镜进行组织观察,并进行不同组织和夹杂物的尺寸和含量统计。
实施例4
熔敷金属可抗热处理的低合金埋弧焊丝,包括以下质量百分比组分:C 0.04%,Si0.17%,Mn 1.4%,S 0.008%,P 0.005%,Cu 0.20%,Cr 0.1%,Ni 1.4%,Mo 1.1%,Ti0.05%,RE 0.04%,其余为Fe及不可避免的杂质元素。以低温压力容器领域的07MnNiMoDR钢板作为母材,按照AWS标准开X型坡口制备熔敷金属,熔敷金属中O含量为0.06%,然后对熔敷金属以580℃、4h开展回火试验。对比焊态熔敷金属和热处理态熔敷金属的组织及性能:冲击试验在摆锤冲击试验机上进行,拉伸试验在250kN(Instron)拉伸试验机上进行;焊缝金属经过镶嵌、磨制、抛光和4%硝酸酒精腐蚀后,采用金相显微镜(ZEISS)和场发射扫描电子显微镜进行组织观察,并进行不同组织和夹杂物的尺寸和含量统计。
实施例5
熔敷金属可抗热处理的低合金埋弧焊丝,包括以下质量百分比组分:C 0.04%,Si0.18%,Mn 1.5%,S 0.007%,P 0.008%,Cu 0.14%,Cr 0.25%,Ni 2.8%,Mo 1.45%,Ti0.042%,RE 0.04%,其余为Fe及不可避免的杂质元素。以核电领域的18MND5钢板作为母材,按照AWS标准开X型坡口制备熔敷金属,熔敷金属中O含量为0.04%,然后对熔敷金属以620℃、10h开展回火试验。对比焊态熔敷金属和热处理态熔敷金属的组织及性能:冲击试验在摆锤冲击试验机上进行,拉伸试验在250kN(Instron)拉伸试验机上进行;焊缝金属经过镶嵌、磨制、抛光和4%硝酸酒精腐蚀后,采用金相显微镜(ZEISS)和场发射扫描电子显微镜进行组织观察,并进行不同组织和夹杂物的尺寸和含量统计。
实施例6
熔敷金属可抗热处理的低合金埋弧焊丝,包括以下质量百分比组分:C 0.04%,Si0.18%,Mn 1.0%,S 0.007%,P 0.008%,Cu 0.16%,Cr 0.12%,Ni 2.5%,Mo 1.5%,Ti0.02%,RE 0.024%,其余为Fe及不可避免的杂质元素。以核电领域的18MND5钢板作为母材,按照AWS标准开X型坡口制备熔敷金属,熔敷金属中O含量为0.02%,然后对熔敷金属以620℃、10h开展回火试验。对比焊态熔敷金属和热处理态熔敷金属的组织及性能:冲击试验在摆锤冲击试验机上进行,拉伸试验在250kN(Instron)拉伸试验机上进行;焊缝金属经过镶嵌、磨制、抛光和4%硝酸酒精腐蚀后,采用金相显微镜(ZEISS)和场发射扫描电子显微镜进行组织观察,并进行不同组织和夹杂物的尺寸和含量统计。
对比例1
熔敷金属可抗热处理的低合金埋弧焊丝,包括以下质量百分比组分:C 0.04%,Si0.17%,Mn 1.6%,S 0.007%,P 0.007%,Cu 0.2%,Cr 0.21%,Ni 1.9%,Mo 0.9%,Ti0.01%,RE 0.01%,其余为Fe及不可避免的杂质元素。以管线领域的K65级别钢板作为母材,按照AWS标准开X型坡口制备熔敷金属,熔敷金属中O含量为0.03%,然后对熔敷金属以650℃、1h开展回火试验。对比焊态熔敷金属和热处理态熔敷金属的组织及性能:冲击试验在摆锤冲击试验机上进行,拉伸试验在250kN(Instron)拉伸试验机上进行;焊缝金属经过镶嵌、磨制、抛光和4%硝酸酒精腐蚀后,采用金相显微镜(ZEISS)和场发射扫描电子显微镜进行组织观察,并进行不同组织和夹杂物的尺寸和含量统计。
对比例2
熔敷金属可抗热处理的低合金埋弧焊丝,包括以下质量百分比组分:C 0.05%,Si0.18%,Mn 1.6%,S 0.007%,P 0.005%,Cu 0.15%,Cr 0.22%,Ni 2.2%,Mo 1.1%,Ti0.05%,RE 0.05%,其余为Fe及不可避免的杂质元素。以管线领域的K65级别钢板作为母材,按照AWS标准开X型坡口制备熔敷金属,熔敷金属中O含量为0.03%,然后对熔敷金属以650℃、1h开展回火试验。对比焊态熔敷金属和热处理态熔敷金属的组织及性能:冲击试验在摆锤冲击试验机上进行,拉伸试验在250kN(Instron)拉伸试验机上进行;焊缝金属经过镶嵌、磨制、抛光和4%硝酸酒精腐蚀后,采用金相显微镜(ZEISS)和场发射扫描电子显微镜进行组织观察,并进行不同组织和夹杂物的尺寸和含量统计。
对比例3
熔敷金属可抗热处理的低合金埋弧焊丝,包括以下质量百分比组分:C 0.04%,Si0.17%,Mn 1.7%,S 0.008%,P 0.008%,Cu 0.22%,Cr 0.24%,Ni 2.7%,Mo 1.55%,Ti0.05%,RE 0.01%,其余为Fe及不可避免的杂质元素。以低温压力容器领域的07MnNiMoDR钢板作为母材,按照AWS标准开X型坡口制备熔敷金属,熔敷金属中O含量为0.04%,然后对熔敷金属以580℃、4h开展回火试验。对比焊态熔敷金属和热处理态熔敷金属的组织及性能:冲击试验在摆锤冲击试验机上进行,拉伸试验在250kN(Instron)拉伸试验机上进行;焊缝金属经过镶嵌、磨制、抛光和4%硝酸酒精腐蚀后,采用金相显微镜(ZEISS)和场发射扫描电子显微镜进行组织观察,并进行不同组织和夹杂物的尺寸和含量统计。
对比例4
熔敷金属可抗热处理的低合金埋弧焊丝,包括以下质量百分比组分:C 0.04%,Si0.17%,Mn 1.5%,S 0.007%,P 0.007%,Cu 0.20%,Cr 0.23%,Ni 2.0%,Mo 1.2%,Ti0.005%,RE 0.005%,其余为Fe及不可避免的杂质元素。以低温压力容器领域的07MnNiMoDR钢板作为母材,按照AWS标准开X型坡口制备熔敷金属,熔敷金属中O含量为0.04%,然后对熔敷金属以580℃、4h开展回火试验。对比焊态熔敷金属和热处理态熔敷金属的组织及性能:冲击试验在摆锤冲击试验机上进行,拉伸试验在250kN(Instron)拉伸试验机上进行;焊缝金属经过镶嵌、磨制、抛光和4%硝酸酒精腐蚀后,采用金相显微镜(ZEISS)和场发射扫描电子显微镜进行组织观察,并进行不同组织和夹杂物的尺寸和含量统计。
对比例5
熔敷金属可抗热处理的低合金埋弧焊丝,包括以下质量百分比组分:C 0.04%,Si0.15%,Mn 1.4%,S 0.007%,P 0.008%,Cu 0.22%,Cr 0.22%,Ni 2.5%,Mo 1.3%,Ti0.02%,RE 0.09%,其余为Fe及不可避免的杂质元素。以核电领域的18MND5钢板作为母材,按照AWS标准开X型坡口制备熔敷金属,熔敷金属中O含量为0.04%,然后对熔敷金属以620℃、10h开展回火试验。对比焊态熔敷金属和热处理态熔敷金属的组织及性能:冲击试验在摆锤冲击试验机上进行,拉伸试验在250kN(Instron)拉伸试验机上进行;焊缝金属经过镶嵌、磨制、抛光和4%硝酸酒精腐蚀后,采用金相显微镜(ZEISS)和场发射扫描电子显微镜进行组织观察,并进行不同组织和夹杂物的尺寸和含量统计。
对比例6
熔敷金属可抗热处理的低合金埋弧焊丝,包括以下质量百分比组分:C 0.05%,Si0.2%,Mn 1.8%,S 0.007%,P 0.007%,Cu 0.15%,Cr 0.22%,Ni 2.2%,Mo 1.5%,Ti0.02%,RE 0.03%,其余为Fe及不可避免的杂质元素。以核电领域的18MND5钢板作为母材,按照AWS标准开X型坡口制备熔敷金属,熔敷金属中O含量为0.02%,然后对熔敷金属以620℃、10h开展回火试验。对比焊态熔敷金属和热处理态熔敷金属的组织及性能:冲击试验在摆锤冲击试验机上进行,拉伸试验在250kN(Instron)拉伸试验机上进行;焊缝金属经过镶嵌、磨制、抛光和4%硝酸酒精腐蚀后,采用金相显微镜(ZEISS)和场发射扫描电子显微镜进行组织观察,并进行不同组织和夹杂物的尺寸和含量统计。
上述各实施例及对比例得到的熔敷金属不同状态的组织尺寸、含量统计及强韧性能如下表所示
请结合图1至图4所示,上述各个实施例中,其焊态熔敷金属和热处理后熔敷金属中存在铁素体和贝氏体两种组织,同时细晶铁素体含量和粗晶贝氏体含量均有所增加,但焊态和热处理态均以细晶铁素体为主要组织类型。焊态和热处理态中均存在纳米级别的稀土氧化物夹杂,且热处理后夹杂物面积百分比有所下降。热处理态熔敷金属抗拉强度相比焊态熔敷金属抗拉强度下降幅度小于15%,热处理态熔敷金属在-40℃及-50℃低温冲击功相比焊态熔敷金属下降幅度分别小于30%和小于25%。
对比例1中,虽然C、Si、Mn、S、P、Cu、Cr、Ni、Mo、Ti+RE、RE/Ti符合本发明的要求,但RE+Ti/O小于1.5,从而导致焊态及热处理态熔敷金属中Ti-RE-O复合型夹杂物含量较少,使大尺寸组织含量偏高,对比焊态和热处理态熔敷金属的强度和低温冲击功可发现,采用该成分制备的熔敷金属在热处理后强度可满足下降15%以内要求,但低温韧性下降幅度大于30%。
对比例2中,虽然C、Si、Mn、S、P、Cu、Cr、Ni、Mo、Ti+RE、RE/Ti符合本发明的要求,但RE+Ti/O大于2.5,焊态及热处理态熔敷金属中也存在一定含量的Ti-RE-O复合型夹杂物,但焊态和热处理态中大尺寸组织含量依然偏高,复合型夹杂物尺寸较大,且不利于弥散分布,没有成为焊态或热处理态熔敷金属中细晶铁素体的形核质点,从而导致部分组织粗化。采用该成分制备的熔敷金属在热处理后强度可满足下降15%以内要求,但低温韧性下降幅度大于30%。
对比例3中,虽然C、Si、Mn、S、P、Cu、Cr、Ni、Mo、Ti+RE、RE+Ti/O符合本发明的要求,但RE/Ti小于0.8,焊态及热处理态熔敷金属中Ti-RE-O复合型夹杂物含量相比实施例大幅减少,对于焊态和热处理态熔敷金属组织的细化效果不足,从而使焊态和热处理态中大尺寸组织含量偏高。采用该成分制备的熔敷金属在热处理后强度可满足下降15%以内要求,但低温韧性下降幅度大于30%。
对比例4中,虽然C、Si、Mn、S、P、Cu、Cr、Ni、Mo、RE/Ti符合本发明的要求,但RE+Ti小于0.02,且RE+Ti/O也小于1.5,焊态及热处理态熔敷金属中Ti-RE-O复合型夹杂物含量相比实施例大幅减少,对于焊态和热处理态熔敷金属组织的细化效果不足,从而使焊态和热处理态中大尺寸组织含量偏高。采用该成分制备的熔敷金属在热处理后强度可满足下降15%以内要求,但低温韧性下降幅度大于30%。
对比例5中,虽然C、Si、Mn、S、P、Cu、Cr、Ni、Mo符合本发明的要求,但RE+Ti大于0.1,RE/Ti大于1.2,RE+Ti/O大于2.5,焊态及热处理态熔敷金属中也存在一定含量的Ti-RE-O复合型夹杂物,但焊态和热处理态中大尺寸组织含量依然偏高,复合型夹杂物尺寸较大,且不利于弥散分布,没有成为焊态或热处理态熔敷金属中细晶铁素体的形核质点,从而导致部分组织粗化。采用该成分制备的熔敷金属在热处理后强度可满足下降15%以内要求,但低温韧性下降幅度大于30%。
对比例6中,虽然C、Si、Mn、S、P、Cu、Cr、Ni、Mo、RE+Ti符合本发明的要求,但RE/Ti大于1.2,焊态及热处理态熔敷金属中Ti-RE-O复合型夹杂物含量相比实施例大幅减少,对于焊态和热处理态熔敷金属组织的细化效果不足,从而使焊态和热处理态中大尺寸组织含量偏高。采用该成分制备的熔敷金属在热处理后强度可满足下降15%以内要求,但低温韧性下降幅度大于30%。

Claims (8)

1.一种可抗热处理的熔敷金属,包括以下质量百分比组分:C≤0.05%,Si≤0.18%,Mn0.8~1.8%,S≤0.01%,P≤0.01%,Cu 0.1~0.25%,Cr 0.1~0.25%,Ni 1.0~3.0%,Mo0.5~1.5%,Ti+RE 0.02~0.1%,0.8≤RE/Ti≤1.2,1.5≤(Ti+RE)/O≤2.5,其余为Fe及不可避免的杂质元素。
2.根据权利要求1所述的可抗热处理的熔敷金属,其特征在于,所述Ti的质量百分比为0.01~0.05%,RE的质量百分比为0.01~0.05%。
3.根据权利要求1所述的可抗热处理的熔敷金属,其特征在于,所述O的质量百分比为0.02~0.04%。
4.根据权利要求1所述的可抗热处理的熔敷金属,其特征在于,所述RE为稀土元素La、Ce、Y中的一种或几种。
5.根据权利要求1所述的可抗热处理的熔敷金属,其特征在于,所述熔敷金属的焊态组织中的晶粒尺寸≤3μm的铁素体占体积百分比≥81%,所述熔敷金属的热处理态组织中晶粒尺寸≤3μm的铁素体占体积百分比≥90%,所述热处理为580~650℃,1~10h回火处理。
6.根据权利要求5所述的可抗热处理的熔敷金属,其特征在于,所述熔敷金属的焊态组织中的粗晶组织为晶界铁素体,所述晶界铁素体的晶粒尺寸≥10μm,占体积百分比≤1%,所述熔敷金属的热处理态组织中的粗晶组织为贝氏体,所述贝氏体晶粒尺寸≥10μm的,占体积百分比≤3.5%。
7.根据权利要求5所述的可抗热处理的熔敷金属,其特征在于,所述熔敷金属的焊态组织中稀土氧化物夹杂所占面积百分比为0.04~0.06%,所述稀土氧化物夹杂的尺寸小于1μm。
8.根据权利要求5所述的可抗热处理的熔敷金属,其特征在于,所述熔敷金属的热处理态组织中稀土氧化物夹杂所占面积百分比为0.02~0.04%,所述稀土氧化物夹杂的尺寸小于1μm。
CN201811107568.8A 2018-09-21 2018-09-21 一种可抗热处理的熔敷金属 Active CN109136760B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811107568.8A CN109136760B (zh) 2018-09-21 2018-09-21 一种可抗热处理的熔敷金属

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811107568.8A CN109136760B (zh) 2018-09-21 2018-09-21 一种可抗热处理的熔敷金属

Publications (2)

Publication Number Publication Date
CN109136760A CN109136760A (zh) 2019-01-04
CN109136760B true CN109136760B (zh) 2019-10-11

Family

ID=64823106

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811107568.8A Active CN109136760B (zh) 2018-09-21 2018-09-21 一种可抗热处理的熔敷金属

Country Status (1)

Country Link
CN (1) CN109136760B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101909810A (zh) * 2007-12-26 2010-12-08 Posco公司 在低温下具有优异ctod性能的药芯焊丝电弧焊接金属接头以及具有所述焊接金属接头的钢构件

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5503428B2 (ja) * 2009-07-15 2014-05-28 株式会社神戸製鋼所 Rem含有鋼の製造方法
KR101143132B1 (ko) * 2010-08-09 2012-05-08 주식회사 포스코 플럭스 코어드 아크 용접이음부

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101909810A (zh) * 2007-12-26 2010-12-08 Posco公司 在低温下具有优异ctod性能的药芯焊丝电弧焊接金属接头以及具有所述焊接金属接头的钢构件

Also Published As

Publication number Publication date
CN109136760A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
WO2021254028A1 (zh) 一种b2纳米粒子共格析出强化的超高强度马氏体时效不锈钢及制备方法
JP5201625B2 (ja) 耐高圧水素環境脆化特性に優れた高強度低合金鋼およびその製造方法
CN104884661B (zh) 焊接热影响区韧性优异的高强度奥氏体类钢材及其制备方法
CN106077997B (zh) 一种用于抗熔盐腐蚀镍基高温合金熔化焊的焊料
EP1736562A1 (en) Thick high strength steel plate having excellent low temperature toughness in welding heat affected zone caused by high heat input welding
CN109693055A (zh) 油气管道用内壁堆焊耐高温耐腐蚀镍合金焊丝及制备方法
CN110291216A (zh) Ni基耐热合金及其制造方法
CN104493374A (zh) 一种奥氏体不锈钢焊丝及其焊接工艺
CN109465565A (zh) 一种气体保护焊丝及其制造方法
CN108425037A (zh) 一种粉末高温合金及其制备方法
CN101628366A (zh) 一种高等级石油管线钢用气保焊焊丝及其制备方法
CN107649798A (zh) 25Cr2Ni4MoV钢用金属型药芯焊丝及制备方法
JP5842314B2 (ja) 大入熱溶接用鋼
CN107398656B (zh) 一种抗高温蠕变和时效脆化的Super304H钢焊丝
CN109852885A (zh) 一种双相不锈钢及其制备方法
CN106133168B (zh) 高张力钢板及其制造方法
CN106001988B (zh) 一种具有高冲击性能的四代核电用马氏体耐热钢焊丝及其焊接工艺
CN106001990A (zh) 海洋平台用高强度钢的高强韧埋弧焊丝及其制得的焊缝金属
CN105312793A (zh) 一种700℃超超临界火电高温部件用Fe-Ni基高温合金焊丝及其应用
CN110280923A (zh) 800H合金焊接用Fe-Ni基合金焊丝及其制备方法、800H合金的焊接方法
JP2004042116A (ja) 高Crフェライト系耐熱鋼用溶接ワイヤ
CN110480207A (zh) 一种适用于1000MPa级超高强钢焊接的含复合稀土元素药芯焊丝
CN101910437B (zh) 具有在焊接热影响区裂纹尖端张开位移性能优异的焊接接头的焊接结构用钢
CN109136760B (zh) 一种可抗热处理的熔敷金属
JP2005105322A (ja) 大入熱溶接継手靭性に優れた厚鋼板とその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant