CN108623104B - 一种基于纳滤膜调配的高盐废水零排放处理方法及装置 - Google Patents

一种基于纳滤膜调配的高盐废水零排放处理方法及装置 Download PDF

Info

Publication number
CN108623104B
CN108623104B CN201810778712.4A CN201810778712A CN108623104B CN 108623104 B CN108623104 B CN 108623104B CN 201810778712 A CN201810778712 A CN 201810778712A CN 108623104 B CN108623104 B CN 108623104B
Authority
CN
China
Prior art keywords
concentration
crystallization
salt
wastewater
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810778712.4A
Other languages
English (en)
Other versions
CN108623104A (zh
Inventor
邢卫红
张荟钦
杨刚
杨积衡
李卫星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Jiangsu Jiuwu Hi Tech Co Ltd
Original Assignee
Nanjing Tech University
Jiangsu Jiuwu Hi Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University, Jiangsu Jiuwu Hi Tech Co Ltd filed Critical Nanjing Tech University
Priority to CN201810778712.4A priority Critical patent/CN108623104B/zh
Publication of CN108623104A publication Critical patent/CN108623104A/zh
Application granted granted Critical
Publication of CN108623104B publication Critical patent/CN108623104B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/04Chlorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/14Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D5/00Sulfates or sulfites of sodium, potassium or alkali metals in general
    • C01D5/16Purification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/302Treatment of water, waste water, or sewage by irradiation with microwaves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/26Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof
    • C02F2103/28Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof from the paper or cellulose industry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明涉及一种基于纳滤膜调配***的高盐废水零排放处理方法及装置。该工艺主要步骤如下:将高盐废水经预处理***除杂、盐提浓、软化后,软化后的浓水进入纳滤调配***,调配一二价盐的浓度,使纳滤浓水的一二价盐的浓度比在0.01~0.1之间,纳滤调配***浓水进入硫酸钠结晶***获得满足工业盐要求二价盐产品和含氯化钠母液,纳滤调配***渗透液经再提浓***后进入氯化钠结晶***获得氯化钠盐产品和含硫酸钠母液,氯化钠结晶母液经除杂后进入硫酸钠结晶***中,硫酸钠结晶母液经除杂后进入氯化钠结晶***,实现废水零排放并平抑结晶***中盐浓度的波动。

Description

一种基于纳滤膜调配的高盐废水零排放处理方法及装置
技术领域
本发明涉及一种基于纳滤膜调配的高盐废水零排放处理方法及装置,属于水处理技术领域。
背景技术
造纸工业、印染工业、化工工业、制药工业等排放的废水均含有一定浓度的无机盐,在废水零排放处理过程中均涉及如何将无机盐从废水中分离的工艺。针对含盐废水零排放采用高级氧化预处理降低COD及SS,在此基础上采用反渗透膜进行浓缩,随着浓缩倍数的上升,废水中的硬度也逐步上升。经浓缩后的废水可采用“两碱法”或“树脂软化法”脱除废水中的硬度。经脱除硬度的废水经过反渗透或电渗析等工艺进一步浓缩后,采用蒸发结晶工艺获得工业盐。膜浓缩过程产生的清水根据水质不同用于各生产工段。该类含盐废水零排放工艺中国发明专利(CN103508602A,CN104071808A)已有报道,但这些专利中均未涉及如何实现一二价盐的分离问题,得到的杂盐难以资源化利用。
中国专利CN105540972A将含盐废水零排放工艺分为循环预处理、循环减量化及零排放单元三个部分。在蒸发结晶工艺过程中实现盐硝的分离。该工艺主要针对含盐废水中一价盐与二价盐浓度差较大的体系,可通过控制结晶工艺的操作条件获得工业级一价盐和二价盐,由于工业废水成分复杂且一价盐与二价盐浓度差难以满足盐硝的分离,因此该专利的适用范围有限。
中国专利CN104370405A采用纳滤技术对高浓度盐水进行分盐处理,将纳滤淡水进行浓缩后用于软化器再生。纳滤浓水用于蒸发结晶获得固形物,可获得高纯度的二价盐产物,但纳滤的淡水未做提浓获得一价盐产品,造成这部分含盐废水的外排或***内富集,该专利仅解决了部分盐利用的问题。
发明内容
本发明所要解决的技术问题是:针对含盐废水中氯化钠和硫酸钠的浓度比例不适合采用结晶方法分离的问题,采用纳滤工艺对含盐废水中的一价盐和二价盐浓度进行调节,使得纳滤膜经过比例调节后的废水能够采用反渗透或者电渗析工艺进一步浓缩,浓缩的含盐废水可以分别通过相应的结晶工艺而得到氯化钠和硫酸钠工业盐。
本发明的第一个方面:
一种高盐废水零排放方法,包括如下步骤:
第1步,将含盐废水经预处理***除杂;
第2步,对第1步得到的废水进行浓缩处理;
第3步,对第2步得到的废水进行软化处理;
第4步,对第3步得到的废水采用纳滤膜过滤处理,调节废水中的NaCl和Na2SO4浓度比例;
第5步,纳滤膜的浓水送入Na2SO4结晶***,通过结晶分离得到Na2SO4工业盐以及第一母液;纳滤膜的淡水进行浓缩之后,再送入NaCl结晶***中,通过结晶分离得到NaCl工业盐以及第二母液;
第6步,第一母液送入NaCl结晶***中进行结晶处理,第二母液送入Na2SO4结晶***进行结晶处理。
在一个实施方式中,第1步中预处理***出水COD在10~200mg/L之间,SS在3~50mg/L。
在一个实施方式中,第1步中的预处理是指预过滤、生物滤池、沉淀、氧化或者超滤中的一种或多种的组合。
在一个实施方式中,预过滤是砂滤、多介质过滤或者活性炭过滤中的一种或多种的组合。
在一个实施方式中,氧化采用臭氧氧化技术、芬顿氧化技术或者微波氧化中的一种或多种的组合;生物滤池是指活性炭生物滤池。
在一个实施方式中,浓缩处理使废水中TDS在20~60g/L;浓缩过程采用纳滤膜浓缩、反渗透浓缩或者电渗析浓缩中的一种或多种工艺组合。
在一个实施方式中,第3步中软化***出水硬度在20~200mg/L之间;软化工艺可采用膜软化、药剂软化或者离子交换树脂软化中的一种或多种工艺组合。
在一个实施方式中,第4步中,纳滤膜浓水中的NaCl和Na2SO4浓度的浓度质量比0.01~0.07:1;纳滤膜的浓水中的Na2SO4质量浓度8~15%。
在一个实施方式中,第5步中,纳滤膜的淡水进行浓缩是采用高压反渗透膜工艺、DTRO工艺、电渗析工艺、MVR蒸发工艺或多效蒸发工艺中的一种或几种的组合;纳滤膜淡水浓缩后NaCl质量浓度在10~20%之间。
在一个实施方式中,第一母液经过浓缩之后再送入NaCl结晶***中进行结晶处理,第二母液过浓缩之后再送入Na2SO4结晶***进行结晶处理。
本发明的第二个方面:
一种高盐废水零排放处理装置,包括:
预处理***,用于对高盐废水进行预处理除杂;
浓缩***,连接于预处理***,用于对预处理***得到的废水进行浓缩处理;
软化***,连接于浓缩***,用于对浓缩后的废水进行软化处理;
纳滤膜,连接于软化***,用于对软化处理后的产水进行一二价盐的分离;
硫酸钠结晶***,连接于纳滤膜的浓液侧,用于对纳滤浓液结晶处理,得到Na2SO4
氯化钠结晶***,连接于纳滤膜的淡液侧,用于对纳滤淡液结晶处理,得到NaCl。
在一个实施方式中,硫酸钠结晶***的母液出口连接于氯化钠结晶***,氯化钠结晶***的母液出口连接于硫酸钠结晶***。
在一个实施方式中,所述的预处理***包括预过滤装置、生物滤池、沉淀装置、氧化装置或者超滤装置中的一种或多种的组合。
在一个实施方式中,预过滤装置是砂滤装置、多介质过滤装置或者活性炭过滤装置中的一种或多种的组合。
在一个实施方式中,生物滤池装置是活性炭生物滤池装置。
在一个实施方式中,氧化装置是臭氧氧化装置、芬顿氧化装置或者微波氧化装置中的一种或多种的组合。
在一个实施方式中,所述的浓缩***包括纳滤膜浓缩装置、反渗透浓缩装置或者电渗析浓缩装置中的一种或多种的组合。
在一个实施方式中,纳滤膜的淡液侧通过浓缩装置与氯化钠结晶***连接。
在一个实施方式中,浓缩装置选自高压反渗透膜装置、DTRO装置、电渗析装置、MVR蒸发装置或多效蒸发装置中的一种或几种的组合。
有益效果
本发明的所针对的含盐废水适应性广,通过控制纳滤浓缩倍数和截留率来调节一价盐和二价盐的比例,满足后续NaCl和Na2SO4分别结晶回用工艺的要求,实现废水零排放,并获得纯度高的工业级的一价盐和二价盐产品,具有节能高效减排的优点。
本发明的主要创新点在于将纳滤膜用于对高盐废水中的一价盐与二价盐比例进行调节,满足NaCl和Na2SO4分别结晶的要求,将结晶过程的母液进行循环利用,减少母液量,提高盐硝联产过程盐利用的效率。最终在实现含盐废水零排放的同时获得高纯度的一价盐与二价盐,实现水及无机盐的资源化利用。
另外,由于在NaCl和Na2SO4分别结晶的过程中,结晶料液中的NaCl和Na2SO4的浓度比相差越大,越利于结晶过程形成高纯度的结晶盐。而又由于在高盐废水中的盐浓度会发生周期性的波动,容易导致纳滤过程中得到淡液和浓液中的浓度发生周期性的波动,影响到结晶过程。因此,通过对结晶后的母液采用反渗透膜进一步提浓之后再返回至上一级的结晶***,可以有效地使NaCl和Na2SO4的浓度比的波动数值减小,抑制了结晶过程中的不稳定性的发生。
附图说明
图1是本发明提供的方法整体流程图。
图2是本发明提供的装置图。
其中,1、预处理***;2、浓缩***;3、软化***;4、纳滤膜;5、硫酸钠结晶***;6、氯化钠结晶***。
具体实施方式
下面通过具体实施方式对本发明作进一步详细说明。但本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
以范围形式表达的值应当以灵活的方式理解为不仅包括明确列举出的作为范围限值的数值,而且还包括涵盖在该范围内的所有单个数值或子区间,犹如每个数值和子区间被明确列举出。例如,“大约0.1%至约5%”的浓度范围应当理解为不仅包括明确列举出的约0.1%至约5%的浓度,还包括有所指范围内的单个浓度(如,1%、2%、3%和4%)和子区间(例如,0.1%至0.5%、1%至2.2%、3.3%至4.4%)。
在本说明书中所述及到的“一个实施例”、“另一个实施例”、“实施方式”等,指的是结合该实施例描述的具体特征、结构或者包括在本申请概括性描述的至少一个实施例中。在说明书中多个地方出现同种表述不是一定指的是同一个实施例。进一步来说,结合任一实施例描述一个具体特征、结构或者特点时,所要主张的是结合其他实施例来实现这种特征、结构或者特点也落在本申请所要保护的范围内。
应理解的是,当一个元件被提及与另一个元件“连接”时,它可以与其他元件直接相连或者与其他元件间接相连,而它们之间***有元件。除非有明确相反的说明,否则术语“包括”和“具有”应理解为表述包含所列出的元件,而非排除任意其他元件。
本文使用的词语“包括”、“包含”、“具有”或其任何其他变体意欲 涵盖非排它性的包括。例如,包括列出要素的工艺、方法、物品或设 备不必受限于那些要素,而是可以包括其他没有明确列出或属于这种 工艺、方法、物品或设备固有的要素。
本发明涉及一种高盐废水零排放的工艺,所需要处理的高盐废水主要是指含有NaCl、Na2SO4、COD等物质的废水,其中也含有一部分Ca2+、Mg2+的硬度等。高盐废水主要可以来源于造纸过程中经过处理后的中水和尾水,也可以是煤化工废水经过处理得到的中水和尾水等。一些典型的水质情况是:COD在COD在10~200mg/L,总硬度50~1000 mg/L(以CaCO3计),TDS在1000~20000 mg/L,总悬浮物SS在3~50mg/L,NaCl浓度在200~5000mg/L,Na2SO4的浓度范围200~5000mg/L。本发明的方法特别适用于NaCl和Na2SO4的浓度比值并不能直接通过蒸发结晶的方式将两者分离的情况;例如NaCl和Na2SO4的质量浓度比在10:1~1:10这个范围,也可以是5:1~1:5,也可以是2:1~1:2。
主要的工艺流程如下:
步骤1:将高盐废水经预处理***除杂,预处理***出水;
步骤2:除杂后进入盐提浓***,使废水中TDS在20~60g/L,反渗透淡水进入回用水***;
步骤3、盐提浓***浓水进入软化***,软化***出水硬度在50~200mg/L之间;
步骤4、软化后的浓水进入纳滤调配***,调配一二价盐的浓度,使纳滤浓水的一二价盐的浓度比在0.01~0.1之间;
步骤5、纳滤调配***浓水进入Na2SO4结晶***获得满足工业盐要求Na2SO4工业盐和母液;
步骤6、纳滤调配***渗透液经再提浓***后进入NaCl结晶***获得NaCl工业盐以及母液;
步骤7、Na2SO4结晶***和NaCl结晶***的冷凝水进入回用水***Na2SO4结晶***排放母液经除杂后进入NaCl结晶***中,NaCl结晶***排放母液经除杂后进入Na2SO4结晶***中,实现废水零排放;
步骤8、各***的净化水经回用水***调配后满足不同回用要求,实现分质供水。
进一步的,步骤1所述预处理单元主要是采用常规的一些对水质进行预除杂处理的过程,其主要目的是去除掉废水中较容易去除的杂质,并减轻后续的膜过程、蒸发过程等的负荷,并可以提高水质,这里的预处理可以按照常规的处理步骤进行,可以包括预过滤、沉淀、氧化工艺中的一种或多种。其中预过滤一般是可以举出离心分离方式、压榨分离方式、过滤方式、上浮分离方式、沉降分离方式。作为离心分离方式,可以例示卧式连续离心分离机(螺旋倾析器处理)、分离板式离心分离机、离心过滤机、厦普勒斯型超离心分离机,作为过滤方式,可以例示带式过滤机、压带机、螺杆压机、预涂过滤器、压滤机,作为上浮分离方式,可以例示连续上浮分离装置,作为沉降分离方式,可以例示凝集沉降分离机、迅速沉降分离机等,但不特别限定于上述的任一项。然而能够通过上述的任一项或其组合来减少精密过滤膜和/或超滤膜处理时对膜的负荷。特别优选地,预处理工艺可以采用砂滤、多介质过滤、活性炭过滤中的一种或多种组合。这里的生物滤池过程,是指采用具有高比表面积的吸附材料作为载体对水中的大分子或其它杂质进行去除,这里所使用的载体可以采用常规的有机或者无机吸附材料,例如:大孔吸附树脂、沸石、活性炭等吸附材料;生物活性炭滤池采用下向流型式,进水溶解氧含量一般在5~10mg/L左右,能充分保证生物降解对溶解氧的需求;滤池可以采用两段式气水反冲洗,即首先以空气擦洗、再以未加氯的砂滤出水反冲,反冲洗周期为1~10天;生物滤池中如果以活性炭作为载体装填时,通常采用碘值和亚甲兰吸附值进行评价活性炭的标准,可以吸附量分别为300~2000 mg/g和50~500mg/g,活性炭堆积密度可以是50~600g/L。这里所述的沉淀,是指通过重力沉降或在其它外力作用下的沉降使用将颗粒杂质与废水分离的方法,可以采用的方法是沉淀池等;氧化作用是利用氧化剂氧化分解废水中污染物,以净化废水的方法,采用高级氧化处理时,主要是Fenton氧化法、臭氧联合氧化法、湿式氧化法、超 临界水氧化法、光催化氧化法和超声氧化法等几类,特别优选采用臭氧氧化技术、芬顿技术、微波氧化中的一种或多种进行组合处理。采用臭氧氧化时,臭氧浓度可以是10~500ppm,氧化温度可以是10~50℃;采用芬顿氧化时,Fe2+和H2O2浓度可以分别为10~50mg/L和20~900mg/L,体系pH值为3~6,反应温度为10~60℃,反应时间为10~240min;采用微波氧化时,其频率400~3000MHz,氧化温度10~60℃,处理时间20~200min。预处理中使用的超滤是指通过超滤膜对水中的胶体、大分子杂质进行过滤的过程,本说明书中的“超滤膜”是指,孔径为0.001~0.01μm的过滤膜及/或截留分子量为1000~300000左右的过滤膜,超滤膜的材料,可以采用无机膜和有机膜,进一步划分为疏水性和亲水性。作为疏水性的有机膜,并非限定于此,可以列举出聚砜、聚醚砜、聚醚、聚偏二氟乙烯、聚乙烯、聚丙烯等。作为亲水性的有机膜,并非限定于此,可以列举出聚丙烯腈、聚酰胺、聚酰亚胺、醋酸纤维素等。其滤芯形状包括,平膜、管状膜、螺旋膜、中空纤维(中空丝)膜等。
进一步的,步骤2中所述的盐浓缩***,浓缩倍数在2~20倍之间,根据进水盐浓度选择合适的浓缩倍数,经过浓缩后其盐浓度10~40g/L为优选盐浓度但根据来水中盐组分的差异以及进水盐浓度变化可适当调整,该浓度不是工艺实施的决定条件。步骤2的盐提浓***采用纳滤膜浓缩、反渗透浓缩、电渗析浓缩中的一种或多种工艺组合。
本发明所中涉及的纳滤膜,定义为“阻止小于2nm的粒子和溶解的大分子的压力驱动膜”的膜,可以使用乙酸纤维素系聚合物、聚酰胺、磺化聚砜、聚丙烯腈、聚酯、聚酰亚胺和乙烯基聚合物等高分子材料。本发明中的反渗透膜,可以使用醋酸纤维素类聚合物、聚酰胺、聚酯、聚酰亚胺、乙烯基聚合物等高分子材料。纳滤膜的操作压力可以控制在0.5~4.0MPa,反渗透膜的操作压力可以控制在1.0MPa~10MPa的范围。
进一步的,第3步的软化工艺的目的去除掉废水中的Ca2+、Mg2+离子,可采用膜软化、药剂软化(例如加入NaOH和Na2CO3)、离子交换树脂软化。
进一步的,通常的中水中的NaCl和Na2SO4的浓度比值不能满足分别结晶获得NaCl和Na2SO4的要求时,本发明将纳滤膜用于对高盐废水中的一价盐与二价盐比例进行调节,满足NaCl和Na2SO4分别结晶的要求,将结晶过程的母液进行循环利用,减少母液量,提高盐硝联产过程盐利用的效率。最终在实现含盐废水零排放的同时获得高纯度的一价盐与二价盐,实现水及无机盐的资源化利用。第4步的纳滤浓水中的NaCl和Na2SO4的质量浓度比0.01~0.07为优选工艺。
进一步的,第6步的再提浓***采用高压反渗透膜工艺、DTRO工艺、电渗析工艺,也可以采用MVR蒸发工艺或多效蒸发工艺。
进一步的,第4步的纳滤淡水浓缩后NaCl质量浓度在10~20%之间。
进一步的,第4步的纳滤浓水浓缩后Na2SO4质量浓度在8~15%之间。
进一步的,第5所述NaCl结晶***,步骤6步所述的Na2SO4结晶***采用的蒸发结晶工艺为多效蒸发或MVR蒸发中的一种。
进一步的,步骤7步所述的除杂过程采用臭氧氧化、湿式氧化或微电解氧化中的一种或多种组合工艺。
进一步的,第8步所述的回用水***,可根据各***产水水质实现分质供水,用于锅炉补给水前端、生产用水、厂区生活杂用水、循环水、景观用水中的一种或多种。
进一步的,Na2SO4结晶***母液经过浓缩之后再送入NaCl结晶***中进行结晶处理,NaCl结晶***母液过浓缩之后再送入Na2SO4结晶***进行结晶处理。由于废水中的一价和二价盐的浓度会发生不断的波动,进而会影响到后续的纳滤、结晶的过程,使得工艺参数需要进行不断调整以适应水中盐浓度的变化,因此即会导致操作过程不稳定、结晶盐的纯度不能达到要求。同时,在NaCl和Na2SO4分别结晶的过程中,结晶料液中的NaCl和Na2SO4的浓度比相差越大,越利于结晶过程形成高纯度的结晶盐。例如:在对NaCl进行结晶的过程中,结晶液中的NaCl与Na2SO4的浓度比值是C1(NaCl)/C1(Na2SO4),当将Na2SO4结晶后得到的主要含有NaCl的母液(浓度计为C2(NaCl),且C2(NaCl)> C1(NaCl))进一步浓缩之后再加入至NaCl进行结晶的过程中,即可以使比值的分子上的浓度增大,提高了浓度比值;根据数值计算可以知晓,当10<C1(NaCl)/C1(Na2SO4) <100范围内波动时,使分子浓度增大即可使整体比值的波动幅度明显减小,起到了平抑波动的效果。同理Na2SO4的结晶过程中,一二价盐的浓度比值是C1(Na2SO4)/C1(NaCl),当将NaCl结晶后得到的主要含有Na2SO4的母液浓缩后,将得到的C2(Na2SO4)浓缩液返回至Na2SO4的结晶过程中后,由于C2(Na2SO4)> C1(Na2SO4),也同样地起到了平抑结晶过程浓度波动的作用。因此,通过对结晶后的母液采用反渗透膜进一步提浓之后再返回至上一级的结晶***,可以有效地使NaCl和Na2SO4的浓度比的波动数值减小,抑制了结晶过程中的不稳定性的发生。
基于以上的方法,本发明提供的处理装置如图2所示,包括:
预处理***1,用于对高盐废水进行预处理除杂;
浓缩***2,连接于预处理***1,用于对预处理***1得到的废水进行浓缩处理;
软化***3,连接于浓缩***2,用于对浓缩后的废水进行软化处理;
纳滤膜4,连接于软化***3,用于对软化处理后的产水进行一二价盐的分离;
硫酸钠结晶***5,连接于纳滤膜4的浓液侧,用于对纳滤浓液结晶处理,得到Na2SO4
氯化钠结晶***6,连接于纳滤膜4的淡液侧,用于对纳滤淡液结晶处理,得到NaCl。
在一个实施方式中,硫酸钠结晶***5,的母液出口连接于氯化钠结晶***6,氯化钠结晶***6的母液出口连接于硫酸钠结晶***5。
在一个实施方式中,所述的预处理***1包括预过滤装置、生物滤池、氧化装置、沉淀装置、氧化装置或者超滤装置中的一种或多种的组合。
在一个实施方式中,预过滤装置是砂滤装置、多介质过滤装置或者活性炭过滤装置中的一种或多种的组合。
在一个实施方式中,氧化装置是臭氧氧化装置、芬顿氧化装置或者微波氧化装置中的一种或多种的组合生物滤池是指活性炭生物滤池装置。
在一个实施方式中,所述的浓缩***2包括纳滤膜浓缩装置、反渗透浓缩装置或者电渗析浓缩装置中的一种或多种的组合。
在一个实施方式中,纳滤膜4的淡液侧通过浓缩装置与氯化钠结晶***连接。
在一个实施方式中,浓缩装置选自高压反渗透膜装置、DTRO装置、电渗析装置、MVR蒸发装置或多效蒸发装置中的一种或几种的组合。
实施例1
针对某制浆废水采用纳滤与结晶联产工艺实现废水零排放及工业盐回收再利用。制浆废水原水日处理量为40000吨。主要水质参数见下表:
制浆废水原水经过均质池均质后采用砂滤与臭氧、活性炭生物滤池工艺对来水进行预处理,臭氧浓度150ppm,臭氧氧化时间40min;水力停留时间15min;活性炭生物滤池炭床高度2.0m,处理温度25~30℃,空床接触时间20min;经过预处理后废水SS降至12~18mg/L,COD浓度降至45~53mg/L,预处理水回收率大于97%。
经过预处理的含盐废水进入超滤***,超滤膜的截留分子量100kDa,超滤工作压力0.3MPa,超滤运行通量50L/(m2·h),超滤膜清洗周期超过90天,超滤产水SDI小于2.5,浊度低于0.2NTU,超滤***回收率大于93%。
超滤产水进入一级反渗透***,反渗透工作压力1.5MPa,温度30℃,反渗透回收率65%,平均通量15 L/(m2·h),产水TDS低于105mg/L。日产水量为24500m3。一级反渗透浓水进入弱酸性离子交换树脂床软化***,经过软化***后废水硬度在1200~1430mg/L降至170~187mg/L,经过弱酸阳床硬度降至26mg/L,满足后段反渗透的要求。
经软化后的反渗透浓水进入二段反渗透***,反渗透工作压力2.0MPa,温度30℃,进水TDS为10250~10560mg/L,COD为187~202mg/L,氯化钠浓度3520~3640mg/L,硫酸钠浓度6300~6550mg/L,日处理量为13500m3。水回收率为75%,淡水产量为10120m3/d,浓水量3380m3/d。产水TDS低于210mg/L,浓水TDS为40750~41300mg/L,浓水中氯化钠浓度13450~13920mg/L,硫酸钠浓度24700~25530mg/L,硬度392~434mg/L。浓水经过弱酸阳床再次软化后硬度降为4~6mg/L。
二级反渗透浓水经过纳滤膜进行无机盐比例调配,操作压力54bar,经纳滤处理后,淡水量为2910m3/d,氯化钠浓度14700~15340mg/L,淡水硫酸钠浓度260~285mg/L。纳滤淡水采用高压反渗透及均相膜电渗析技术进一步浓缩后,浓缩液量为245m3/d,氯化钠浓度191100~203700mg/L,硫酸钠浓度5380~5500mg/L。纳滤浓水量为480m3/d,氯化钠浓度11320~11890mg/L,硫酸钠浓度174200~17950mg/L。
纳滤淡水经反渗透膜浓缩后,NaCl浓度31100~31880mg/L,NaCl和Na2SO4的质量浓度比约为53:1,满足进入NaCl结晶工艺段的生产要求。氯化钠结晶***采用三效蒸发,采用平流进料—每效出盐—母液回流的操作方式,控制结晶温度在40~50℃之间,结晶母液中Na2SO4的质量浓度5380mg/L,送至硫酸钠结晶***回用,日获得氯化钠45.7吨。纳滤浓水进入硫酸钠结晶***,硫酸钠结晶***采用MVR工艺进行Na2SO4结晶,控制结晶温度在90~105℃之间,Na2SO4和NaCl的质量浓度比约为13:1,满足进入Na2SO4结晶的工艺要求,结晶母液中NaCl的质量浓度58400mg/L,送至氯化钠结晶***回用,该工艺日产无水硫酸钠82.5吨。两种工艺的氯化钠纯度达到98.3%,硫酸钠纯度达到99.0%。
采用纳滤膜技术对含盐废水中的氯化钠和硫酸钠浓度进行调节,淡水和浓水氯化钠与硫酸钠比例满足进行硫酸钠或氯化钠联产工艺的要求,最终实现废水的零排放,并从废水中获得可以再利用的氯化钠和硫酸钠盐。
实施例2
某煤化工企业现有污水处理站一座,废水排放量为2750m3/h,废水能满足达标排放要求。排放水水质指标如下:
废水中无机盐成分主要是氯化钠和硫酸钠。采用纳滤与结晶联产工艺对废水进行零排放处理。
煤化工废水自厂区输送至零排放原水经过均质池均质后采用砂滤与臭氧、活性炭吸附工艺对来水进行预处理,臭氧浓度200ppm,臭氧氧化时间50min;活性炭吸附温度20℃,水力停留时间12min;经过预处理后废水SS降至5~9mg/L,COD浓度降至20~31mg/L,预处理水回收率大于98%。
经过预处理的含盐废水进入超滤***,超滤膜的截留分子量50kDa,超滤工作压力0.4MPa,超滤运行通量45L/(m2·h),超滤膜清洗周期超过60天,超滤产水SDI小于2,浊度低于0.3NTU,超滤***回收率大于92%。
超滤产水进入一级反渗透***,反渗透工作压力2.0MPa,反渗透回收率60%,平均通量15 L/(m2·h),产水TDS低于50 mg/L,产水量为1625m3/h。一级反渗透浓水进入弱酸性离子交换树脂床软化***,经过软化***后废水硬度在1050~1250mg/L降30~42mg/L,经过弱酸阳床硬度降至4mg/L以下,满足后段反渗透的要求。
经软化后的反渗透浓水进入二段反渗透***,反渗透工作压力1.5MPa,进水TDS为4700~5230mg/L,COD为38~47mg/L,氯化钠浓度735~920mg/L,硫酸钠浓度3860~4340mg/L,处理量为1150m3/h。水回收率为75%,淡水产量为860m3/h,浓水量290m3/h。产水TDS低于100mg/L,浓水TDS为18500~20560mg/L,浓水中氯化钠浓度2900~3130mg/L,硫酸钠浓度15460~17240mg/L,硬度76~85mg/L。
二段反渗透浓水进入三段反渗透***,进水TDS为18500~19840mg/L,COD为150~167mg/L,氯化钠浓度2900~3170mg/L,硫酸钠浓度15460~16710mg/L,处理量为290m3/h。水回收率为60%,淡水产量为175m3/h,浓水量115m3/h。产水TDS低于400mg/L,浓水TDS为46250~48220mg/L,浓水中氯化钠浓度7050~7280mg/L,硫酸钠浓度38600~40530mg/L,硬度76~87mg/L。
三级反渗透浓水经过纳滤膜进行无机盐比例调配,操作压力48bar,经纳滤处理后,淡水量为77m3/h,氯化钠浓度7120~7330mg/L,淡水硫酸钠浓度390~419mg/L。纳滤淡水采用高压反渗透及均相膜电渗析技术进一步浓缩后,浓缩液量为5.1m3/h,氯化钠浓度106080~113500mg/L,硫酸钠浓度5840~6010mg/L。纳滤浓水量为38m3/h,氯化钠浓度7035~7230mg/L,硫酸钠浓度115800~123400mg/L。
纳滤淡水经反渗透膜浓缩后,NaCl和Na2SO4的质量浓度比约为18:1,满足进入氯化钠结晶***的生产要求。氯化钠结晶***采用三效蒸发,采用平流进料—每效出盐—母液回流的操作方式,控制结晶温度在40~50℃之间,结晶母液中Na2SO4的质量浓度3070mg/L,送至硫酸钠结晶***回用,日获得氯化钠12.7吨。纳滤浓水进入硫酸钠结晶***,硫酸钠结晶***采用MVR工艺,控制结晶温度在90~105℃之间,Na2SO4和NaCl的质量浓度比约为16:1,满足进入氯化钠和硫酸钠的工艺要求,结晶母液中NaCl的质量浓度33120mg/L,送至氯化钠结晶***回用,该工艺日产无水硫酸钠102.6吨。两种工艺的氯化钠纯度达到98.4%,硫酸钠纯度达到99.3%。
采用纳滤膜技术对煤化工废水中的氯化钠和硫酸钠浓度进行调节,淡水和浓水氯化钠与硫酸钠比例满足进行氯化钠和硫酸钠结晶工艺的要求,最终实现废水的零排放,并从废水中获得工业级的氯化钠和硫酸钠盐。
实施例3
针对某制浆废水采用纳滤与结晶联产工艺实现废水零排放及工业盐回收再利用。制浆废水原水日处理量为40000吨。主要水质参数见下表:
制浆废水原水经过均质池均质后采用砂滤与臭氧、活性炭生物滤池工艺对来水进行预处理,臭氧浓度150ppm,臭氧氧化时间40min;水力停留时间15min;活性炭生物滤池炭床高度2.0m,处理温度25~30℃,空床接触时间20min;经过预处理后废水SS降至12~18mg/L,COD浓度降至45~53mg/L,预处理水回收率大于97%。
经过预处理的含盐废水进入超滤***,超滤膜的截留分子量100kDa,超滤工作压力0.3MPa,超滤运行通量50L/(m2·h),超滤膜清洗周期超过90天,超滤产水SDI小于2.5,浊度低于0.2NTU,超滤***回收率大于93%。
超滤产水进入一级反渗透***,反渗透工作压力1.5MPa,温度30℃,反渗透回收率65%,平均通量15 L/(m2·h),产水TDS低于105mg/L。日产水量为24500m3。一级反渗透浓水进入弱酸性离子交换树脂床软化***,经过软化***后废水硬度在1200~1430mg/L降至170~187mg/L,经过弱酸阳床硬度降至26mg/L,满足后段反渗透的要求。
经软化后的反渗透浓水进入二段反渗透***,反渗透工作压力2.0MPa,温度30℃,进水TDS为10250~10560mg/L,COD为187~202mg/L,氯化钠浓度3520~3640mg/L,硫酸钠浓度6300~6550mg/L,日处理量为13500m3。水回收率为75%,淡水产量为10120m3/d,浓水量3380m3/d。产水TDS低于210mg/L,浓水TDS为40750~41300mg/L,浓水中氯化钠浓度13450~13920mg/L,硫酸钠浓度24700~25530mg/L,硬度392~434mg/L。浓水经过弱酸阳床再次软化后硬度降为4~6mg/L。
二级反渗透浓水经过纳滤膜进行无机盐比例调配,操作压力54bar,经纳滤处理后,淡水量为2910m3/d,氯化钠浓度14700~15340mg/L,淡水硫酸钠浓度260~285mg/L。纳滤淡水采用高压反渗透及均相膜电渗析技术进一步浓缩后,浓缩液量为245m3/d,氯化钠浓度191100~203700mg/L,硫酸钠浓度5380~5500mg/L。纳滤浓水量为480m3/d,氯化钠浓度11320~11890mg/L,硫酸钠浓度174200~17950mg/L。
纳滤淡水经反渗透膜浓缩后,NaCl浓度31100~31880mg/L,NaCl和Na2SO4的质量浓度比约为53:1,满足进入NaCl结晶工艺段的生产要求。氯化钠结晶***采用三效蒸发,采用平流进料—每效出盐—母液回流的操作方式,控制结晶温度在40~50℃之间,结晶母液经高压反渗透浓缩后Na2SO4的质量浓度217710mg/L,送至硫酸钠结晶***回用,日获得氯化钠48.6吨。纳滤浓水进入硫酸钠结晶***,硫酸钠结晶***采用MVR工艺进行Na2SO4结晶,控制结晶温度在90~105℃之间,Na2SO4和NaCl的质量浓度比约为13:1,满足进入Na2SO4结晶的工艺要求,结晶母液经高压反渗透浓缩后中NaCl的质量浓度63320mg/L,送至氯化钠结晶***回用,该工艺日产无水硫酸钠84.7吨。两种工艺的氯化钠纯度达到99.0%,硫酸钠纯度达到99.4%。
采用纳滤膜技术对含盐废水中的氯化钠和硫酸钠浓度进行调节,淡水和浓水氯化钠与硫酸钠比例满足进行硫酸钠或氯化钠联产工艺的要求,最终实现废水的零排放,并从废水中获得可以再利用的氯化钠和硫酸钠盐。

Claims (5)

1.一种高盐废水零排放方法,其特征在于,包括如下步骤:
第1步,将含盐废水经预处理***除杂;第1步中预处理***出水COD在10~200mg/L之间,SS在3~50mg/L;第1步中的预处理是指预过滤、生物滤池、沉淀、氧化或者超滤中的一种或多种的组合;
第2步,对第1步得到的废水进行浓缩处理;浓缩处理使废水中TDS在20~60g/L;
第3步,对第2步得到的废水进行软化处理;软化处理出水硬度在20~200mg/L之间;
第4步,对第3步得到的废水采用纳滤膜过滤处理,调节废水中的NaCl和Na2SO4浓度比例;纳滤膜浓水中的NaCl和Na2SO4浓度的浓度质量比(0.01~0.07):1;
第5步,纳滤膜的浓水氯化钠浓度 11320~11890mg/L,硫酸钠浓度174200~17950mg/L,
送入Na2SO4结晶***,通过结晶分离得到Na2SO4工业盐以及第一母液;纳滤淡水经反渗透膜浓缩后,NaCl浓度31100~31880mg/L,再送入NaCl结晶***中,通过结晶分离得到NaCl工业盐以及第二母液;
第6步,第一母液送入NaCl结晶***中进行结晶处理,第二母液送入Na2SO4结晶***进行结晶处理,硫酸钠结晶母液经过浓缩之后再送入NaCl结晶***中进行结晶处理,氯化钠母液过浓缩之后再送入Na2SO4结晶***进行结晶处理。
2.根据权利要求1所述的高盐废水零排放方法,其特征在于,预过滤是砂滤、多介质过滤或者活性炭过滤中的一种或多种的组合;生物滤池是指活性炭生物滤池;氧化采用臭氧氧化技术、芬顿氧化技术或者微波氧化中的一种或多种的组合。
3.根据权利要求1所述的高盐废水零排放方法,其特征在于,浓缩过程采用纳滤膜浓缩、反渗透浓缩或者电渗析浓缩中的一种或多种工艺组合。
4.根据权利要求1所述的高盐废水零排放方法,其特征在于,软化工艺采用膜软化、药剂软化或者离子交换树脂软化中的一种或多种组合。
5.根据权利要求1所述的高盐废水零排放方法,其特征在于,纳滤膜的浓水中的Na2SO4质量浓度8~15%;第5步中,纳滤膜的淡水进行浓缩是采用高压反渗透膜工艺、DTRO工艺、电渗析工艺、MVR蒸发工艺或多效蒸发工艺中的一种或几种的组合;纳滤膜淡水浓缩后NaCl质量浓度在10~20%之间。
CN201810778712.4A 2018-07-16 2018-07-16 一种基于纳滤膜调配的高盐废水零排放处理方法及装置 Active CN108623104B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810778712.4A CN108623104B (zh) 2018-07-16 2018-07-16 一种基于纳滤膜调配的高盐废水零排放处理方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810778712.4A CN108623104B (zh) 2018-07-16 2018-07-16 一种基于纳滤膜调配的高盐废水零排放处理方法及装置

Publications (2)

Publication Number Publication Date
CN108623104A CN108623104A (zh) 2018-10-09
CN108623104B true CN108623104B (zh) 2023-08-22

Family

ID=63689860

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810778712.4A Active CN108623104B (zh) 2018-07-16 2018-07-16 一种基于纳滤膜调配的高盐废水零排放处理方法及装置

Country Status (1)

Country Link
CN (1) CN108623104B (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109160663A (zh) * 2018-10-16 2019-01-08 江苏环保产业技术研究院股份公司 一种染料行业高盐染料废水分质回收利用工艺及装置
CN109516625A (zh) * 2018-12-05 2019-03-26 北京环球中科水务科技有限公司 一种高盐有机废水的处理方法
CN109607574A (zh) * 2019-01-03 2019-04-12 中国中轻国际工程有限公司 一种浓盐水生产盐硝工艺
CN109502871A (zh) * 2019-01-08 2019-03-22 山东蓝然环境科技有限公司 一种高盐废水零排放与分盐资源化利用装置
CN109851104A (zh) * 2019-02-21 2019-06-07 北京伟创力科技股份有限公司 一种油气田高含盐废水处理方法及设备
EP3708698A1 (de) * 2019-03-13 2020-09-16 Covestro Deutschland AG Verfahren zur aufarbeitung und wiederverwendung von salzhaltigem prozesswasser
CN111153538B (zh) * 2019-04-02 2023-10-31 内蒙古晶泰环境科技有限责任公司 可保证盐硝联产稳定运行的高盐废水处理***及其工艺
CN110040908A (zh) * 2019-04-22 2019-07-23 天津科技大学 一种氯化钠和硫酸钠超声式蒸发结晶分盐***及方法
KR20220006564A (ko) * 2019-05-09 2022-01-17 인베스티가시오네스 포레스탈레스 비오포레스트 에세.아. 펄프 및 종이 제조 공장으로부터의 유출물을 처리하기 위한 플랜트로부터 물 및 화학물질을 회수하는 방법
CN110342740B (zh) * 2019-07-19 2024-01-19 内蒙古久科康瑞环保科技有限公司 含盐有机废水的净化方法和净化***
CN111003859A (zh) * 2019-11-23 2020-04-14 江苏久吾高科技股份有限公司 一种中水的零排放处理方法及装置
CN113072228A (zh) * 2020-01-03 2021-07-06 中国石油化工股份有限公司 一种处理含盐废水的方法及***
CN111018230B (zh) * 2020-01-14 2022-04-12 北京赛科康仑环保科技有限公司 一种实现煤化工反渗透浓水零排放及资源化利用方法
CN112429895B (zh) * 2020-01-22 2023-12-29 江苏久吾高科技股份有限公司 一种石化高盐废水资源化利用工艺及装置
CN111233006A (zh) * 2020-02-28 2020-06-05 上海晶宇环境工程股份有限公司 一种含有氯化钠的杂盐的处理方法及装置
CN111704316B (zh) * 2020-06-19 2022-12-13 江苏蓝必盛化工环保股份有限公司 精细化工废水资源化及零排放处理方法
CN112679014A (zh) * 2020-12-14 2021-04-20 江苏卓博环保科技有限公司 电厂浓排水零排放处理装置及处理方法
CN112777800A (zh) * 2021-01-12 2021-05-11 天津市环境保护科学研究院(天津市环境规划院、天津市低碳发展研究中心) 一种用于膜法处理的滨海工业带高盐废水预处理方法
CN112875976B (zh) * 2021-02-07 2021-11-12 天津工业大学 一种印染废水中无机盐回收利用的制备方法
CN113023753A (zh) * 2021-02-26 2021-06-25 鄂尔多斯市永胜污水处理有限公司 一种利用工业杂盐产生高纯度工业盐和元明粉的处理工艺
CN113087259B (zh) * 2021-03-17 2023-06-27 华电水务工程有限公司 一种基于纳滤回用盐的不软化浓缩高盐废水的工艺
CN113149317A (zh) * 2021-04-23 2021-07-23 上海晶宇环境工程股份有限公司 一种工业废水的处理方法
CN112979038B (zh) * 2021-04-27 2023-04-07 上海瑜科环境工程有限公司 一种印染废水零排放处理工艺
TWI762294B (zh) * 2021-04-30 2022-04-21 友達宇沛永續科技股份有限公司 回收離子之水處理系統
CN113912231B (zh) * 2021-07-13 2023-09-26 北京航天环境工程有限公司 一种资源化协同处理废水的***及方法
CN113716778A (zh) * 2021-09-01 2021-11-30 清创人和生态工程技术有限公司 一种焦炉煤气脱硫废液所产副盐零排放的处理方法
CN113788586B (zh) * 2021-10-11 2023-08-01 杭州深瑞环境有限公司 一种分散染料生产废水处理及盐份资源化回收的工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006045718A1 (en) * 2004-10-22 2006-05-04 Akzo Nobel N.V. Method for crystallizing soluble salts of divalent anions from brine
CN107304090A (zh) * 2016-04-21 2017-10-31 广州市心德实业有限公司 一种含氯化钠与硫酸钠的高盐废水资源化处理方法
CN107619144A (zh) * 2017-10-20 2018-01-23 侯新春 一种高含盐废水分盐资源化工艺及***
CN208667421U (zh) * 2018-07-16 2019-03-29 南京工业大学 一种基于纳滤膜调配的高盐废水零排放处理装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10427964B2 (en) * 2016-07-28 2019-10-01 Veolia Water Technologies, Inc. Enhanced process for selective salt recovery from wastewater, waste salts, and brines
US10669168B2 (en) * 2016-11-29 2020-06-02 China Petroleum & Chemical Corporation Method and system for treating brine waste water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006045718A1 (en) * 2004-10-22 2006-05-04 Akzo Nobel N.V. Method for crystallizing soluble salts of divalent anions from brine
CN107304090A (zh) * 2016-04-21 2017-10-31 广州市心德实业有限公司 一种含氯化钠与硫酸钠的高盐废水资源化处理方法
CN107619144A (zh) * 2017-10-20 2018-01-23 侯新春 一种高含盐废水分盐资源化工艺及***
CN208667421U (zh) * 2018-07-16 2019-03-29 南京工业大学 一种基于纳滤膜调配的高盐废水零排放处理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Performance of ceramic nanofiltration membrane for desalination of dye solutions containing NaCl and Na2SO4;Pengli Chen等;《Desalination》;第404卷;第102-111页 *

Also Published As

Publication number Publication date
CN108623104A (zh) 2018-10-09

Similar Documents

Publication Publication Date Title
CN108623104B (zh) 一种基于纳滤膜调配的高盐废水零排放处理方法及装置
CN108623054B (zh) 一种多膜集成的制浆造纸废水零排放处理方法及装置
CN108623105B (zh) 一种制浆工业废水零排放处理方法及装置
US9102544B2 (en) Wastewater treatment system
US8815096B2 (en) Sulfate removal from water sources
CN208667421U (zh) 一种基于纳滤膜调配的高盐废水零排放处理装置
CN109970232B (zh) 一种废盐水的处理方法及装置
CN108117207B (zh) 一种含盐废水零排放处理工艺方法
JP6047809B2 (ja) バイオリアクタ及び膜フィルタを用いて廃棄物流を処理する方法
CN108117206B (zh) 含盐废水零排放处理工艺方法
CN108117222B (zh) 一种煤化工含盐废水零排放处理方法
KR20080109860A (ko) 산업 폐수 처리용 하이브리드 막 모듈, 시스템 및 공정
CN110734166B (zh) 一种海水高效淡化及综合利用的方法
JPH0580279B2 (zh)
CN104140174A (zh) 一种稀土萃取分离含氯化铵废水的组合处理方法
CN111362283B (zh) 一种黏胶废水资源化处理方法
CN103342432A (zh) 一种含盐废水的近零排放工艺
CN108623055B (zh) 一种制浆造纸废水零排放软化工艺及装置
CN106430773A (zh) 一种针对不同离子浓度的高含盐工业废水的处理方法
CN214088118U (zh) 电厂浓排水零排放处理装置
CN110078241A (zh) 一种酒糟厌氧发酵后沼液的处理***及方法
US11634348B2 (en) System and method for treating hydrocarbon-containing feed streams
CN113415927A (zh) 一种合成氨有机废水一价盐资源化与零排放工艺
US20220234930A1 (en) Method for Purifying Contaminated Water
CN208667350U (zh) 一种多膜集成的制浆造纸废水零排放处理装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant