CN108788131A - 一种软磁钴微米棒材料及其制备方法 - Google Patents

一种软磁钴微米棒材料及其制备方法 Download PDF

Info

Publication number
CN108788131A
CN108788131A CN201810725362.5A CN201810725362A CN108788131A CN 108788131 A CN108788131 A CN 108788131A CN 201810725362 A CN201810725362 A CN 201810725362A CN 108788131 A CN108788131 A CN 108788131A
Authority
CN
China
Prior art keywords
cobalt
micron bar
soft magnetism
preparation
bar material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810725362.5A
Other languages
English (en)
Other versions
CN108788131B (zh
Inventor
卢荷彬
邓庆保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Qinxing Electronic Technology Co ltd
Original Assignee
常州市金坛磁性材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州市金坛磁性材料有限公司 filed Critical 常州市金坛磁性材料有限公司
Priority to CN201810725362.5A priority Critical patent/CN108788131B/zh
Publication of CN108788131A publication Critical patent/CN108788131A/zh
Application granted granted Critical
Publication of CN108788131B publication Critical patent/CN108788131B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder

Abstract

本发明属于磁性材料领域,尤其是一种软磁钴微米棒材料及其制备方法;所述软磁钴微米棒由钴颗粒相互连结组成,保有部分前驱体平行六面体的特征,保有部分孔结构,孔均匀分布于微米棒中;本发明经由金属有机骨架为前驱体制备一种软磁钴微米棒,该软磁钴微米棒材料具有高饱和磁化强度,低矫顽力及高磁导率;本发明制备工艺简单、成本低,可实现规模化大批量生产;金属有机骨架材料的多孔及可设计特性为产物的组成及结构控制提供了基础,为其他类似工艺提供借鉴;热处理工艺的优化有力的控制了产物的长度,直径,孔径等参数,确保了所述钴微米棒的高饱和磁化强度,低矫顽力及高磁导率;本发明为钴基软磁材料的合成及发展提供了崭新的思路。

Description

一种软磁钴微米棒材料及其制备方法
技术领域
本发明属于磁性材料领域,尤其是一种软磁钴微米棒材料及其制备方法。
背景技术
软磁材料磁滞回线窄,基本与磁化曲线重合,适宜作为电感线圈、变压器等的铁心。长期的研究应用表面,较高的饱和磁化强度以及较低的矫顽力是软磁材料设计的目标。饱和磁化强度对于固定材料而言基本是固定的,一般可通过增加材料尺寸、增加结晶性来实现。但最有效的途径仍是选择高饱和磁化强度的材料。金属钴理论饱和磁化强度高,稳定性好,成本适中是优质软磁材料的选择之一。Wu等以氯化钴为原料成功使用水热法制备出三维球形钴微晶,所制备的产物具有151.7emu·g-1的饱和磁化强度(JournalofAlloysandCompounds2012,513,245-250)。另外,研究者通过对软磁材料进行结构设计可达到控制矫顽力的目的。Xiao等采用简单的水热法成功制备出一种可溶于水的超顺磁Fe3O4颗粒,平均尺寸约为5mn,饱和磁化强度约为47emug-1,表现出优良的软磁特性(ACSNano2011,5,6315-6324)。Singh等以直流电弧放电法制备Co/Ni@SWCNTs,所制备产物具有超顺磁特性,可作为电磁屏蔽材料(JournalofMaterialsChemistryA2015,3,13203-13209)。虽然研究取得了很大的进展,传统的软磁材料仍需要解决如下问题:(1)高纯度、高结晶度、高饱和磁化强度的材料制备;(2)通过尺寸的增大有效降低矫顽力;(3)开发无毒无害,成本低,产量大的新工艺。有鉴于此,本发明以特定金属有机骨架化合物为前驱体成功制备高纯度、高结晶度的钴微米棒,具有高饱和磁化强度及低矫顽力的特点,表现出优良的软磁特性,为解决软磁材料发展面临的问题提高了崭新的思路。
发明内容
本发明要解决的技术问题是:克服现有技术中不足,提供一种软磁钴微米棒材料,该软磁钴微米棒材料具有高饱和磁化强度,低矫顽力及高磁导率;
本发明的另一个目的是提供一种软磁钴微米棒材料的制备方法,该制备方法工艺简单、成本低,能够适用于工业化大规模生产。
为实现上述目的,本发明采用的技术方案如下:
一种软磁钴微米棒材料,所述软磁钴微米棒由钴颗粒相互连结组成,保有部分前驱体平行六面体的特征,保有部分孔结构,孔均匀分布于微米棒中。
进一步的,所述微米棒的长度为1~30μm,直径为1~20μm,孔径为50~1000nm。
制备一种软磁钴微米棒材料的方法,所述方法包括以下步骤:
(1)制备Co3[HCOO]6·DMF平行六面体前驱体:将一定量的钴盐,N,N-二甲基甲酰胺和甲酸充分溶解混合,转移入反应釜,之后放入烘箱中溶剂热处理。所得产物经分离清洗后干燥备用;
(2)制备软磁钴微米棒:将上述前驱体放入瓷舟中,转移到管式炉中,在惰性气氛保护下高温热处理,获得所述软磁钴微米棒。
进一步的,步骤(1)中,所述钴盐的质量为1~16g,所述N,N-二甲基甲酰胺的体积为20~80mL,所述甲酸的体积为1~20mL,溶剂热反应的温度为80~120oC,时间为1~48h。
进一步的,所述步骤(1)中钴盐选用硝酸钴,氯化钴,硫酸钴,乙酸钴中的一种。
进一步的,步骤2中,惰性气氛选用N2或Ar,热处理升温速率为1~20oC·min-1,温度为350~650oC,保温时间为1~8h。
采用本发明的技术方案的有益效果是:
1、本发明经由金属有机骨架为前驱体制备一种软磁钴微米棒,该软磁钴微米棒材料具有高饱和磁化强度,低矫顽力及高磁导率;
2、本发明的制备方法,制备工艺简单、成本低,可实现规模化大批量生产。金属有机骨架材料的多孔及可设计特性为产物的组成及结构控制提供了基础,为其他类似工艺提供借鉴。热处理工艺的优化有力的控制了产物的长度,直径,孔径等参数,确保了所述钴微米棒的高饱和磁化强度,低矫顽力及高磁导率。本发明为钴基软磁材料的合成及发展提供了崭新的思路。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1为本发明实施例1制得的Co3[HCOO]6·DMF平行六面体前驱体的SEM照片;
图2为本发明实施例1制得的软磁钴微米棒的SEM照片;
图3为本发明实施例1制得的软磁钴微米棒的XRD谱图;
图4为本发明实施例1制得的软磁钴微米棒的磁滞回线谱图;
图5为本发明实施例1制得的软磁钴微米棒的复磁导率谱图。
具体实施方式
下面的实施例可以使本专业技术人员更全面地理解本发明,但是这些实施例不是对本发明保护范围的限制。此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。
实施例1
一种软磁钴微米棒材料,由钴颗粒相互连结组成,保有部分前驱体平行六面体的特征,保有部分孔结构,孔均匀分布于微米棒中;微米棒的长度为1~30μm,直径为1~20μm,孔径为50~1000nm。
制备方法,具体包含如下步骤:
步骤1:在56mLN,N-二甲基甲酰胺中加入8g六水合硝酸钴,7mL甲酸,完全搅拌溶解后,在100℃下溶剂热24h;产物经过滤、洗涤、干燥后,得到前驱体Co3[HCOO]6·DMF平行六面体;
步骤2:将前驱体粉末在N2气氛中以5℃/min的升温速率升至500℃并保温5h,自然冷却后得到所述钴微米棒。
图1为本发明实施例1制得的Co3[HCOO]6·DMF平行六面体前驱体的SEM照片。从图1可以看出,所制备前驱体具有明显均一的平行六面体结构,且表面光滑。其长度约为15μm,宽度约为2μm。
图2为本发明实施例1制得的软磁钴微米棒的SEM照片。可以看出,平行六面体结构保持较为完整,但长度大幅缩短为8μm左右,直径缩短为1μm左右,同时可以看出钴微米棒由大量钴颗粒组成,且相互之间形成孔道结构,孔径约为200nm。
图3为本发明实施例1制得的软磁钴微米棒的XRD谱图。可以看出三个主要的衍射峰,分别位于44.2o,51.5o和75.8o,归属于立方晶系钴的(111)(200)(220)晶面,说明所制备产物为高纯单质钴。另外,衍射峰的强度较高,说明所制备钴的结晶度较高。高纯度及高结晶度确保了所述钴微米棒具有高饱和磁化强度。
图4为本发明实施例1制得的软磁钴微米棒的磁滞回线谱图。从中可以清楚看出所制备钴微米棒具有优良的软磁特性,其饱和磁化强度可达93.7emu·g-1,矫顽力约为140Oe。其优良的软磁特性源于钴的纯度,结晶度及棒状结构。微米级一维结构有利于获得较低的矫顽力。
图5为本发明实施例1制得的软磁钴微米棒的复磁导率谱图。测试样品由同等质量的钴微米棒及石蜡组成,在微波波段(2-18GHz)内表现出较高的复磁导率。其实部从2GHz的1.38缓慢下降到18GHz的0.89,虚部同样从2GHz的0.40波动下降到18GHz的0.25。样品较高的复磁导率源于材料优良的软磁特性。
本发明经由金属有机骨架为前驱体制备一种软磁钴微米棒,制备工艺简单、成本低,可实现规模化大批量生产。通过控制热处理金属有机骨架材料的工艺参数,获得了结晶度、长度、直径、孔径等参数可调的钴微米棒。经参数优化后,确保所述钴微米棒具有高饱和磁化强度,低矫顽力及高磁导率,即优良的软磁特性。本发明为钴基软磁材料的合成及发展提供了崭新的思路。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (7)

1.一种软磁钴微米棒材料,其特征在于:所述软磁钴微米棒由钴颗粒相互连结组成,保有部分前驱体平行六面体的特征,保有部分孔结构,孔均匀分布于微米棒中。
2.根据权利要求1所述的一种软磁钴微米棒材料,其特征在于:所述微米棒的长度为1~30μm,直径为1~20μm,孔径为50~1000nm。
3.制备如权利要求1-2中任一项所述的一种软磁钴微米棒材料的方法,其特征在于:所述方法包括以下步骤:
(1)制备Co3[HCOO]6·DMF平行六面体前驱体:将一定量的钴盐,N,N-二甲基甲酰胺和甲酸充分溶解混合,转移入反应釜,之后放入烘箱中溶剂热处理。
4.所得产物经分离清洗后干燥备用;
(2)制备软磁钴微米棒:将上述前驱体放入瓷舟中,转移到管式炉中,在惰性气氛保护下高温热处理,获得所述软磁钴微米棒。
5.根据权利要求3所述的一种软磁钴微米棒材料的制备方法,其特征在于:步骤(1)中,所述钴盐的质量为1~16g,所述N,N-二甲基甲酰胺的体积为20~80mL,所述甲酸的体积为1~20mL,溶剂热反应的温度为80~120oC,时间为1~48h。
6.根据权利要求3所述的一种软磁钴微米棒材料的制备方法,其特征在于:所述步骤(1)中钴盐选用硝酸钴,氯化钴,硫酸钴,乙酸钴中的一种。
7.根据权利要求3所述的一种软磁钴微米棒材料的制备方法,其特征在于:步骤2中,惰性气氛选用N2或Ar,热处理升温速率为1~20oC·min-1,温度为350~650oC,保温时间为1~8h。
CN201810725362.5A 2018-07-04 2018-07-04 一种软磁钴微米棒材料及其制备方法 Active CN108788131B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810725362.5A CN108788131B (zh) 2018-07-04 2018-07-04 一种软磁钴微米棒材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810725362.5A CN108788131B (zh) 2018-07-04 2018-07-04 一种软磁钴微米棒材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108788131A true CN108788131A (zh) 2018-11-13
CN108788131B CN108788131B (zh) 2022-04-22

Family

ID=64074448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810725362.5A Active CN108788131B (zh) 2018-07-04 2018-07-04 一种软磁钴微米棒材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108788131B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109757091A (zh) * 2019-02-02 2019-05-14 南京航空航天大学 一种钴MOFs电磁吸波剂及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005023856A1 (de) * 2005-05-24 2006-11-30 Basf Ag Verfahren zur Herstellung poröser metall-organischer Gerüstmaterialien
CN102962036A (zh) * 2012-10-30 2013-03-13 中国科学院大连化学物理研究所 基于过渡金属钴的多孔金属有机骨架材料及其制备方法
CN105328202A (zh) * 2014-08-13 2016-02-17 南京理工大学 一种钴纳米材料的制备方法
CN105489885A (zh) * 2016-01-08 2016-04-13 厦门大学 一种多孔微米棒状四氧化三钴及其制备方法与应用
CN105854882A (zh) * 2016-03-31 2016-08-17 华南理工大学 一种磁性Co3O4-C纳米材料及其制法与作为催化剂活化过一硫酸盐应用于废水处理中
CN106450288A (zh) * 2016-11-04 2017-02-22 济南大学 一种多孔状四氧化三钴的制备方法及其应用
CN106904596A (zh) * 2017-03-06 2017-06-30 武汉理工大学 基于金属有机框架化合物低温热解制备的碳纳米管组装的纳米结构材料及其制备和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005023856A1 (de) * 2005-05-24 2006-11-30 Basf Ag Verfahren zur Herstellung poröser metall-organischer Gerüstmaterialien
CN102962036A (zh) * 2012-10-30 2013-03-13 中国科学院大连化学物理研究所 基于过渡金属钴的多孔金属有机骨架材料及其制备方法
CN105328202A (zh) * 2014-08-13 2016-02-17 南京理工大学 一种钴纳米材料的制备方法
CN105489885A (zh) * 2016-01-08 2016-04-13 厦门大学 一种多孔微米棒状四氧化三钴及其制备方法与应用
CN105854882A (zh) * 2016-03-31 2016-08-17 华南理工大学 一种磁性Co3O4-C纳米材料及其制法与作为催化剂活化过一硫酸盐应用于废水处理中
CN106450288A (zh) * 2016-11-04 2017-02-22 济南大学 一种多孔状四氧化三钴的制备方法及其应用
CN106904596A (zh) * 2017-03-06 2017-06-30 武汉理工大学 基于金属有机框架化合物低温热解制备的碳纳米管组装的纳米结构材料及其制备和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAN HAN ETC: "MOF-derived porous hollow Co3O4 parallelepipeds building high-performance Li-ion batteries", 《JOURNAL OF MATERIALS CHEMISTRY A》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109757091A (zh) * 2019-02-02 2019-05-14 南京航空航天大学 一种钴MOFs电磁吸波剂及其制备方法

Also Published As

Publication number Publication date
CN108788131B (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
Tang et al. Rapid and high-yield synthesis of silver nanowires using air-assisted polyol method with chloride ions
Hu et al. Heat treatment effects on Fe3O4 nanoparticles structure and magnetic properties prepared by carbothermal reduction
Liu et al. Ultrasonic-assisted ultra-rapid synthesis of monodisperse meso-SiO2@ Fe3O4 microspheres with enhanced mesoporous structure
JP2011057518A (ja) 高密度ニッケル・コバルト・マンガン共沈水酸化物及びその製造方法
Chen et al. Preparation and magnetic properties of Fe3O4 microparticles with adjustable size and morphology
CN113458405B (zh) 大粒径金属钼粉的制备方法
Liang et al. X-shaped hollow α-FeOOH penetration twins and their conversion to α-Fe2O3 nanocrystals bound by high-index facets with enhanced photocatalytic activity
TWI715078B (zh) MnBi2Te4塊體單晶的製備方法
Pudukudy et al. Facile synthesis of mesoporous α-Mn2O3 microspheres via morphology conserved thermal decomposition of MnCO3 microspheres
JP6489315B2 (ja) コバルト粉の製造方法
CN108788131A (zh) 一种软磁钴微米棒材料及其制备方法
CN107556329B (zh) 一种多孔金属有机框架材料及其制备方法
CN113463179B (zh) 大尺寸β型四钼酸铵单晶颗粒的制备方法
CN113798504B (zh) 3d打印用稀土氧化物弥散增强钨粉的制备方法
CN102295454B (zh) 一种制备铁氧体纳米粉体的微反应***和制备方法
CN105195755A (zh) 一种铁镍双金属合金纳米材料的制备方法
CN102962470A (zh) 常温下制备球形超细镍粉的方法
CN110919020B (zh) 大粒度钼粉的制备方法
Tudorache et al. Structural Investigations and Magnetic Properties of BaFe_12O_19 Crystals
CN108461243B (zh) 一种多孔茶花状MnFe2O4@C核壳结构复合物及其制备方法
Sebastian et al. Magnetically-driven selective synthesis of Au clusters on Fe 3 O 4 nanoparticles
CN107649689A (zh) 一种超细钴粉的制备方法
Hu et al. Magnetic-field-assisted synthesis of Ni nanostructures: selective control of particle shape
CN106044857B (zh) 一种在钨酸铵溶液中分离提纯仲钨酸铵的方法
Amutha et al. Template-free synthesis of self-assembled Co3O4 micro/nanocrystals

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210918

Address after: No. 280, changzhugeng village committee, Jincheng Town, Jintan District, Changzhou City, Jiangsu Province, 213200

Applicant after: Changzhou Qinxing Electronic Technology Co.,Ltd.

Address before: 213200 Xinghua Road, Jintan District, Changzhou, Jiangsu Province, No. 258

Applicant before: CHANGZHOU JINTAN MAGNETIC MATERIALS Co.,Ltd.

GR01 Patent grant
GR01 Patent grant