WO2021254028A1 - 一种b2纳米粒子共格析出强化的超高强度马氏体时效不锈钢及制备方法 - Google Patents

一种b2纳米粒子共格析出强化的超高强度马氏体时效不锈钢及制备方法 Download PDF

Info

Publication number
WO2021254028A1
WO2021254028A1 PCT/CN2021/092941 CN2021092941W WO2021254028A1 WO 2021254028 A1 WO2021254028 A1 WO 2021254028A1 CN 2021092941 W CN2021092941 W CN 2021092941W WO 2021254028 A1 WO2021254028 A1 WO 2021254028A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
strength
alloy
maraging stainless
maraging
Prior art date
Application number
PCT/CN2021/092941
Other languages
English (en)
French (fr)
Inventor
王清
王镇华
董闯
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Publication of WO2021254028A1 publication Critical patent/WO2021254028A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention belongs to the field of high-strength stainless steel, and particularly relates to a BCC-based ultra-high-strength maraging stainless steel strengthened by the coherent precipitation of B2 nanoparticles and a preparation method thereof.
  • the strength exceeds 2.0 GPa and the elongation exceeds 8.0%.
  • maraging steel As an ultra-high-strength steel, maraging steel is widely used in cutting-edge fields such as aviation, aerospace and military, and has high engineering application value and scientific research significance.
  • Traditional maraging steel is based on ultra-low carbon (or carbon-free) lath martensite (BCC-based) with high density of dislocations. After aging treatment, it forms a variety of non-coherent or semi-coherent with the matrix. Intermetallic compounds (Ni 3 Ti, Ni 3 Mo and Fe 2 (Mo,Ti)) are strengthened. These precipitated phases often have a large interface energy with the matrix, have a high nucleation barrier, and are easy to nucleate at defects such as grain boundaries, resulting in low density and uneven precipitation of the strengthening phase.
  • the precipitated phases are easy to grow along the direction of low mismatch degree, which is easy to be coarsened, which makes the alloy extremely sensitive to the process; and there is a large lattice distortion between the precipitated phase and the matrix. It is easy to produce stress concentration in the process of misalignment, which induces crack initiation, resulting in extremely poor uniform plastic deformation ability of the alloy. And in order to increase the density of the precipitated phases, such steels are usually added with higher content of Ni and Co elements, which further increases the use cost of the steel. Therefore, traditional maraging steel has certain limitations.
  • the maraging steel with coherent precipitation strengthening of B2-NiAl nanoparticles avoids these limitations.
  • the lattice constant (0.2887nm) of the ordered superstructure of BCC B2-NiAl phase is similar to that of ⁇ -Fe (0.2866nm).
  • the coherent precipitated phase has lower interfacial energy and requires less nucleation work .
  • the present invention provides a new ultra-high-strength maraging stainless steel with good corrosion resistance and strong plastic matching with coherent precipitation strengthening of B2 nanoparticles, the strength of which exceeds 2.0 GPa, and the elongation is greater than 8.0%.
  • the present invention designs and develops a B2 nano particle coherent precipitation strengthening ultra-high-strength maraging stainless steel.
  • the purpose of the present invention is to realize uniform and coherent precipitation of high-density B2 nanoparticles on the martensite matrix, thereby designing a maraging stainless steel with ultra-high strength, good plasticity and corrosion resistance.
  • An ultra-high strength maraging stainless steel with coherent precipitation strengthening of B2 nanoparticles including Fe, Cr, Ni, Al, Mo, W, Nb, C, B elements, Si, Mn, S, P, O, N It is an impurity element, and the mass percentage (wt.%) of its alloy composition is as follows, Cr: 4.0 ⁇ 6.0, Ni: 13.0 ⁇ 15.0, Al: 3.0 ⁇ 4.0, Mo: 1.0 ⁇ 2.0, W: 0.3 ⁇ 0.7, Nb: 0.2 ⁇ 0.4, C: 0.03 ⁇ 0.05, B: 0.004 ⁇ 0.008, Si ⁇ 0.20, Mn ⁇ 0.20, S ⁇ 0.01, P ⁇ 0.02, O ⁇ 0.005, N ⁇ 0.02, Fe: balance; and Nb/C atom The percentage ratio is 1:1, and the atomic percentage ratio of Cr/(Mo+W) is 8:1.
  • the maraging stainless steel has a specific microstructure: high-density (>10 24 m -3 ) B2 phase nanoparticles (3-5 nm) are uniformly and coherently precipitated on the lath martensite matrix, making the The strength of steel is higher than 2.0GPa.
  • a preparation method of ultra-high-strength maraging stainless steel with coherent precipitation strengthening of B2 nanoparticles including the following contents: firstly, each alloy component is smelted at least four times in a vacuum arc according to its mass percentage to obtain an alloy ingot; Secondly, use a muffle furnace to homogenize the alloy ingot, the treatment temperature is 1250°C, the treatment time is 2h, and then it is cold rolled with multiple passes, the total deformation is about 70%; finally, annealing is carried out at 950°C Treat for 15min, and carry out aging treatment at 500°C for 4 ⁇ 48h.
  • the idea for realizing the above technical solution is to use the applicant's cluster composition design method to design the composition of maraging stainless steel.
  • the composition design method is based on the "cluster + connecting atom" structure model, and the stable solid solution structure is divided into clusters and connecting atoms.
  • the cluster is the nearest neighbor coordination polyhedron formed by a certain atom as the center.
  • the clusters in the FCC structure are cubic octahedrons with a coordination number of CN12, and the connecting atoms are placed in the gaps of the cluster stacking, usually located in the next adjacent shell of the cluster.
  • a simple cluster composition formula [cluster] (connecting atom) x can be determined, that is, a cluster matches x connecting atoms.
  • This cluster composition design method has been successfully applied to the design of high-temperature austenitic stainless steels, low-elastic ⁇ -Ti alloys and other engineering alloys, providing new ideas and methods for the composition design of high-performance engineering alloys.
  • austenite is directly related to the Ni equivalent and Cr equivalent of the alloy.
  • the addition of Mo element and W element not only plays a solid solution strengthening effect, but also improves the pitting corrosion resistance of steel. And in the Fe-Cr-Ni-Al quaternary system, the addition of Mo can also increase the lattice constant of the BCC matrix, thereby reducing the lattice mismatch between the BCC matrix and the precipitated phase B2, which is more conducive to the coherence of the B2 phase Precipitate out. Therefore, the addition of Mo and W is based on the atomic ratio of Cr/(Mo+W) of 8:1 instead of the Cr element in the cluster formula.
  • MC-type carbides can not only refine the original austenite grains, but also play a role of strengthening the second phase, but the excessive addition of C will cause the welding performance of the alloy to decrease, and at the same time reduce the plasticity of the steel. Therefore, the addition of C element is controlled between 0.03 and 0.05wt.%. At the same time, in order to suppress the precipitation of coarse and large Cr 23 C 6 carbides, it is necessary to add the same atomic percentage of Nb element. The addition of trace element B (0.004 ⁇ 0.008wt.%) can increase the grain boundary bonding force, thereby improving the plasticity of steel.
  • composition of the ultra-high-strength maraging stainless steel with coherent precipitation strengthening of B2 nanoparticles which is Fe-(4.0 ⁇ 6.0)Cr-(13.0 ⁇ 15.0)Ni-(3.0 ⁇ 4.0)Al-(1.0 ⁇ 2.0)Mo-(0.3 ⁇ 0.7)W-(0.2 ⁇ 0.4)Nb-(0.03 ⁇ 0.05)C-(0.004 ⁇ 0.008)B
  • Si, Mn, S, P, O, N are impurity elements: Si ⁇ 0.20 , Mn ⁇ 0.20, S ⁇ 0.01, P ⁇ 0.02, O ⁇ 0.005, N ⁇ 0.02 (wt.%).
  • the preparation method of the present invention is as follows: high-purity metal material is used, and ingredients are carried out according to mass percentage.
  • a vacuum non-consumable arc smelting furnace is used to melt the ingredients at least four times under the protection of an argon atmosphere to obtain an alloy ingot with a uniform composition and a mass of about 100g, and the mass loss during the smelting process does not exceed 0.1%.
  • the alloy ingot was homogenized with a muffle furnace. The homogenization temperature was 1250°C and the time was 2h. Subsequently, cold rolling is performed in multiple passes, and the reduction in each pass does not exceed 0.2 mm, and the total deformation is about 70%, and a plate sample with a thickness of about 3 mm is obtained.
  • the alloy sheet is annealed, the annealing temperature is 950°C, the annealing time is 15min, and finally the aging treatment is carried out at 500°C for 4 ⁇ 48h.
  • Use metallographic microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffractometer (XRD, Cu K ⁇ radiation, ⁇ 0.15406nm) to detect alloy structure and structure; use HVS-1000 dimension
  • the hardness tester is used to test the hardness of a series of alloys under different heat treatment conditions; the UTM5504 electronic universal tensile testing machine is used to test the tensile mechanical properties at room temperature; the CS350 electrochemical workstation is used to test the corrosion resistance of the alloy in 3.5wt.% NaCl aqueous solution .
  • the present invention is an ultra-high-strength maraging stainless steel strengthened by the coherent precipitation of B2 nanoparticles.
  • the mass percentage (wt.%) of the alloy composition is Cr: 4.0 ⁇ 6.0, Ni: 13.0 ⁇ 15.0, Al: 3.0 ⁇ 4.0, Mo: 1.0 ⁇ 2.0, W: 0.3 ⁇ 0.7, Nb: 0.2 ⁇ 0.4, C: 0.03 ⁇ 0.05, B: 0.004 ⁇ 0.008, Si ⁇ 0.20, Mn ⁇ 0.20, S ⁇ 0.01, P ⁇ 0.02, O ⁇ 0.005, N ⁇ 0.02, Fe: balance; and the atomic percentage ratio of Nb/C is 1: 1.
  • the atomic percentage ratio of Cr/(Mo+W) is 8:1.
  • the alloy is aged at 500°C (4 ⁇ 48h) After that, high-density (>10 24 m -3 ) B2 phase nanoparticles (3-5 nm) are uniformly and coherently precipitated on the lath martensite matrix.
  • the present invention designs and develops an ultra-high-strength maraging stainless steel with coherent precipitation strengthening of B2 nanoparticles based on our self-developed cluster composition method.
  • the present invention adopts the new concept of coherent precipitation strengthening, through the coherent precipitation of high-density B2 phase nanoparticles on the martensite matrix ,
  • the uniform precipitation and the coherent phase interface brought by the coherent precipitation coupled with the high density of movable dislocations in the lath martensite, hinder the initiation of cracks , Improve the uniform plastic deformation ability of the new horse-aged stainless steel.
  • the new maraging stainless steel uses cheap Al, Cr and other elements to replace the expensive elements Co and Ti in traditional maraging steels, and adds the C element avoided by traditional maraging steels.
  • the preparation process is simple. Material costs are greatly reduced.
  • a B2 nano-particle coherent precipitation-strengthened ultra-high-strength maraging stainless steel has been developed, and the mass percentage (wt.%) of the alloy composition is Cr: 4.0-6.0, Ni: 13.0 ⁇ 15.0, Al: 3.0 ⁇ 4.0, Mo: 1.0 ⁇ 2.0, W: 0.3 ⁇ 0.7, Nb: 0.2 ⁇ 0.4, C: 0.03 ⁇ 0.05, B: 0.004 ⁇ 0.008, Si ⁇ 0.20, Mn ⁇ 0.20, S ⁇ 0.01, P ⁇ 0.02, O ⁇ 0.005, N ⁇ 0.02, Fe: margin;
  • This new type of maraging stainless steel uses cheap Al, Cr and other elements to replace the expensive elements Co and Ti in traditional maraging steel.
  • the new maraging stainless steel has a strength higher than 2.0 through the coherent precipitation strengthening of high-density B2 phase particles. GPa's ultra-high strength, good uniform plastic deformation ability, and excellent corrosion resistance.
  • Fig. 1 is a TEM structure morphology of the alloy prepared in Example 1. High-density B2 phase nanoparticles are coherently precipitated on the martensite matrix.
  • Example 1 Fe-5.30Cr-13.47Ni-3.10Al-1.22Mo-0.50W-0.23Nb-0.03C-0.005B (wt.%) alloy
  • High-purity metal materials are used, and ingredients are carried out in accordance with mass percentage.
  • a vacuum non-consumable arc smelting furnace is used to melt the ingredients at least four times under the protection of an argon atmosphere to obtain an alloy ingot with a uniform composition and a mass of about 100g. The mass loss during the smelting process does not exceed 0.1%.
  • Use a muffle furnace to homogenize the alloy ingot at 1250°C/2h. Subsequently, cold rolling is performed in multiple passes, and the reduction in each pass does not exceed 0.2 mm, and the total deformation is about 70%, and a plate sample with a thickness of about 3 mm is obtained. After that, the alloy sheet is annealed at 950°C/15min, and finally aging at 500°C/8h.
  • Step 2 Alloy structure and mechanical properties and corrosion resistance test
  • High-purity metal materials are used, and ingredients are carried out in accordance with mass percentage.
  • a vacuum non-consumable arc smelting furnace is used to melt the ingredients at least four times under the protection of an argon atmosphere to obtain an alloy ingot with a uniform composition and a mass of about 100g, and the mass loss during the smelting process does not exceed 0.1%.
  • Use a muffle furnace to homogenize the alloy ingot at 1250°C/2h.
  • cold rolling is performed in multiple passes, and the reduction in each pass does not exceed 0.2 mm, and the total deformation is about 70%, and a plate sample with a thickness of about 3 mm is obtained.
  • the alloy sheet is annealed at 950°C/15min, and finally aged at 500°C/12h.
  • Step 2 Test the alloy structure and mechanical properties
  • OM, SEM, and XRD were used to detect the structure and structure of the alloy after stabilization.
  • the results showed that the alloy of the present invention was a lath martensite structure, and high-density B2 phase nanoparticles were co-precipitated on the martensite matrix.
  • Example 3 Fe-6.0Cr-13.0Ni-4.0Al-2.0Mo-0.50W-0.40Nb-0.05C-0.008B (wt.%) alloy
  • a vacuum non-consumable arc smelting furnace is used to melt the ingredients at least four times under the protection of an argon atmosphere to obtain an alloy ingot with a uniform composition and a mass of about 100g, and the mass loss during the smelting process does not exceed 0.1%.
  • Use a muffle furnace to homogenize the alloy ingot at 1250°C/2h.
  • cold rolling is performed in multiple passes, and the reduction in each pass does not exceed 0.2 mm, and the total deformation is about 70%, and a plate sample with a thickness of about 3 mm is obtained.
  • the alloy sheet is annealed at 950°C/15min, and finally aging at 500°C/48h.
  • Step 2 Alloy structure and mechanical properties and corrosion resistance test
  • the alloy of the present invention is a lath martensite structure, and high-density B2 phase nanoparticles are co-precipitated on the martensite matrix.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种B2纳米粒子共格析出强化的超高强度马氏体时效不锈钢及制备方法,属于高强度不锈钢领域,包括Fe、Cr、Ni、Al、Mo、W、Nb、C、B元素,Si、Mn、S、P、O、N为杂质元素,其合金成分的质量百分比(wt.%)为Cr:4.0~6.0,Ni:13.0~15.0,Al:3.0~4.0,Mo:1.0~2.0,W:0.3~0.7,Nb:0.2~0.4,C:0.03~0.05,B:0.004~0.008,Si≤0.20,Mn≤0.20,S≤0.01,P≤0.02,O≤0.005,N≤0.02,Fe:余量,且Nb/C的原子百分数比例为1:1,Cr/(Mo+W)的原子百分数比例为8:1。本发明通过合金成分设计实现了高密度的B2相纳米粒子在马氏体基体上均匀共格析出,使得该合金具有强度高于2.0GPa的超高强度,良好的均匀塑性变形能力、优良的耐蚀性;且制备工艺简单,材料成本大幅降低,是一种新型超高强度马氏体时效不锈钢。

Description

一种B2纳米粒子共格析出强化的超高强度马氏体时效不锈钢及制备方法 技术领域
本发明属于高强度不锈钢领域,特别涉及一种B2纳米粒子共格析出强化的BCC基超高强度马氏体时效不锈钢及制备方法,其强度超过2.0GPa,伸长率超过8.0%。
背景技术
作为超高强度钢的马氏体时效钢广泛应用于航空、航天和军事等尖端领域,具有较高的工程应用价值与科研意义。传统的马氏体时效钢是以超低碳(或无碳)具有高密度位错板条马氏体(BCC基)为基体,时效处理后形成多种与基体非共格或半共格的金属间化合物(Ni 3Ti、Ni 3Mo与Fe 2(Mo,Ti))进行强化的。这些析出相往往与基体间存在较大的界面能,具有较高的形核势垒,容易在晶界等缺陷处形核,导致强化相低密度和不均匀的析出。同时,在时效过程中,析出相很容易沿着低错配度的方向长大,易于粗化,导致合金对工艺异常敏感;并且析出相与基体之间存在较大的晶格畸变,在位错运动过程中很容易产生应力集中,从而诱发裂纹萌生,导致合金的均匀塑性变形能力极差。并且为了提高析出相的密度,此类钢通常添加了较高含量的Ni、Co元素,这进一步提高了该钢的使用成本。因此传统的马氏体时效钢具有一定的局限性。
不同于传统的马氏体时效钢,采用B2-NiAl纳米粒子共格析出强化的马氏体时效钢避免了这些局限性。BCC的有序超结构B2-NiAl相的点阵常数(0.2887nm)与α-Fe的点阵常数(0.2866nm)相近,同时共格析出的相界面能更低,所需形核功较小,保证了高密度的B2纳米粒子在马氏体基体上均匀的共格析出,从而使马氏体时效钢获得超高强度的同时又具有良好的塑韧性。
马氏体时效钢在追求超高强塑性的同时,对耐蚀性的要求也在不断提高。 Cr元素的添加使马氏体时效钢具有优异的耐蚀性,但不可避免地会导致该类钢的脆性增加,从而强度降低。如典型的马氏体时效不锈钢13-8Mo(Fe-13Cr-8Ni-2Mo-1Al-0.05C,wt.%),添加Cr以提高钢的耐蚀性,尽管也是采用B2纳米粒子共格析出强化,但该钢的室温屈服强度仅为1400MPa,不满足马氏体时效钢超高强度的要求,这表明钢的合金成分仍需要进一步调整和优化,以获得超高强度的马氏体时效不锈钢。
因此,制约当前高强度马氏体时效不锈钢发展与应用的两个核心问题:一方面在获得超高强度的同时确保塑韧性;另一方面在提高耐蚀性的同时也不降低合金的塑韧性。鉴于此,本发明提供了一种B2纳米粒子共格析出强化的具有良好耐蚀性和强塑性匹配的新型超高强度马氏体时效不锈钢,其强度超过2.0GPa,伸长率大于8.0%。
发明内容
本发明设计开发了一种B2纳米粒子共格析出强化超高强度马氏体时效不锈钢。本发明的目的是通过高密度的B2纳米粒子在马氏体基体上实现均匀共格析出,从而设计出一种具有超高强度、良好塑性和耐蚀性的马氏体时效不锈钢。
本发明采用的技术方案是:
一种B2纳米粒子共格析出强化的超高强度马氏体时效不锈钢,包括Fe、Cr、Ni、Al、Mo、W、Nb、C、B元素,Si、Mn、S、P、O、N为杂质元素,其合金成分的质量百分比(wt.%)如下,Cr:4.0~6.0,Ni:13.0~15.0,Al:3.0~4.0,Mo:1.0~2.0,W:0.3~0.7,Nb:0.2~0.4,C:0.03~0.05,B:0.004~0.008,Si≤0.20,Mn≤0.20,S≤0.01,P≤0.02,O≤0.005,N≤0.02,Fe:余量;且Nb/C的原子百分数比例为1:1,Cr/(Mo+W)的原子百分数比例为8:1。
所述的马氏体时效不锈钢具有特定的组织形貌:高密度(>10 24m -3)的B2相 纳米粒子(3~5nm)在板条马氏体基体上均匀共格析出,使得该钢的强度高于2.0GPa。
一种B2纳米粒子共格析出强化的超高强度马氏体时效不锈钢的制备方法,包括以下内容:首先,将各合金成分按其质量百分比放入真空电弧熔炼至少熔炼四次,得到合金锭;其次,采用马弗炉对合金锭进行均匀化处理,处理温度为1250℃,处理时间为2h,随后进行多道次冷轧,总变形量约为70%;最后,在950℃条件下进行退火处理15min,在500℃条件下进行时效处理4~48h。
实现上述技术方案的构思是:利用申请人的团簇成分式设计方法进行马氏体时效不锈钢的成分设计。该成分设计方法是以“团簇+连接原子”结构模型为基础,将稳定固溶体结构分为团簇和连接原子两部分,其中团簇是以某个原子为中心形成的最近邻配位多面体,如FCC结构中的团簇为配位数CN12的立方八面体,而连接原子则置于团簇堆垛的间隙位置,通常位于团簇的下一近邻壳层。这样就可确定出一个简单的团簇成分式[团簇](连接原子) x,即一个团簇与x个连接原子相匹配。这种团簇成分式设计方法已经成功应用到高温用奥氏体不锈钢、低弹β-Ti合金等多种工程合金的设计中,为高性能工程合金的成分设计提供了新的思路和方法。
根据申请人的前期工作,在Fe-Ni-Cr三元合金体系中,我们得到了奥氏体(FCC)的最低下限团簇成分式[Ni-Fe 12]Cr 3,其中Ni和Fe具有较强的交互作用,Ni占据中心原子位置,而Cr占据连接原子位置。在高温固溶+水淬处理之后,该成分合金会转变成全部的马氏体组织。当在此基础上加入Al元素时,由于Al与Fe具有更强交互作用,则Al占据团簇的中心位置,相应的,Ni和Cr都位于连接原子位置,最终得到团簇式[Al-Fe 12](Ni,Cr) 3。另外,奥氏体(FCC)的结构稳定性与合金的Ni当量和Cr当量有直接关系。对于团簇成分式为 [Al-Fe 12](Ni 2Cr)(=Fe-6.00Cr-13.57Ni-3.11Al wt.%)的成分合金,其Ni当量为Ni eq=1.0×c Ni=13.57wt.%,Cr当量为Cr eq=1.0×c Cr+2.5×c Al=13.8wt.%,满足奥氏体稳定的条件,保证了该成分合金固溶淬火后能形成全部的马氏体组织。
Mo元素和W元素的添加在起到固溶强化作用的同时,还可改善钢的抗点蚀能力。并且在Fe-Cr-Ni-Al四元体系中,添加Mo还可增加BCC基体的点阵常数,从而降低BCC基体和析出相B2之间的点阵错配,更有利于B2相的共格析出。因此,Mo和W的添加按照Cr/(Mo+W)的原子比为8:1代替团簇式中的Cr元素。另外,MC型碳化物不仅能够细化原奥氏体晶粒,同时起到第二相强化的作用,但是C的添加量过高将导致合金的焊接性能降低,同时降低钢的塑性。因此C元素的添加控制在0.03~0.05wt.%之间。同时为了抑制粗大型Cr 23C 6碳化物的析出,需加入相同原子百分比的Nb元素。微量元素的B(0.004~0.008wt.%)的添加能够提高晶界结合力,从而改善钢的塑性。最终我们确定了B2纳米粒子共格析出强化的超高强度马氏体时效不锈钢的成分,为Fe-(4.0~6.0)Cr-(13.0~15.0)Ni-(3.0~4.0)Al-(1.0~2.0)Mo-(0.3~0.7)W-(0.2~0.4)Nb-(0.03~0.05)C-(0.004~0.008)B,Si、Mn、S、P、O、N为杂质元素:Si≤0.20,Mn≤0.20,S≤0.01,P≤0.02,O≤0.005,N≤0.02(wt.%)。
本发明的制备方法如下述:采用高纯度金属料,按照质量百分比进行配料。采用真空非自耗电弧熔炼炉在氩气气氛保护下对配料进行至少反复四次的熔炼,以得到成分均匀的质量约为100g的合金锭,在熔炼过程中质量损失不超过0.1%。用马弗炉对合金锭进行均匀化处理,均匀化处理温度为1250℃,时间为2h。随后进行多道次冷轧,每道次轧制下压量不超过0.2mm,总变形量约为70%,得到厚度约为3mm的板材样品。之后对合金板材进行退火处理,退火温度为950℃,退火时间为15min,最后在500℃下进行时效处理4~48h。利用金相 显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线衍射仪(XRD、Cu K α辐射、λ=0.15406nm)检测合金组织和结构;用HVS-1000维氏硬度计进行系列合金不同热处理状态下的硬度测试;利用UTM5504电子万能拉伸试验机进行室温拉伸力学性能测试;利用CS350电化学工作站在3.5wt.%NaCl水溶液中进行合金的耐腐蚀性能测试。由此确定出本发明为上述的一种B2纳米粒子共格析出强化的超高强度马氏体时效不锈钢。其合金成分的质量百分比(wt.%)为Cr:4.0~6.0,Ni:13.0~15.0,Al:3.0~4.0,Mo:1.0~2.0,W:0.3~0.7,Nb:0.2~0.4,C:0.03~0.05,B:0.004~0.008,Si≤0.20,Mn≤0.20,S≤0.01,P≤0.02,O≤0.005,N≤0.02,Fe:余量;且Nb/C的原子百分数比例为1:1,Cr/(Mo+W)的原子百分数比例为8:1。材料的组织与室温性能指标为:合金的室温硬度为HV=570~620kgf·mm -2,室温屈服强度σ s≥1820MPa、抗拉强度σ b≥2000MPa、断后伸长率δ≥8%;合金在3.5wt.%NaCl水溶液中的自腐蚀电位为E corr=-0.45~-0.32V,自腐蚀电流为I corr=2.1~4.3μA·cm -2;该合金经过500℃时效(4~48h)之后,高密度(>10 24m -3)的B2相纳米粒子(3~5nm)在板条马氏体基体上均匀共格析出。
与现有技术相比,本发明的有益效果为:
本发明是根据我们自行发展的团簇成分式方法设计并开发出了一种B2纳米粒子共格析出强化的超高强度马氏体时效不锈钢。不同于传统的马氏体时效不锈钢钢采用非共格或半共格析出强化,本发明采用共格析出强化这一全新理念,通过高密度的B2相纳米粒子在马氏体基体上共格析出,实现了马氏体时效不锈钢超高强度的目的;同时共格析出带来的均匀析出以及共格相界面,再加上板条马氏体中高密度的可动位错,阻碍了裂纹的萌生,提高了该新型马体时效不锈钢的均匀塑性变形能力。Cr和Al共同加入使合金具有和常规马氏体时效不锈 钢Custom465(Fe-12Cr-11Ni-1Mo-1.65Ti-0.03C wt.%)相当的优良耐蚀性,且在获得超高强度的同时具有良好的塑韧性。并且该新型马氏体时效不锈钢采用廉价的Al、Cr等元素代替传统马氏体时效钢中昂贵元素Co、Ti的添加,并添加了传统马氏体时效钢避免的C元素,制备工艺简单,材料成本大幅降低。
本发明的效果和益处是:①开发了一种B2纳米粒子共格析出强化的超高强度马氏体时效不锈钢,其合金成分的质量百分比(wt.%)为Cr:4.0~6.0,Ni:13.0~15.0,Al:3.0~4.0,Mo:1.0~2.0,W:0.3~0.7,Nb:0.2~0.4,C:0.03~0.05,B:0.004~0.008,Si≤0.20,Mn≤0.20,S≤0.01,P≤0.02,O≤0.005,N≤0.02,Fe:余量;②该新型马氏体时效不锈钢采用廉价的Al、Cr等元素代替传统马氏体时效钢中昂贵元素Co、Ti的添加,并添加了传统马氏体时效钢避免的C元素,制备工艺简单,材料成本大幅降低;③通过高密度的B2相粒子共格析出强化,使该新型马氏体时效不锈钢具有强度高于2.0GPa的超高强度,良好的均匀塑性变形能力、优良的耐蚀性。
附图说明
图1为实施例1制备的合金的TEM组织形貌图,高密度的B2相纳米粒子在马氏体基体上共格析出。
具体实施方式
以下结合技术方案详细说明本发明的具体实施方式。
实施例1:Fe-5.30Cr-13.47Ni-3.10Al-1.22Mo-0.50W-0.23Nb-0.03C-0.005B(wt.%)合金
步骤一:合金制备
采用高纯度金属料,按照质量百分比进行配料。采用真空非自耗电弧熔炼炉在氩气气氛保护下对配料进行至少反复四次的熔炼,以得到成分均匀的质量 约为100g的合金锭,在熔炼过程中质量损失不超过0.1%。用马弗炉对合金锭进行1250℃/2h的均匀化处理。随后进行多道次冷轧,每道次轧制下压量不超过0.2mm,总变形量约为70%,得到厚度约为3mm的板材样品。之后对合金板材进行950℃/15min的退火处理,最后进行500℃/8h的时效。
步骤二:合金组织结构和力学性能及耐腐蚀性能测试
利用OM、SEM和XRD检测稳定化处理后合金组织和结构,结果显示本发明的合金为板条马氏体组织,并且高密度的B2相纳米粒子在马氏体基体上共格析出,见附图1;利用维氏硬度计进行硬度测试HV=605kgf·mm -2,利用UTM5504电子万能拉伸试验机测得室温下力学性能数据:屈服强度σ s=1935MPa、抗拉强度σ b=2128MPa、断后伸长率δ=8.3%,均匀延伸率=5.4%;利用利用CS350电化学工作站在3.5wt.%NaCl水溶液中测得合金的耐腐蚀性能数据:自腐蚀电位为E corr=-0.423V,自腐蚀电流为I corr=4.233μA·cm -2
实施例2:Fe-4.0Cr-15.0Ni-3Al-1Mo-0.70W-0.2Nb-0.03C-0.004B(wt.%)合金
步骤一:合金制备
采用高纯度金属料,按照质量百分比进行配料。采用真空非自耗电弧熔炼炉在氩气气氛保护下对配料进行至少反复四次的熔炼,以得到成分均匀的质量约为100g的合金锭,在熔炼过程中质量损失不超过0.1%。用马弗炉对合金锭进行1250℃/2h的均匀化处理。随后进行多道次冷轧,每道次轧制下压量不超过0.2mm,总变形量约为70%,得到厚度约为3mm的板材样品。之后对合金板材进行950℃/15min的退火处理,最后进行500℃/12h的时效。
步骤二:合金组织结构和力学性能测试
利用OM、SEM和XRD检测稳定化处理后合金组织和结构,结果显示本发明的合金为板条马氏体组织,并且高密度的B2相纳米粒子在马氏体基体上共格析 出,与实施例1类似;利用维氏硬度计进行硬度测试HV=590kgf·mm -2,利用UTM5504电子万能拉伸试验机测得室温下力学性能参数:屈服强度σ s=1890MPa、抗拉强度σ b=2050MPa、断后伸长率δ=8.9%,均匀延伸率=5.8%;利用利用CS350电化学工作站在3.5wt.%NaCl水溶液中测得合金的耐腐蚀性能数据为自腐蚀电位为E corr=-0.406V,自腐蚀电流为I corr=3.654μA·cm -2
实施例3:Fe-6.0Cr-13.0Ni-4.0Al-2.0Mo-0.50W-0.40Nb-0.05C-0.008B(wt.%)合金
步骤一:合金制备
用高纯度金属料,按照质量百分比进行配料。采用真空非自耗电弧熔炼炉在氩气气氛保护下对配料进行至少反复四次的熔炼,以得到成分均匀的质量约为100g的合金锭,在熔炼过程中质量损失不超过0.1%。用马弗炉对合金锭进行1250℃/2h的均匀化处理。随后进行多道次冷轧,每道次轧制下压量不超过0.2mm,总变形量约为70%,得到厚度约为3mm的板材样品。之后对合金板材进行950℃/15min的退火处理,最后进行500℃/48h的时效。
步骤二:合金组织结构和力学性能及耐腐蚀性能测试
利用OM、SEM和XRD检测稳定化处理后合金组织和结构,结果显示本发明的合金为板条马氏体组织,并且高密度的B2相纳米粒子在马氏体基体上共格析出,实施例1类似;利用维氏硬度计进行硬度测试HV=587kgf·mm -2,利用UTM5504电子万能拉伸试验机测得室温下力学性能数据:屈服强度σ s=1875MPa、抗拉强度σ b=2017MPa、断后伸长率δ=9.1%,均匀延伸率=6.0%;利用利用CS350电化学工作站在3.5wt.%NaCl水溶液中测得合金的耐腐蚀性能数据:自腐蚀电位为E corr=-0.378V,自腐蚀电流为I corr=4.156μA·cm -2
以上所述实施例仅表达本发明的实施方式,但并不能因此而理解为对本发 明专利的范围的限制,应当指出,对于本领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些均属于本发明的保护范围。

Claims (3)

  1. 一种B2纳米粒子共格析出强化的超高强度马氏体时效不锈钢,其特征在于,所述的超高强度马氏体时效不锈钢包括Fe、Cr、Ni、Al、Mo、W、Nb、C、B元素,Si、Mn、S、P、O、N为杂质元素,其合金成分的质量百分比(wt.%)如下,Cr:4.0~6.0,Ni:13.0~15.0,Al:3.0~4.0,Mo:1.0~2.0,W:0.3~0.7,Nb:0.2~0.4,C:0.03~0.05,B:0.004~0.008,Si≤0.20,Mn≤0.20,S≤0.01,P≤0.02,O≤0.005,N≤0.02,Fe:余量;且Nb/C的原子百分数比例为1:1,Cr/(Mo+W)的原子百分数比例为8:1。
  2. 根据权利要求1所述的一种B2纳米粒子共格析出强化的超高强度马氏体时效不锈钢,其特征在于,所述的马氏体时效不锈钢具有特定的组织形貌:高密度的B2相纳米粒子在板条马氏体基体上均匀共格析出,使得超高强度马氏体时效不锈钢的强度高于2.0GPa,所述纳米粒子粒径为3~5nm,高密度为>10 24m -3
  3. 一种权利要求1或2所述的B2纳米粒子共格析出强化的超高强度马氏体时效不锈钢的制备方法,其特征在于,包括以下内容:首先,将各合金成分按其质量百分比放入真空电弧熔炼至少熔炼四次,得到合金锭;其次,采用马弗炉对合金锭进行均匀化处理,处理温度为1250℃,处理时间为2h,随后进行多道次冷轧,总变形量约为70%;最后,在950℃条件下进行退火处理15min,在500℃条件下进行时效处理4~48h。
PCT/CN2021/092941 2020-06-17 2021-05-11 一种b2纳米粒子共格析出强化的超高强度马氏体时效不锈钢及制备方法 WO2021254028A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010555730.3 2020-06-17
CN202010555730.3A CN111593260B (zh) 2020-06-17 2020-06-17 一种b2纳米粒子共格析出强化的超高强度马氏体时效不锈钢及制备方法

Publications (1)

Publication Number Publication Date
WO2021254028A1 true WO2021254028A1 (zh) 2021-12-23

Family

ID=72184485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092941 WO2021254028A1 (zh) 2020-06-17 2021-05-11 一种b2纳米粒子共格析出强化的超高强度马氏体时效不锈钢及制备方法

Country Status (2)

Country Link
CN (1) CN111593260B (zh)
WO (1) WO2021254028A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114480988A (zh) * 2021-12-27 2022-05-13 北京科技大学 一种多相复合高强高韧低密度钢及制备方法
CN114517276A (zh) * 2021-08-25 2022-05-20 哈尔滨工程大学 一种超低碳高性能马氏体时效不锈钢及其制备方法
CN114540708A (zh) * 2022-02-14 2022-05-27 厦门大学 一种富Co纳米颗粒强化型铁素体不锈钢及其制备方法
CN116121666A (zh) * 2022-12-05 2023-05-16 四川大学 一种1500MPa级超高强度马氏体耐热钢及其制备方法、应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240229203A9 (en) * 2021-02-18 2024-07-11 Nippon Steel Stainless Steel Corporation Martensitic stainless steel plate for brake disk rotor, brake disk rotor, and method for manufacturing martensitic stainless steel plate for brake disk rotor
CN113699463A (zh) * 2021-08-25 2021-11-26 哈尔滨工程大学 一种多相强化超高强马氏体时效不锈钢及其制备方法
CN114150232B (zh) * 2021-11-25 2022-11-29 香港理工大学深圳研究院 一种共格和非共格纳米相复合强化的超高强度马氏体时效钢及其制造方法
CN114672639B (zh) * 2022-02-28 2023-05-05 北京大学 通过纳米粒子熔解再析出提高材料抗辐照的方法
CN114717485B (zh) * 2022-03-08 2023-01-24 四川大学 一种纳米析出强化超高强高合金钢及其制备方法
CN115074601B (zh) * 2022-05-24 2023-12-26 湘潭大学 一种制备高体积分数b2强化铁素体合金的方法
CN116065101A (zh) * 2022-12-30 2023-05-05 中广核研究院有限公司 无钴钢、制备方法及应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1017998A (ja) * 1996-07-02 1998-01-20 Nikko Kinzoku Kk 打ち抜き性良好な電子銃部品用Fe−Ni系合金素材及びその製造方法並びに加工部品
EP1935996A1 (en) * 2002-11-04 2008-06-25 Paralloy Limited High temperature resistant alloys
CA2612959A1 (en) * 2008-01-15 2009-07-15 Gregory Vartanov High strength, high toughness, corrosion resistant martensitic steel alloy
CN103103327A (zh) * 2012-12-07 2013-05-15 无锡透平叶片有限公司 一种超高强度不锈钢热处理工艺
WO2014139451A1 (zh) * 2013-03-13 2014-09-18 香港城市大学 纳米金属间化合物强化的超高强度铁素体钢及其制造方法
CN105568151A (zh) * 2016-01-29 2016-05-11 北京科技大学 一种铝增强马氏体时效钢及其制备方法
CN106148651A (zh) * 2016-07-24 2016-11-23 钢铁研究总院 含Al节Co型高比强度二次硬化超高强度钢及制备方法
CN107829008A (zh) * 2017-11-01 2018-03-23 常州大学 一种细小均匀分布的bcc+b2双相合金及其制备方法
CN110777230A (zh) * 2019-11-13 2020-02-11 北京科技大学 基于目标等轴晶尺寸和比例的钢连铸坯凝固组织细化方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605281A (zh) * 2007-07-11 2012-07-25 日立金属株式会社 马氏体时效钢和金属带用马氏体时效钢
FR2933990B1 (fr) * 2008-07-15 2010-08-13 Aubert & Duval Sa Acier martensitique durci a teneur faible en cobalt, procede de fabrication d'une piece a partir de cet acier, et piece ainsi obtenue
JP6259579B2 (ja) * 2012-03-29 2018-01-10 新日鐵住金ステンレス株式会社 耐熱へたり性に優れた高強度ステンレス鋼線、高強度ばね並びにその製造方法
CN107254642B (zh) * 2017-06-02 2019-02-19 浙江大学 一种马氏体时效不锈钢及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1017998A (ja) * 1996-07-02 1998-01-20 Nikko Kinzoku Kk 打ち抜き性良好な電子銃部品用Fe−Ni系合金素材及びその製造方法並びに加工部品
EP1935996A1 (en) * 2002-11-04 2008-06-25 Paralloy Limited High temperature resistant alloys
CA2612959A1 (en) * 2008-01-15 2009-07-15 Gregory Vartanov High strength, high toughness, corrosion resistant martensitic steel alloy
CN103103327A (zh) * 2012-12-07 2013-05-15 无锡透平叶片有限公司 一种超高强度不锈钢热处理工艺
WO2014139451A1 (zh) * 2013-03-13 2014-09-18 香港城市大学 纳米金属间化合物强化的超高强度铁素体钢及其制造方法
CN105568151A (zh) * 2016-01-29 2016-05-11 北京科技大学 一种铝增强马氏体时效钢及其制备方法
CN106148651A (zh) * 2016-07-24 2016-11-23 钢铁研究总院 含Al节Co型高比强度二次硬化超高强度钢及制备方法
CN107829008A (zh) * 2017-11-01 2018-03-23 常州大学 一种细小均匀分布的bcc+b2双相合金及其制备方法
CN110777230A (zh) * 2019-11-13 2020-02-11 北京科技大学 基于目标等轴晶尺寸和比例的钢连铸坯凝固组织细化方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114517276A (zh) * 2021-08-25 2022-05-20 哈尔滨工程大学 一种超低碳高性能马氏体时效不锈钢及其制备方法
CN114480988A (zh) * 2021-12-27 2022-05-13 北京科技大学 一种多相复合高强高韧低密度钢及制备方法
CN114540708A (zh) * 2022-02-14 2022-05-27 厦门大学 一种富Co纳米颗粒强化型铁素体不锈钢及其制备方法
CN116121666A (zh) * 2022-12-05 2023-05-16 四川大学 一种1500MPa级超高强度马氏体耐热钢及其制备方法、应用
CN116121666B (zh) * 2022-12-05 2023-11-28 四川大学 一种1500MPa级超高强度马氏体耐热钢及其制备方法、应用

Also Published As

Publication number Publication date
CN111593260A (zh) 2020-08-28
CN111593260B (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
WO2021254028A1 (zh) 一种b2纳米粒子共格析出强化的超高强度马氏体时效不锈钢及制备方法
US11390938B2 (en) Precipitation strengthening AlCrFeNiV system high entropy alloy and manufacturing method thereof
CN105568151B (zh) 一种铝增强马氏体时效钢及其制备方法
JP3689009B2 (ja) 高耐食性高強度オーステナイト系ステンレス鋼とその製法
EP4257717A1 (en) High-entropy austenitic stainless steel, and preparation method therefor
US11242585B2 (en) Iron-based superalloy for high temperature 700 ° C. with coherent precipitation of cuboidal B2 nanoparticles
CN109136652B (zh) 核电关键设备用镍基合金大截面棒材及其制造方法
CN114086049B (zh) 2.0GPa级超高屈服强度塑性CoCrNi基中熵合金及其制备方法
CN104195458B (zh) 一种低相对磁导率的不锈钢热轧板及其制备方法
CN113718152A (zh) 一种耐高温低密度Ni-Co-Cr-Fe-Al-Ti系高熵合金及其制备方法
CN113430444B (zh) 一种高塑性高强度的高熵合金及其制备方法
CN109554629A (zh) 一种超超临界火电机组用钢及其制备方法
CN110408850A (zh) 纳米金属间化合物析出强化的超级钢及其制备方法
CN109465565A (zh) 一种气体保护焊丝及其制造方法
CN107587080A (zh) 一种沉淀强化耐热钢及其制备工艺
CN109898028A (zh) 抗高温氧化的奥氏体耐热不锈钢及其制备方法与用途
CN108103400A (zh) 一种纳米级金属间化合物析出强化的马氏体时效钢及其制备方法
CN113523282A (zh) 一种通过3d打印制备细小等轴晶钛合金的方法
CN106319382B (zh) 一种低镍型中铬铁素体不锈钢及其制造方法
CN115652171B (zh) 一种高强析出强化型高熵合金及其制备方法
CN113736966B (zh) 一种具有双重异质结构的FeCrAl基合金及其制备方法
CN109913758A (zh) 高温强度和成形性能良好的铁素体不锈钢板及其制备方法
CN111235491B (zh) 一种高强度高塑性的形状记忆钢及其制备方法
DU et al. Microstructure and mechanical properties of HSLA steel containing 1.4% Cu
CN115216588A (zh) 一种改善大厚度超高强海洋工程用钢心部韧性的热处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21826178

Country of ref document: EP

Kind code of ref document: A1