CN108565285B - 一种GaAs基高电子迁移率晶体管材料及其制备方法 - Google Patents

一种GaAs基高电子迁移率晶体管材料及其制备方法 Download PDF

Info

Publication number
CN108565285B
CN108565285B CN201810660416.4A CN201810660416A CN108565285B CN 108565285 B CN108565285 B CN 108565285B CN 201810660416 A CN201810660416 A CN 201810660416A CN 108565285 B CN108565285 B CN 108565285B
Authority
CN
China
Prior art keywords
gaas
layer
buffer layer
mobility transistor
electron mobility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810660416.4A
Other languages
English (en)
Other versions
CN108565285A (zh
Inventor
张杨
曾一平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Acs Semiconductor Technology Beijing Co ltd
Original Assignee
Acs Semiconductor Technology Beijing Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acs Semiconductor Technology Beijing Co ltd filed Critical Acs Semiconductor Technology Beijing Co ltd
Priority to CN201810660416.4A priority Critical patent/CN108565285B/zh
Publication of CN108565285A publication Critical patent/CN108565285A/zh
Application granted granted Critical
Publication of CN108565285B publication Critical patent/CN108565285B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开了一种GaAs基高电子迁移率晶体管材料及其制备方法,该器件包括GaAs衬底、GaAs缓冲层、InGaAs沟道层、n‑AlGaAs蚀刻停止层、N+GaAs帽层,其特征在于,所述GaAs缓冲层采用的生长温度是低温。制备方法是在GaAs衬底上低温条件下生长一层GaAs缓冲层;然后再在GaAs缓冲层上继续依次生长高电子迁移率晶体管有源区结构:InGaAs沟道层、n‑AlGaAs蚀刻停止层、N+GaAs帽层。本发明通过生长低温GaAs缓冲层取代原有的缓冲层,目的是避免在高电子迁移率晶体管结构的缓冲层处形成平行电导,从而在器件工作时产生缓冲层漏电现象,这样可以提高器件的最大工作频率,同时有效地降低器件的阈值电压。

Description

一种GaAs基高电子迁移率晶体管材料及其制备方法
技术领域
本发明涉及III-V族化合物半导体薄膜材料外延生长技术领域,具体涉及一种改进的GaAs基高电子迁移率晶体管材料及其制备方法。
背景技术
分子束外延生长(MBE)技术基本原理是在超高真空***中相对地放置衬底片和几个分子束源炉(喷射炉),将要组成化合物的各种元素(As、Ga等)和掺杂剂元素(Si,Be等)分别放入不同的喷射炉内加热,使它们的分子或原子以一定的热运动速度和一定比例的束流强度喷射到加热的衬底片表面,与表面产生相互作用(包括表面迁移、分解、吸附和脱附等作用),并进行单晶薄膜的外延生产。根据设定的程序,开关快门,改变炉温,控制生长时间,可生长出不同厚度的化合物或不同组分比例的三元、四元固溶体及异质结,制备各种超薄层结构材料。
分子束外延(MBE)、金属有机气相淀积(MOCVD)等高质量超薄层生长技术以及亚微米微细加工技术的发展,使得1980年问世的高电子迁移率晶体管(HEMT)在结构上获得了不断创新,其频率、功率和低噪声性能大大提高,成为微波和毫米波器件的重要成员之一。
虽然普通结构的HEMT具有很好的高频、高速性能,但是也存在有一个很大的问题,那就是其性能的温度稳定性较差。假同晶高电子迁移率晶体管(PHEMT)是对高电子迁移率晶体管(HEMT)的一种改进,基本结构参见图1。不仅提高了器件阈值电压的温度稳定性,而且也改善了器件的输出伏安特性,使得器件具有更大的输出电阻、更高的跨导、更大的电流处理能力以及更高的工作频率、更低的噪声等。PHEMT主要用于高速和高频器件,是制造GaAs功率管、低噪声管、低噪声单片电路、T/R组件和功率单片电路等微波器件的核心材料。
目前的PHEMT结构,GaAs缓冲层的电阻率偏低,容易产生漏电流,降低了器件的工作频率,增加了器件的功耗。
发明内容
为了解决现有技术中的上述问题,本发明的目的是提供一种改进的GaAs基高电子迁移率晶体管材料,减少了缓冲层平行电导导致的漏电流,可提高器件的工作频率。
本发明的另一目的是提供一种GaAs基高电子迁移率晶体管材料的制备方法。
本发明提供的GaAs基高电子迁移率晶体管材料,包括GaAs衬底、GaAs缓冲层、InGaAs沟道层、n-AlGaAs蚀刻停止层、N+GaAs帽层,其中,所述GaAs缓冲层为低温缓冲层,其中GaAs缓冲层与InGaAs沟道层之间或InGaAs沟道层与n-AlGaAs蚀刻停止层之间还可以具有肖特基势垒层,其中一种方式是可以在GaAs缓冲层与InGaAs沟道层之间以及InGaAs沟道层与n-AlGaAs蚀刻停止层之间均分别增加肖特基势垒层,即肖特基势垒层数量为两个;另一种方式为仅GaAs缓冲层与InGaAs沟道层之间或InGaAs沟道层与n-AlGaAs蚀刻停止层之间增加一个肖特基势垒层,即肖特基势垒层数量为一个。
研究发现,GaAs缓冲层电阻率偏低的主要原因在于采用580℃的生长温度,这种温度生长的缓冲层结构的电阻率接近本征GaAs晶体的电阻率,大约是7×105Ω.cm,在后期制作高电子迁移率晶体管器件时,会有一部分的电流从缓冲层经过,这时GaAs缓冲层就成为了低迁移率的平行电导层,从而降低了器件的工作频率,增加了器件的功耗。本发明采用200℃~400℃的GaAs缓冲层生长温度,这样生长的GaAs缓冲层具有较高的电阻率,有效解决了这一问题;同时还可以将衬底表面的施主或受主杂质钉扎在低温缓冲层,极大降低缓冲层漏电。
优选地,上述GaAs基高电子迁移率晶体管材料中,所述GaAs缓冲层的电阻率为1~7×107Ω.cm。所述GaAs缓冲层的最佳电阻率为5×107Ω.cm。
优选地,上述GaAs基高电子迁移率晶体管材料中,所述GaAs缓冲层的厚度为50-5000nm。
本发明提供的以上任一所述的GaAs基高电子迁移率晶体管材料的制备方法,其包括以下步骤:
在GaAs衬底上生长一层GaAs缓冲层,生长温度为200℃~400℃;然后再在GaAs缓冲层上继续依次生长:InGaAs沟道层、n-AlGaAs蚀刻停止层、N+GaAs帽层。InGaAs沟道层、n-AlGaAs蚀刻停止层、N+GaAs帽层组成高电子迁移率晶体管有源区结构。
本发明提供的GaAs基高电子迁移率晶体管材料及其制备方法,具有如下有益效果:
通过生长低温GaAs缓冲层取代原有的缓冲层,避免在高电子迁移率晶体管结构的缓冲层处形成平行电导,从而在器件工作时产生缓冲层漏电现象,这样可以提高器件的最大工作频率,同时有效地降低器件的阈值电压。
附图说明
图1为高电子迁移率晶体管材料基本结构。
图2为实施例1GaAs基高电子迁移率晶体管材料。
具体实施方式
下面结合附图及实施例对本发明的技术方案进行具体清楚地解释,以使本领域技术人员更好地理解本发明。
图2为本申请的高电子迁移率晶体管的基本结构,该晶体管具体为假同晶高电子迁移率晶体管,参照图1-2,所述材料包括自下而上垂直生长多个层结构,依次为GaAs衬底、GaAs缓冲层、InGaAs沟道层、n-AlGaAs蚀刻停止层、N+GaAs帽层,其中所述GaAs缓冲层采用的生长温度是200℃~400℃,特别是250℃~300℃,例如280℃,300℃等等。对于以上的PHEMT材料的基本结构并未完全限定于以上实施例,本领域技术人员可以根据需要添加其他层结构,例如可以在GaAs缓冲层与InGaAs沟道层之间或InGaAs沟道层与n-AlGaAs蚀刻停止层之间增加肖特基势垒层,该肖特基势垒层可以采用Al(Ga)As、In(Al)As、InP或其他三五族半导体材料生成,厚度为1-50nm,例如15nm,18nm,20nm或35nm等,生长温度为450-600℃,其中最佳温度为600℃。其中一种方式是可以在GaAs缓冲层与InGaAs沟道层之间以及InGaAs沟道层与n-AlGaAs蚀刻停止层之间均分别增加肖特基势垒层,即肖特基势垒层数量为两个;另一种方式为仅GaAs缓冲层与InGaAs沟道层之间或InGaAs沟道层与n-AlGaAs蚀刻停止层之间增加一个肖特基势垒层,即肖特基势垒层数量为一个。该肖特基势垒层用于在边界上形成具有整流作用的区域,使电子在沟道里面传输而减少电子在垂直方向的流动。
进一步参见图2,在生长GaAs基假同晶高电子迁移率晶体管材料结构时,在半绝缘GaAs衬底上生长低温GaAs缓冲层,生长温度为200℃至400℃,替代580℃高温生长的GaAs缓冲层,在此缓冲层上继续生长PHEMT有源区结构,从而降低PHEMT器件的缓冲层漏电流。肖特基势垒层的生长方法可以参照本领域的常用生长方法进行生长。
为了验证此低温GaAs缓冲层是否达到高阻和降低缓冲层漏电流的效果,需要在半绝缘GaAs衬底上生长低温GaAs缓冲层,生长温度为200℃至400℃,特别是250℃~300℃的范围,例如280℃,300℃等等,生长厚度为50-5000nm,优选厚度为200nm-500nm,例如可以采用200nm,500nm,1500nm或2000nm等。然后进行霍尔测量,以判断GaAs缓冲层的电阻率是否达到107Ω.cm量级。
经过霍尔测量,结果显示GaAs缓冲层的电阻率为5×107Ω.cm,表明降低生长温度后,GaAs缓冲层的电阻率明显增加。
本申请涉及的半导体材料结构可以采用常用的生长设备进行生长,例如采用MBE设备等。
本文中应用了具体个例对发明构思进行了详细阐述,以上实施例的说明只是用于帮助理解本发明的核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离该发明构思的前提下,所做的任何显而易见的修改、等同替换或其他改进,均应包含在本发明的保护范围之内。

Claims (3)

1.一种GaAs基高电子迁移率晶体管材料,包括GaAs衬底、GaAs缓冲层、InGaAs沟道层、n-AlGaAs蚀刻停止层、N+GaAs帽层,其特征在于,所述GaAs缓冲层为低温缓冲层,具有两个肖特基势垒层,所述GaAs缓冲层与InGaAs沟道层之间有肖特基势垒层,所述InGaAs沟道层与n-AlGaAs蚀刻停止层之间还具有肖特基势垒层,所述GaAs缓冲层的电阻率为1~7×107Ω.cm;所述GaAs缓冲层采用的生长温度是250℃~300℃;
所述GaAs缓冲层的厚度为200nm;
所述肖特基势垒层的厚度为15nm,18nm,20nm或35nm,生长温度为450-600℃。
2.根据权利要求1所述的GaAs基高电子迁移率晶体管材料,其特征在于,所述肖特基势垒层的生长温度为600℃。
3.权利要求1或2所述的GaAs基高电子迁移率晶体管材料的制备方法,其特征在于,包括以下步骤:
在GaAs衬底上生长一层GaAs缓冲层,生长温度为低温;然后再在GaAs缓冲层上继续依次生长InGaAs沟道层、n-AlGaAs蚀刻停止层、N+GaAs帽层。
CN201810660416.4A 2018-06-25 2018-06-25 一种GaAs基高电子迁移率晶体管材料及其制备方法 Active CN108565285B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810660416.4A CN108565285B (zh) 2018-06-25 2018-06-25 一种GaAs基高电子迁移率晶体管材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810660416.4A CN108565285B (zh) 2018-06-25 2018-06-25 一种GaAs基高电子迁移率晶体管材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108565285A CN108565285A (zh) 2018-09-21
CN108565285B true CN108565285B (zh) 2021-09-28

Family

ID=63554627

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810660416.4A Active CN108565285B (zh) 2018-06-25 2018-06-25 一种GaAs基高电子迁移率晶体管材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108565285B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569364A (zh) * 2010-12-08 2012-07-11 中国科学院微电子研究所 一种高迁移率衬底结构及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7842972B2 (en) * 2004-12-01 2010-11-30 Retro Reflective Optics, Llc Low-temperature-grown (LTG) insulated-gate PHEMT device and method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569364A (zh) * 2010-12-08 2012-07-11 中国科学院微电子研究所 一种高迁移率衬底结构及其制备方法

Also Published As

Publication number Publication date
CN108565285A (zh) 2018-09-21

Similar Documents

Publication Publication Date Title
EP0445475B1 (en) Heterojunction bipolar transistor
KR940006711B1 (ko) 델타도핑 양자 우물전계 효과 트랜지스터의 제조방법
US7687799B2 (en) Methods of forming buffer layer architecture on silicon and structures formed thereby
US7566898B2 (en) Buffer architecture formed on a semiconductor wafer
CN107068750B (zh) 一种基于Si衬底的GaN基高压HEMT器件外延结构及其制造方法
US20220367176A1 (en) Epitaxies of a Chemical Compound Semiconductor
JP4757370B2 (ja) エピタキシャル基板の製造方法
JPH0342841A (ja) ヘテロ接合バイボーラトランジスタ
CN102842613A (zh) 双异质结构氮化镓基高电子迁移率晶体管结构及制作方法
WO2020009020A1 (ja) トンネル電界効果トランジスタ
TWI345309B (en) Compound semiconductor epitaxial substrate and method for production thereof
CN108565285B (zh) 一种GaAs基高电子迁移率晶体管材料及其制备方法
JP5875296B2 (ja) 半導体基板および絶縁ゲート型電界効果トランジスタ
CN111009579A (zh) 半导体异质结构及半导体器件
CN111009468A (zh) 一种半导体异质结构制备方法及其用途
CN108346687B (zh) 一种氮化镓基高电子迁移率晶体管
WO2004040638A1 (ja) 窒化砒化ガリウムインジウム系ヘテロ電界効果トランジスタ及びその製造方法並びにそれを用いた送受信装置
RU215756U1 (ru) Гетероэпитаксиальная структура со сверхтонким барьерным слоем для нормально-закрытых транзисторов на основе соединений нитрида галлия алюминия
TWI717163B (zh) 具有石墨烯結構之氮化物電晶體結構
JP6826003B2 (ja) トンネル電界効果トランジスタ
JPS6012773A (ja) 半導体素子の製造方法
Yu et al. Improved step-graded-channel heterostructure field-effect transistor
JPH0346241A (ja) 半導体ヘテロ構造およびその製造方法
KR20230090573A (ko) 다중 스트레인 구조를 가지는 AlGaN/GaN 이종 접합 구조의 고전자 이동도 트랜지스터 소자
CN117293165A (zh) 一种低损耗硅基氮化镓射频器件外延结构及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant