CN108469388B - 湿热条件下高聚物动态储能模量的预测方法 - Google Patents

湿热条件下高聚物动态储能模量的预测方法 Download PDF

Info

Publication number
CN108469388B
CN108469388B CN201810100837.1A CN201810100837A CN108469388B CN 108469388 B CN108469388 B CN 108469388B CN 201810100837 A CN201810100837 A CN 201810100837A CN 108469388 B CN108469388 B CN 108469388B
Authority
CN
China
Prior art keywords
temperature
humidity
storage modulus
high polymer
dynamic storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810100837.1A
Other languages
English (en)
Other versions
CN108469388A (zh
Inventor
胡宏玖
张柯烽
张晓龙
贺耀龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201810100837.1A priority Critical patent/CN108469388B/zh
Publication of CN108469388A publication Critical patent/CN108469388A/zh
Application granted granted Critical
Publication of CN108469388B publication Critical patent/CN108469388B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明涉及一种湿热条件下高聚物动态储能模量的预测方法。该方法基于玻璃化转变温度与相对湿度的线性相关,采用双曲正切函数描述高聚物的动态储能模量;通过温湿耦合因子和粘弹状态函数,获得高聚物动态储能模量随温度和相对湿度的演化方程,并由2种参考湿度下的温度扫描动态力学试验分别确定其中的材料参数,据此获得湿热条件下高聚物动态模量的预测方法。本发明能够准确预测温度和湿度对动态力学行为的影响,为聚合物及其复合材料的安全服役提供重要帮助。

Description

湿热条件下高聚物动态储能模量的预测方法
技术领域
本发明涉及一种湿热环境中高聚物动态储能模量的预测方法,主要用于聚合物及其复合材料的优化设计与在役性能评价,属高分子材料力学领域。
背景技术
高分子聚合物因独特的分子结构,使其具有无可比拟的性能优点而广泛运用于生命科学、航空航天、微电子封装和建筑等诸多领域。所涉及的无定形及部分结晶高聚物尺寸较小、表面积较大,故对服役环境因素的变化极为敏感。其中温度和湿度的增加不仅提供了更多的自由体积,而且削弱甚至破坏了聚合物分子的氢键联接,材料的关键性能指标-模量由此显著下降,从而导致其部分或全部丧失使用价值。因此,准确评估与预测湿热条件下的动态储能模量是避免该类功能材料失稳、失效的关键。由于时温等效原理和热粘弹理论的发展,温度对聚合物及其复合材料的力学性能影响机理已经较为成熟,建立了从玻璃态至橡胶态全域内的模量随温度演化方程,如聚合物链破坏模型、由人口逻辑模型扩展的单参量刚度法、基于韦泊分布和阿累尼乌斯函数的半解析式等。近年来,湿热环境对粘弹材料力学行为的影响研究虽也获得了重要进展,获得了针对各向同性材料的含湿热耦合线性粘弹性本构关系,以及相应的热传导和耦合湿分扩散方程;基于均匀化理论研究了聚合物基复合材料的湿粘弹性特性,给出了等效湿应力松弛模量和等效湿膨胀系数。然而,上述方法均无法描述温度和湿度对高聚物动态储能模量的耦合影响。
发明内容
本发明的目的在于针对已有技术存在的不足,提供一种湿热条件下中高聚物动态储能模量的预测方法,适合于湿热条件下无定形或部分结晶态聚合物动态储能模量的准确预测。
本发明的思路为:①据自由体积理论和试验确定玻璃化转变温度与相对湿度线性相关式;②采用双曲正切函数描述高聚物动态储能模量随温度的变化规律,并通过2种参考湿度下的温度扫描动态力学试验分别确定式中的材料参数;④基于温湿耦合因子和粘弹状态函数,分别给出高聚物动态储能模量随温度和湿度的演化方程,由此获得湿热条件下高聚物动态模量的预测方法。
根据上述发明构思,本发明采用下述技术方案:
一种湿热环境下无定形或部分结晶态聚合物动态储能模量的预测方法,其特征在于分析步骤如下:
a.将无定形或部分结晶态聚合物样品放入在配置湿度控制附件的动态力学分析仪中,在温度为25±0.1℃、相对湿度为0±1%的环境中干燥24小时;
b.在0-90%范围内选取2个参考相对湿度RH1和RH2,采用等湿时的温度扫描模式,对薄膜试件实施线性粘弹范围的动态力学测试,分别实时记录绘制材料储能模量E′(T)和损耗模量E″(T)随环境温度T由玻璃态至橡胶态全域范围变化时的E′(T)-T和E″(T)-T曲线;
c.基于E″(T)-T曲线的峰值确定相应湿度下的玻璃化转变温度Tg(RH);
d.根据相对湿度RH1和RH2及其玻璃化转变温度Tg(RH1)和Tg(RH2)数据,并由下列式(1)确定玻璃化转变温度Tg(RH)随相对湿度RH的线性变化:
Figure BDA0001566278890000021
e.采用下列式(2)所示的双曲正切函数描述高聚物动态储能模量E′(T,RH)随温度T的变化规律:其中E′U和ERR分别为高聚物发生玻璃化转变前后的初始与最终储能模量,φ(T,RH)和λ(RH)则为温湿耦合函数和湿度塑化因子,
Figure BDA0001566278890000022
f.φ(T,RH)和λ(RH)分别由下列式(3)和式(4)决定:其中材料参数α、β、γ和η由相对湿度RH1和RH2下的温度扫描E′(T)-T试验曲线拟合确定,
Figure BDA0001566278890000023
λ(RH)=γ·RH+η (4)
g.综合上述式(1)-式(4),即可得一般温度和湿度条件下高聚物的动态储能模量。
本发明与现有技术相比较,其突出实质性特点和显著优点为:只需通过2组恒湿条件下的温度扫描动态力学测试获得相关材料参数,即可得高聚物动态储能模量随湿热条件的演化规律。据此能够准确预测其它温度和相对湿度下的动态力学行为,为聚合物及其复合材料的安全服役提供重要帮助。
附图说明
图1为0%RH时聚乙烯醇动态力学性能-温度曲线。
图2为30%RH时聚乙烯醇动态力学性能-温度曲线。
图3为20%RH时聚氯乙烯动态力学性能-温度曲线。
图4为60%RH时聚氯乙烯动态力学性能-温度曲线。
图5为不同温湿条件下聚乙烯醇动态储能模量预测值与试验数据的比较。
图6为不同温湿条件下聚氯乙烯动态储能模量预测值与试验数据的比较。
具体实施方式
本发明的优选实例结合附图详述如下:
实施例一:
本湿热条件下高聚物动态储能模量的预测方法分析步骤如下:
①将10克PVA粉末缓慢加入90毫升25℃的蒸馏水中,逐渐加热至95℃,搅拌溶解3小时后冷却至常温,并由匀胶机制成几何尺寸(长x宽x厚)为20mm×5mm×0.03mm的PVA薄膜拉伸试样;②将试件放入温度为120℃的恒温、恒湿箱,退火30分钟以消除其预应力,再以5℃/小时的速度慢速冷却至室温,并置于干燥皿中;③在TA Q800动态力学分析仪(DMA)上,对薄膜试样施加3.5MPa的动态拉伸载荷(频率为1Hz),并通过DMA的湿度附件进行相对湿度分别为0%和30%时的温度扫描,其中温度扫描速率为1℃/分钟。分别记录两种等湿条件下的材料储能模量和损耗模量随温度由10-100℃连续变化时的E′(T)-T和E″(T)-T试验曲线(如图1和图2);④基于E″(T)-T曲线的峰值确定0%和30%相对湿度下的玻璃化转变温度温度Tg(RH1)和Tg(RH2)分别为:71.7℃和45.3℃,并由式(1)确定玻璃化转变相对温度与相对湿度线性相关的演化方程式。⑤采用式(1)-式(4)描述PVA动态储能模量E′(T,RH)随温湿耦合的变化规律,其中所获材料参数α、β、γ和η分别为250.0、4.5、0.285和0.075。
实施例二:
本湿热条件下高聚物动态储能模量的预测方法分析步骤如下:
①将厚度为0.20mm的无定形聚氯乙烯(PVC)膜分别制成几何尺寸(长x宽x厚)为:5mm×5mm×0.20mm的等温水分吸附试样和20mm×5mm×0.20mm的DMA拉伸试样;②将试件放入温度为110℃的恒温、恒湿箱,退火120分钟以消除其预应力,再以5℃/小时的速度慢速冷却至室温,并置于干燥皿中;③在TA Q800动态力学分析仪(DMA)上,对PVC薄膜试样施加2MPa的动态拉伸载荷(频率为1Hz),并通过DMA的湿度附件进行相对湿度为20%和60%时的温度扫描,其中温度扫描速率为1℃/分钟。分别记录两种等湿条件下的材料储能模量和损耗模量随温度由35-100℃连续变化时的E′(T)-T和E″(T)-T试验曲线(如图3和图4);④基于E″(T)-T曲线的峰值确定20%和60%相对湿度下的玻璃化转变温度温度Tg(RH1)和Tg(RH2)分别为:79.7℃和72.2℃,并由式(1)确定玻璃化转变相对温度随相对湿度线性相关的演化方程式。⑤采用式(1)-式(4)描述PVC动态储能模量E′(T,RH)随温湿耦合的演化,其中材料参数α、β、γ和η分别为328.3、6.0、0和0.179。
将上式(1)-式(4)所预测的PVA与PVC动态储能模量与相应试验条件下的试验数据比较于图5和图6中,可以发现本发明方法具有较高的计算精度。

Claims (1)

1.一种湿热环境下聚合物动态储能模量的预测方法,其特征在于分析步骤如下:
a.将无定形或部分结晶态聚合物试件放入配置湿度控制附件的动态力学分析仪中,在温度为25±0.1℃、相对湿度为0±1%的环境中干燥24小时;
b.在0-90%范围内选取2个参考相对湿度RH1和RH2,采用等湿时的温度扫描模式,对薄膜试件实施线性粘弹范围的动态力学测试,分别实时记录绘制材料储能模量E′(T)和损耗模量E″(T)随环境温度T由玻璃态至橡胶态全域范围变化时的E′(T)-T和E″(T)-T曲线;
c.基于E″(T)-T曲线的峰值确定相应湿度下的玻璃化转变温度Tg(RH);
d.根据相对湿度RH1和RH2及其玻璃化转变温度Tg(RH1)和Tg(RH2)数据,并由下列式(1)确定玻璃化转变温度Tg(RH)随相对湿度RH的线性变化:
Figure FDA0002620662520000011
e.采用下列式(2)所示的双曲正切函数描述高聚物动态储能模量E′(T,RH)随温度T的变化规律,其中E′U和E′R分别为高聚物发生玻璃化转变前后的初始与最终储能模量,φ(T,RH)和λ(RH)则为温湿耦合函数和湿度塑化因子,
Figure FDA0002620662520000012
f.φ(T,RH)和λ(RH)分别由下列式(3)和式(4)决定:其中材料参数α、β、γ和η由相对湿度RH1和RH2下的温度扫描E′(T)-T试验曲线拟合确定,
Figure FDA0002620662520000013
λ(RH)=γ·RH+η (4)
g.综合上述式(1)-式(4),即可得一般温度和湿度条件下高聚物的动态储能模量。
CN201810100837.1A 2018-02-01 2018-02-01 湿热条件下高聚物动态储能模量的预测方法 Active CN108469388B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810100837.1A CN108469388B (zh) 2018-02-01 2018-02-01 湿热条件下高聚物动态储能模量的预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810100837.1A CN108469388B (zh) 2018-02-01 2018-02-01 湿热条件下高聚物动态储能模量的预测方法

Publications (2)

Publication Number Publication Date
CN108469388A CN108469388A (zh) 2018-08-31
CN108469388B true CN108469388B (zh) 2020-11-24

Family

ID=63265993

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810100837.1A Active CN108469388B (zh) 2018-02-01 2018-02-01 湿热条件下高聚物动态储能模量的预测方法

Country Status (1)

Country Link
CN (1) CN108469388B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112525948B (zh) * 2020-11-19 2024-01-09 西安交通大学 利用纳米力学测试仪实现三种玻璃化转变温度测试方法
CN113064459A (zh) * 2021-03-11 2021-07-02 中国科学技术大学 一种通过湿度调控纤维素薄膜强度和韧性的方法
CN113720872B (zh) * 2021-08-09 2023-08-11 浙江省林业科学研究院 一种基于动态热机械法的水溶性低分子量树脂固化特性的测试方法

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2014766A1 (en) * 1970-03-26 1971-10-21 Kuraray Co Dynamic modulus test rig for high polymer material samples
EP0014025A1 (en) * 1979-01-05 1980-08-06 Monsanto Company Method and apparatus for measuring modulus of a plastic polymer
US4376388A (en) * 1981-03-10 1983-03-15 The United States Of America As Represented By The Secretary Of The Navy Shock simulator
CN1812818A (zh) * 2003-04-25 2006-08-02 施拖克豪森公司 具有高渗透性的超吸收性聚合物
US7427506B2 (en) * 2004-04-13 2008-09-23 Exxonmobil Chemical Patents Inc. High throughput property testing of olefin copolymers using rheological determinations
CN101435811A (zh) * 2008-12-04 2009-05-20 上海大学 湿、热、力多场耦合下的老化测试方法及装置
CN101535844A (zh) * 2005-08-30 2009-09-16 特克斯勒电子实验室公司 用于确定建筑材料的性质的方法、***及计算机程序产品
CN101641378A (zh) * 2007-03-28 2010-02-03 旭化成化学株式会社 改性共轭二烯系聚合物的制造方法、含有该聚合物的组合物以及含有该组合物的轮胎
CN102564906A (zh) * 2012-02-18 2012-07-11 浙江理工大学 一种聚合物薄膜玻璃化转变温度的测量方法
CN102564873A (zh) * 2012-01-13 2012-07-11 西北工业大学 粘弹性材料动态力学特性宽频带测量装置
CN103267770A (zh) * 2013-05-07 2013-08-28 上海大学 温湿环境中聚合物玻璃化转变的分析方法
CN103304751A (zh) * 2006-12-21 2013-09-18 陶氏环球技术有限责任公司 官能化烯烃聚合物、由其制备的组合物和制品及它们的制备方法
CN103984027A (zh) * 2014-03-28 2014-08-13 清华大学 基于椭球体双重孔隙模型的岩石纵波速度预测方法
CN104181279A (zh) * 2014-08-25 2014-12-03 四川大学 多环境因素下聚合物材料的老化失效规律及寿命的预测方法
CN104483235A (zh) * 2014-12-05 2015-04-01 浙江万马高分子材料有限公司 检测超高压电缆用可交联乙烯系聚合物链结构的方法
CN104583762A (zh) * 2012-03-26 2015-04-29 泰克年研究发展基金会公司 用于组合感测压力、温度和湿度的平台单元
CN104600357A (zh) * 2014-12-08 2015-05-06 上海大学 聚合物复合材料固态电解质及其制备方法
CN107421995A (zh) * 2017-07-25 2017-12-01 电子科技大学 一种基于AgVO3纳米线的呼吸传感器及其制备方法
CN107531984A (zh) * 2015-03-31 2018-01-02 东邦泰纳克丝株式会社 环氧树脂组合物、预浸料、碳纤维强化复合材料和它们的制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8529848B2 (en) * 2010-06-28 2013-09-10 Ronald Danehy Systems and methods for transfer of liquid samples

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2014766A1 (en) * 1970-03-26 1971-10-21 Kuraray Co Dynamic modulus test rig for high polymer material samples
EP0014025A1 (en) * 1979-01-05 1980-08-06 Monsanto Company Method and apparatus for measuring modulus of a plastic polymer
US4376388A (en) * 1981-03-10 1983-03-15 The United States Of America As Represented By The Secretary Of The Navy Shock simulator
CN1812818A (zh) * 2003-04-25 2006-08-02 施拖克豪森公司 具有高渗透性的超吸收性聚合物
US7427506B2 (en) * 2004-04-13 2008-09-23 Exxonmobil Chemical Patents Inc. High throughput property testing of olefin copolymers using rheological determinations
CN101535844A (zh) * 2005-08-30 2009-09-16 特克斯勒电子实验室公司 用于确定建筑材料的性质的方法、***及计算机程序产品
CN103304751A (zh) * 2006-12-21 2013-09-18 陶氏环球技术有限责任公司 官能化烯烃聚合物、由其制备的组合物和制品及它们的制备方法
CN101641378A (zh) * 2007-03-28 2010-02-03 旭化成化学株式会社 改性共轭二烯系聚合物的制造方法、含有该聚合物的组合物以及含有该组合物的轮胎
CN101435811A (zh) * 2008-12-04 2009-05-20 上海大学 湿、热、力多场耦合下的老化测试方法及装置
CN102564873A (zh) * 2012-01-13 2012-07-11 西北工业大学 粘弹性材料动态力学特性宽频带测量装置
CN102564906A (zh) * 2012-02-18 2012-07-11 浙江理工大学 一种聚合物薄膜玻璃化转变温度的测量方法
CN104583762A (zh) * 2012-03-26 2015-04-29 泰克年研究发展基金会公司 用于组合感测压力、温度和湿度的平台单元
CN103267770A (zh) * 2013-05-07 2013-08-28 上海大学 温湿环境中聚合物玻璃化转变的分析方法
CN103984027A (zh) * 2014-03-28 2014-08-13 清华大学 基于椭球体双重孔隙模型的岩石纵波速度预测方法
CN104181279A (zh) * 2014-08-25 2014-12-03 四川大学 多环境因素下聚合物材料的老化失效规律及寿命的预测方法
CN104483235A (zh) * 2014-12-05 2015-04-01 浙江万马高分子材料有限公司 检测超高压电缆用可交联乙烯系聚合物链结构的方法
CN104600357A (zh) * 2014-12-08 2015-05-06 上海大学 聚合物复合材料固态电解质及其制备方法
CN107531984A (zh) * 2015-03-31 2018-01-02 东邦泰纳克丝株式会社 环氧树脂组合物、预浸料、碳纤维强化复合材料和它们的制造方法
CN107421995A (zh) * 2017-07-25 2017-12-01 电子科技大学 一种基于AgVO3纳米线的呼吸传感器及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Effect of the extent of cure on the modulus, glass transition, water absorptio, and density of an amine‐cured epoxy;Enns J B 等;《Journal of Applied Polymer Science》;19830930;第28卷(第9期);第2831-2846页 *
Relationship between NMR cross-polarization rates and dynamic storage modulae of polymers;Parker A A 等;《Journal of Applied Polymer Science》;19930430;第48卷(第4期);第677-681页 *
固态聚合物电解质的松弛行为研究;樊晓鸣;《中国力学大会-2017暨庆祝中国力学学会成立60周年大会论文集》;20170813;第566-571页 *
聚碳酸酯微孔塑料的动态力学热分析;卢子兴 等;《北京航空航天大学学报》;20060930;第32卷(第9期);第1109-1112页 *

Also Published As

Publication number Publication date
CN108469388A (zh) 2018-08-31

Similar Documents

Publication Publication Date Title
CN108469388B (zh) 湿热条件下高聚物动态储能模量的预测方法
Li et al. Uniaxial creep property and viscoelastic–plastic modelling of ethylene tetrafluoroethylene (ETFE) foil
Boulaoued et al. Experimental determination of thermal conductivity and diffusivity of new building insulating materials
Dar et al. Thermal and strain rate sensitive compressive behavior of polycarbonate polymer-experimental and constitutive analysis
Gu et al. Aging behaviors of natural rubber in isolation bearings
Maia et al. Laboratory tests and potential of thermal insulation plasters
Xiao Modeling solvent-activated shape-memory behaviors based on an analogy between solvent and temperature
JP6309530B2 (ja) 複合材料に吸収されている湿気を測定するためのシステム及び方法
Botz et al. Experimental determination of the shear modulus of polymeric interlayers used in laminated glass
Casari et al. Characterization of residual stresses in wound composite tubes
KR20180116668A (ko) 초기재령 콘크리트 특성 측정장치
Chen et al. Investigation of the nanomechanical properties of nylon 6 and nylon 6/clay nanocomposites at sub-ambient temperatures
Johlitz et al. Chemical ageing of elastomers: experiments and modelling
CN102207437A (zh) 一种弹性涂料的测试装置及其测试方法
Nicholson et al. The role of molecular weight and temperature on the elastic and viscoelastic properties of a glassy thermoplastic polyimide
CN113916763A (zh) 一种甲基乙烯基硅橡胶湿热老化寿命预测的方法
SohrabVeiseh et al. Compressive behavior and thermal conductivity-density correlation of expanded polystyrene thermal insulators
Jozavi et al. The effects of cure temperature and time on the bulk fracture properties of a structural adhesive
Hagan et al. The effects of strain rate and temperature on commercial acrylic artist paints aged one year to decades
Xie et al. Comprehensive investigation into the thermal rheological behavior and relaxation characteristic of single/composite polymers in laminated glass
CN109543324B (zh) 基于皮尔逊相关系数的热机械分析曲线转折点的测定方法
Widiastuti et al. Mechanical behavior of a fluid-sensitive material during liquid diffusion
CN115235879B (zh) 聚乙烯燃气管材蠕变柔量的预测方法
Pokorska-Silva et al. Estimation of heat retention index basing on temperature measurements
Toumpanaki et al. Effect of internal moisture content on the Tg values of CFRP rods

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant