CN108950492B - 一种具有光限幅性能的vo2复合薄膜的制备方法 - Google Patents

一种具有光限幅性能的vo2复合薄膜的制备方法 Download PDF

Info

Publication number
CN108950492B
CN108950492B CN201810741672.6A CN201810741672A CN108950492B CN 108950492 B CN108950492 B CN 108950492B CN 201810741672 A CN201810741672 A CN 201810741672A CN 108950492 B CN108950492 B CN 108950492B
Authority
CN
China
Prior art keywords
film
layer
sio2
file
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810741672.6A
Other languages
English (en)
Other versions
CN108950492A (zh
Inventor
田野
曹雪
罗飞
刘大博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AECC Beijing Institute of Aeronautical Materials
Original Assignee
AECC Beijing Institute of Aeronautical Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AECC Beijing Institute of Aeronautical Materials filed Critical AECC Beijing Institute of Aeronautical Materials
Priority to CN201810741672.6A priority Critical patent/CN108950492B/zh
Publication of CN108950492A publication Critical patent/CN108950492A/zh
Application granted granted Critical
Publication of CN108950492B publication Critical patent/CN108950492B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0406Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases the gas being air
    • B05D3/0413Heating with air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2203/00Other substrates
    • B05D2203/30Other inorganic substrates, e.g. ceramics, silicon

Abstract

本发明属于功能薄膜技术领域,具体涉及一种应用于激光防护技术的VO2复合薄膜的制备方法。本发明基于表面等离激元共振技术在VO2薄膜表面制备一层粒径均一的、尺寸可调的Au/SiO2或Ag/SiO2纳米结构层,有效地提升了薄膜的激光防护性能。同传统的纯VO2激光防护薄膜相比,这种薄膜具有更低的激光可透过率以及更高的耐激光损伤阈值。该工艺可以有效提高薄膜对激光的响应度以及耐激光辐射能力,其制备过程简单可控,不需要昂贵的设备,同时对VO2薄膜的尺寸、形貌无特殊要求,为VO2基激光防护薄膜提供了一种高效率、短周期、可工业化实施的新技术。

Description

一种具有光限幅性能的VO2复合薄膜的制备方法
技术领域
本发明属于功能薄膜技术领域,具体涉及一种应用于激光防护技术的VO2复合薄膜的制备方法。
背景技术
随着激光干扰与致盲武器的迅速发展,寻找一种适用于激光防护的新型材料,保护军事人员和各种光电探测***不受打击,已成为亟需解决的重要问题。1959年,Morin首次发现钒和钛的氧化物具有半导体-金属相变特性,即在半导体态时,材料具有高透射特性;在金属态时,材料则具有高反射特性。这种特性使其具有智能光限幅开关的潜力。同其它激光防护材料相比,VO2具有防护波段宽,制备成本低,性能稳定等优点,是智能激光防护材料的研究热点,在航空航天领域有着广泛的应用潜力。
在材料制备方面,研究者通过各种方法如:溶胶-凝胶,磁控溅射,脉冲激光沉积,化学气相沉积,反应蒸镀等制备了VO2薄膜,并对薄膜的组分、形貌、相变温度、电学及光学性能进行了研究。虽然相关科研单位已经开展了大量研究工作,但由于钒氧体系的复杂性和纯VO2薄膜相变温度较高等关键问题尚没有完全解决,严重阻碍了VO2薄膜的实际应用。
表面等离子体共振(SPR)是一种新型的光波操控手段,目前已经在化工、医疗、材料、食品、环境等诸多领域有着广泛的应用。通过在传统薄膜表面复合Au、Ag等有序纳米结构,会使其表现出许多奇异的光学性质,比如局域电场增强效应、纳米天线效应、强烈的光散射、光吸收以及光热特性等(M.Rycenga,C.M.Cobley,J.Zeng,W.Y.Li,C.H.Moran,Q.Zhang,D. Qin,and Y.N.Xia,"Controlling the Synthesis and Assembly of SilverNanostructures for Plasmonic Applications",Chem.Rev.,2011,111:3669-3712)。但是,关于复合有贵金属纳米颗粒的VO2光限幅薄膜却一直未见报道。其主要技术瓶颈在于一方面表面等离子体共振技术的有效实施需要Au和Ag等纳米材料的粒径具有良好的均一性;另一方面,表面等离子体共振技术的有效实施需要对Au或Ag等贵金属纳米结构实现尺寸可调控,这进一步增加了材料的复合难度。因此,如果能在VO2薄膜表面制备粒径均一的,尺寸可调的Au、Ag纳米结构,利用材料的表面等离子体共振特性提升VO2薄膜的激光防护能力,无疑是一条制备VO2基光限幅薄膜的有效途径。
发明内容
为了解决已有的光限幅VO2薄膜在制备过程中存在的问题,本发明提供了一种具有光限幅性能的VO2复合薄膜的制备方法。
其工艺过程为:
1)以金属钒靶作为溅射源,在氩气条件下在洁净石英衬底上溅射200nm厚的金属V膜,衬底温度保持在200℃,溅射时间为60min,溅射功率为150W;
2)将溅射有V膜的基片放置在管式炉中,通入氮氧混合气进行退火,其中氮气与氧气的比例是10:1,退火温度为480℃,退火时间60min,冷却至室温后取出;
3)将50ml无水乙醇,7ml去离子水,7ml浓氨水混合,搅拌均匀得到反应溶液;在40℃恒温水浴中,将5~20ml正硅酸乙酯缓慢滴加至上述溶液中,搅拌反应30min,反应24h。反应完毕后用无水乙醇反复离心,洗涤,再经超声分散即得到SiO2微球溶液。
4)利用旋涂仪将上述SiO2微球溶液均匀涂覆于VO2薄膜表面,具体参数为先进行低速旋涂,速度为300转/分钟,旋涂时间10s,再进行高速旋涂,速度为1000转/分钟,旋涂时间30s。随后在空气下进行150℃热处理1h定型成膜。
5)以Au靶或Ag靶作为溅射源,在氩气条件下在上述薄膜上溅射Au膜或Ag膜,衬底温度保持在150℃,溅射时间为2min,溅射功率为50W。即得到所需的VO2复合薄膜。
本发明具有的优点和有益效果
本发明开发了一种具有光限幅性能的VO2复合薄膜的制备方法。基于表面等离激元共振技术在VO2薄膜表面制备一层粒径均一的,尺寸可调的Au/SiO2或Ag/SiO2纳米结构层,有效地提升了薄膜的激光防护性能。同传统的纯VO2激光防护薄膜相比,这种薄膜具有更低的激光可透过率以及更高的耐激光损伤阈值。该工艺可以有效提高薄膜对激光的响应度以及耐激光辐射能力,其制备过程简单可控,不需要昂贵的设备,同时对VO2薄膜的尺寸、形貌无特殊要求,为VO2基激光防护薄膜提供了一种高效率、短周期、可工业化实施的新技术。利用本发明方法制备的VO2复合薄膜具有如下优点:
1.Au/SiO2或Ag/SiO2纳米结构层的粒径均一性高,且颗粒尺寸可实现连续调节。
2.Au/SiO2或Ag/SiO2纳米结构层具有表面等离子体共振特性,在激光辐射下,Au或Ag纳米结构层的光热效应会产生大量热能,从而使VO2薄膜的表面温度更快升至相变温度,缩短薄膜的相变响应时间,弥补薄膜自身的热滞效应缺陷。
3.在Au/SiO2或Ag/SiO2纳米结构层的强散射作用下,激光束在VO2薄膜内的传播长度被大大增加,使激光辐照下的薄膜表面温度场更加均匀,利于VO2薄膜快速向金属态转变。
4.Au/SiO2或Ag/SiO2纳米结构层与基层VO2薄膜具有良好的结合性和兼容性,在不影响VO2薄膜固有性能的前提下,可以大幅降低该VO2复合薄膜的激光可透过率,同时大幅提升薄膜的耐激光损伤阈值。
5.制备工艺简单,无需昂贵的设备,可方便实现大面积制备及批量化生产。
附图说明
图1为实施例1中制备的Au/SiO2/VO2复合薄膜的SEM图;
图2为实施例1中制备的Ag/SiO2/VO2复合薄膜的SEM图;
图3为实施例2中制备的Au/SiO2/VO2复合薄膜的SEM图;
图4为实施例2中制备的Ag/SiO2/VO2复合薄膜的SEM图。
具体实施方式
下面结合具体实施例进一步阐述本发明,应理解,这些实施例仅用于说明本发明而不用于限制本发明的保护范围。
实施例1
1)以金属钒靶作为溅射源,在氩气条件下在洁净石英衬底上溅射200nm厚的金属V膜,衬底温度保持在200℃,溅射时间为60min,溅射功率为150W;
2)将溅射有V膜的基片放置在管式炉中,通入氮氧混合气进行退火,其中氮气与氧气的比例是10:1,退火温度为480℃,退火时间60min,冷却至室温后取出;
3)将50ml无水乙醇,7ml去离子水,7ml浓氨水混合,搅拌均匀得到反应溶液;在40℃恒温水浴中,将5ml正硅酸乙酯缓慢滴加至上述溶液中,搅拌反应30min,反应24h。反应完毕后用无水乙醇反复离心,洗涤,再经超声分散即得到SiO2微球溶液。
4)利用旋涂仪将上述SiO2微球溶液均匀涂覆于VO2薄膜表面,具体参数为先进行低速旋涂,速度为300转/分钟,旋涂时间10s,再进行高速旋涂,速度为1000转/分钟,旋涂时间30s。随后在空气下进行150℃热处理1h定型成膜。
5)以Au靶或Ag靶作为溅射源,在氩气条件下在上述薄膜上溅射Au膜或Ag膜,衬底温度保持在150℃,溅射时间为2min,溅射功率为50W。即得到所需的VO2复合薄膜。
图1给出了实施例1制备的Au/SiO2/VO2复合薄膜的SEM照片,可以看到在VO2多晶薄膜表面覆盖着一层较薄的Au/SiO2纳米结构层,Au/SiO2纳米颗粒的粒径在300nm左右,具有较高的球形度和均匀性。紫外-可见吸收光谱的测试结果表明该Au/SiO2纳米结构层具有良好的表面等离激元共振吸收特性。在脉冲激光辐射下,进一步对薄膜的透过率进行比较可以发现,Au/SiO2/VO2复合薄膜在不同脉冲能量下的透过率均低于单一的VO2薄膜。这说明经过Au/SiO2纳米结构层复合的VO2薄膜可以有效降低VO2薄膜的激光可透过率。进一步的相关测试还发现薄膜的耐激光损伤阈值也有了明显的提升,这种激光限幅性能的增强可能是由于Au的表面等离激元共振效应导致的。
图2给出了实施例1制备的Ag/SiO2/VO2复合薄膜的SEM照片,可以看到在VO2多晶薄膜表面覆盖着一层较薄的Ag/SiO2纳米结构层,Ag/SiO2纳米颗粒的粒径在300nm左右,具有较高的球形度和均匀性。紫外-可见吸收光谱的测试结果表明该Ag/SiO2纳米结构层具有良好的表面等离激元共振吸收特性。在脉冲激光辐射下,进一步对薄膜的透过率进行比较可以发现,Ag/SiO2/VO2复合薄膜在不同脉冲能量下的透过率均低于单一的VO2薄膜。这说明经过Ag/SiO2纳米结构层复合的VO2薄膜可以有效降低VO2薄膜的激光可透过率。进一步的相关测试还发现薄膜的耐激光损伤阈值也有了明显的提升,这种激光限幅性能的增强可能是由于Ag的表面等离激元共振效应导致的。
实施例2
1)以金属钒靶作为溅射源,在氩气条件下在洁净石英衬底上溅射200nm厚的金属V膜,衬底温度保持在200℃,溅射时间为60min,溅射功率为150W;
2)将溅射有V膜的基片放置在管式炉中,通入氮氧混合气进行退火,其中氮气与氧气的比例是10:1,退火温度为480℃,退火时间60min,冷却至室温后取出;
3)将50ml无水乙醇,7ml去离子水,7ml浓氨水混合,搅拌均匀得到反应溶液;在40℃恒温水浴中,将20ml正硅酸乙酯缓慢滴加至上述溶液中,搅拌反应30min,反应24h。反应完毕后用无水乙醇反复离心,洗涤,再经超声分散即得到SiO2微球溶液。
4)利用旋涂仪将上述SiO2微球溶液均匀涂覆于VO2薄膜表面,具体参数为先进行低速旋涂,速度为300转/分钟,旋涂时间10s,再进行高速旋涂,速度为1000转/分钟,旋涂时间30s。随后在空气下进行150℃热处理1h定型成膜。
5)以Au靶或Ag靶作为溅射源,在氩气条件下在上述薄膜上溅射Au膜或Ag膜,衬底温度保持在150℃,溅射时间为2min,溅射功率为50W。即得到所需的VO2复合薄膜。
图3给出了实施例2制备的Au/SiO2/VO2复合薄膜的SEM照片,可以看到在VO2多晶薄膜表面覆盖着一层较薄的Au/SiO2纳米结构层,Au/SiO2纳米颗粒的粒径在1μm左右,具有较高的球形度和均匀性。紫外-可见吸收光谱的测试结果表明该Au/SiO2纳米结构层具有良好的表面等离激元共振吸收特性。同图1的结果进行对比可以看到,Au/SiO2的粒径有了明显增大。在脉冲激光辐射下,进一步对薄膜的透过率进行比较可以发现,Au/SiO2/VO2复合薄膜在不同脉冲能量下的透过率均低于单一的VO2薄膜。这说明经过Au/SiO2纳米结构层复合的VO2薄膜可以有效降低VO2薄膜的激光可透过率。进一步的相关测试还发现薄膜的耐激光损伤阈值也有了明显的提升,这种激光限幅性能的增强可能是由于Au的表面等离激元共振效应导致的。
图4给出了实施例2制备的Ag/SiO2/VO2复合薄膜的SEM照片,可以看到在VO2多晶薄膜表面覆盖着一层较薄的Ag/SiO2纳米结构层,Ag/SiO2纳米颗粒的粒径在1μm左右,具有较高的球形度和均匀性。紫外-可见吸收光谱的测试结果表明该Ag/SiO2纳米结构层具有良好的表面等离激元共振吸收特性。同图2的结果进行对比可以看到,Ag/SiO2的粒径有了明显增大。在脉冲激光辐射下,进一步对薄膜的透过率进行比较可以发现,Ag/SiO2/VO2复合薄膜在不同脉冲能量下的透过率均低于单一的VO2薄膜。这说明经过Ag/SiO2纳米结构层复合的VO2薄膜可以有效降低VO2薄膜的激光可透过率。进一步的相关测试还发现薄膜的耐激光损伤阈值也有了明显的提升,这种激光限幅性能的增强可能是由于Ag的表面等离激元共振效应导致的。

Claims (1)

1.一种具有光限幅性能的VO2复合薄膜的制备方法,其特征在于该方法包括下述步骤:
1)以金属钒靶作为溅射源,在氩气条件下在洁净石英衬底上溅射200nm厚的金属V膜,衬底温度保持在200℃,溅射时间为60min,溅射功率为150W;
2)将溅射有V膜的基片放置在管式炉中,通入氮氧混合气进行退火,其中氮气与氧气的比例是10:1,退火温度为480℃,退火时间60min,冷却至室温后取出;
3)将50ml无水乙醇,7ml去离子水,7ml浓氨水混合,搅拌均匀得到反应溶液;在40℃恒温水浴中,将5~20ml正硅酸乙酯缓慢滴加至上述溶液中,搅拌反应30min,反应24h;反应完毕后用无水乙醇反复离心,洗涤,再经超声分散即得到SiO2微球溶液;
4)利用旋涂仪将上述SiO2微球溶液均匀涂覆于步骤2)制得的薄膜表面,具体参数为先进行低速旋涂,速度为300转/分钟,旋涂时间10s,再进行高速旋涂,速度为1000转/分钟,旋涂时间30s,随后在空气下进行150℃热处理1h定型成膜;
5)以Au靶或Ag靶作为溅射源,在氩气条件下在步骤4)制得的薄膜上溅射Au膜或Ag膜,衬底温度保持在150℃,溅射时间为2min,溅射功率为50W,即得到所需的VO2复合薄膜。
CN201810741672.6A 2018-07-06 2018-07-06 一种具有光限幅性能的vo2复合薄膜的制备方法 Active CN108950492B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810741672.6A CN108950492B (zh) 2018-07-06 2018-07-06 一种具有光限幅性能的vo2复合薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810741672.6A CN108950492B (zh) 2018-07-06 2018-07-06 一种具有光限幅性能的vo2复合薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN108950492A CN108950492A (zh) 2018-12-07
CN108950492B true CN108950492B (zh) 2020-06-09

Family

ID=64482234

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810741672.6A Active CN108950492B (zh) 2018-07-06 2018-07-06 一种具有光限幅性能的vo2复合薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN108950492B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110048227B (zh) * 2019-04-23 2020-09-11 南京大学 基于二氧化钒相变动态可调的蝴蝶结纳米天线装置及方法
CN111500265A (zh) * 2020-02-21 2020-08-07 南京理工大学 一种可调控表面温度的双层核壳结构纳米颗粒

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106435472A (zh) * 2016-10-18 2017-02-22 天津大学 一种金三角纳米颗粒阵列与二氧化钒薄膜复合嵌套结构的制备方法
CN107177823A (zh) * 2017-06-14 2017-09-19 中国航发北京航空材料研究院 一种具有激光防护性能的Ag/VO2复合薄膜的制备方法
CN108034927A (zh) * 2017-11-06 2018-05-15 天津大学 用于近红外多宽带吸收器的vo2薄膜复合结构制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106435472A (zh) * 2016-10-18 2017-02-22 天津大学 一种金三角纳米颗粒阵列与二氧化钒薄膜复合嵌套结构的制备方法
CN107177823A (zh) * 2017-06-14 2017-09-19 中国航发北京航空材料研究院 一种具有激光防护性能的Ag/VO2复合薄膜的制备方法
CN108034927A (zh) * 2017-11-06 2018-05-15 天津大学 用于近红外多宽带吸收器的vo2薄膜复合结构制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《A novel method to modify the color of VO2-basedthermochromic smart films by solution-processed VO2@SiO2@Au core–shell nanoparticles》;Xuanming Lu,et.al.;《RSC Advances》;20160429(第6期);47249–47257 *

Also Published As

Publication number Publication date
CN108950492A (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
CN110372976B (zh) 一种反射型辐射制冷材料、薄膜、制备方法及应用
CN108950492B (zh) 一种具有光限幅性能的vo2复合薄膜的制备方法
Kim et al. ZnO− CdSe nanoparticle clusters as directional photoemitters with tunable wavelength
CN103406248B (zh) 铜基超疏水表面结构的制备方法
Singh et al. Single-step synthesis and surface plasmons of bismuth-coated spherical to hexagonal silver nanoparticles in dichroic Ag: bismuth glass nanocomposites
CN112778559B (zh) 一种兼具结构稳定性和高饱和度的结构色薄膜及其应用
Shao et al. Large-scale fabrication of ordered arrays of microcontainers and the restraint effect on growth of CuO nanowires
Reeja-Jayan et al. Structural characterization and luminescence of porous single crystalline ZnO nanodisks with sponge-like morphology
CN110618478B (zh) 一种基于单个金属银纳米颗粒-金属银薄膜的Fano共振结构及其制备方法
Geng et al. Fabrication of robust high-transmittance superamphiphobic coatings through dip-coating followed by spray-coating
CN110314830B (zh) 基于单层有序纳米颗粒阵列的柔性表面增强拉曼散射基底
Sakamoto et al. Large Field Enhancement of Nanocoral Structures on Porous Si Synthesized from Rice Husks
Ye et al. Synthesis and photoluminescence enhancement of silver nanoparticles decorated porous anodic alumina
Rajput et al. Silica coating of polymer nanowires produced via nanoimprint lithography from femtosecond laser machined templates
Hu et al. Fabricating an enhanced stable superhydrophobic surface on copper plates by introducing a sintering process
CN101126900B (zh) 一种基于金属局域化效应的光刻方法
Geng et al. Controllable morphology evolution and photoluminescence of ZnSe hollow microspheres
Zhou et al. Superhydrophobic surface based on nano-engineering for enhancing the durability of anticorrosion
Malureanu et al. Controlled Ag electroless deposition in bulk structures with complex three-dimensional profiles
CN103042229B (zh) 一种树枝状磁性金属钴微纳米材料的制备方法
Dong et al. Assembly nanoparticle arrays decorated with ultrathin AAO nanopores for highly sensitive SERS substrate
Nojiri et al. Surface texturing effect on crack suppression of SiO2 film formed by F2 laser-induced photochemical surface modification of silicone on polycarbonate under heat resistance test
Huseien Potential applications of core-shell nanoparticles in construction industry revisited
Li et al. The influence of APTES interlayer on the assembly and tribological properties of graphene coatings on titanium substrate
CN114958040A (zh) 一种抗老化性的高效辐射制冷涂料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant