CN108404960B - 一种硫铟锌金氮化碳二维层状复合光催化剂的制备方法 - Google Patents

一种硫铟锌金氮化碳二维层状复合光催化剂的制备方法 Download PDF

Info

Publication number
CN108404960B
CN108404960B CN201810251076.XA CN201810251076A CN108404960B CN 108404960 B CN108404960 B CN 108404960B CN 201810251076 A CN201810251076 A CN 201810251076A CN 108404960 B CN108404960 B CN 108404960B
Authority
CN
China
Prior art keywords
znin
dimensional layered
layered composite
gold
carbon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810251076.XA
Other languages
English (en)
Other versions
CN108404960A (zh
Inventor
王辉虎
姚开元
陈娜
彭芝维
常鹰
董仕节
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University of Technology
Original Assignee
Hubei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University of Technology filed Critical Hubei University of Technology
Priority to CN201810251076.XA priority Critical patent/CN108404960B/zh
Publication of CN108404960A publication Critical patent/CN108404960A/zh
Application granted granted Critical
Publication of CN108404960B publication Critical patent/CN108404960B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J35/23
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Abstract

本发明公开了一种硫铟锌金氮化碳二维层状复合光催化剂的制备方法,C6H5Na3O7·2H2O溶解于去离子水中,HAuCl4稀释加热至沸腾后加上述柠檬酸钠溶液,沸腾,冷却至室温,得金胶体混合溶液;g‑C3N4溶解乙醇中超声处理,Zn(NO3)2·6H20,In(NO3)3·4.5H2O,L‑Cysteine溶于丙三醇和金胶体混合液中,和g‑C3N4溶液混合进行吸附,得ZnIn2S4/Au/g‑C3N4前驱体溶液;于水热反应釜加热反应,真空冷冻干燥得粉末状的硫铟锌/金/氮化碳二维层状复合光催化剂。本发明原材料易得,一釜合成,可靠性强,操作简便,催化剂在可见光区具有较强的光催化活性,有广泛的应用前景。

Description

一种硫铟锌金氮化碳二维层状复合光催化剂的制备方法
技术领域
本发明涉及一种硫铟锌金氮化碳二维层状复合光催化剂的制备方法。
背景技术
1972年,日本东京大学的Fujishima和Honda在实验中发现,在TiO2光电极上可以直接分解水来制取氢气,在这之后,利用TiO2在紫外光的照射下进行光催化降解有机污染物也取得了非常大的进展。半导体光催化技术表现出巨大的应用前景。为进一步拓宽光催化材料的利用范围,并在可见光的照射下对有机物进行降解,金属硫化物被广泛运用于可见光的光催化反应中,这是因为其禁带较窄,可在较大范围内吸收太阳光中的可见光部分,但硫化物也普遍存在光腐蚀现象,导致其使用寿命被大大缩短。
为了解决这一问题,通过三元硫化物ZnIn2S4与g-C3N4复合形成的异质结可有效分离光生电子与空穴,增强材料的抗光腐蚀能力。中国专利申请201510010704.1公开了一种氮化碳/硫铟锌(ZnIn2S4/g-C3N4)复合纳米材料及其制备方法。其中,ZnIn2S4/g-C3N4中六方相的ZnIn2S4以大的球状存在,层片状的g-C3N4复合在其表面,其实际接触面积有限,提供的电子转移位点较少。
CN107159288A公开了一种氮化碳基复合纳米材料的制备方法,所述氮化碳基复合纳米材料为硫铟锌/氮化碳/氧化石墨烯复合纳米材料,CdIn2S4纳米立方体与g-C3N4纳米片、石墨烯薄片结合在一起,它采用一步水热法制备氮化碳基复合纳米材料,称取g-C3N4粉体与氧化石墨烯片溶于去离子水中并超声分散,在搅拌的情况下依次加入Cd(NO3)2·4H2O,In(NO3)3·4.5H2O,搅拌均匀后依次加入巯基乙酸溶液(C2H5NS)与Na2S溶液,再次搅拌后将反应液转移到内衬为聚四氟乙烯的反应釜中,水热反应,得到的产物洗净、离心、烘干得到硫铟锌/氮化碳/氧化石墨烯复合纳米材料。
迄今为止,尚无ZnIn2S4/Au/g-C3N4二维层状复合材料的报道。
发明内容
本发明目的在于提供一种原材料易得,一釜合成,可靠性强,操作简便,所制备的催化剂在可见光区具有较强的光催化活性,应用广泛的硫铟锌金氮化碳二维层状复合光催化剂的制备方法。
本发明目的的实现方式为,一种硫铟锌金氮化碳二维层状复合光催化剂的制备方法,具体步骤如下:
1)取7.3525g的C6H5Na3O7·2H2O溶解于50mL去离子水中,搅拌30min;
2)取2.5mL 0.01M/L的HAuCl4,稀释至100mL,加热至沸腾后加入步骤1)配制的柠檬酸钠溶液200uL,保持沸腾15min,恢复体积至100mL,冷却至室温,得到稳定的金胶体混合溶液;
3)将0.5g g-C3N4溶解到52.5mL乙醇中超声30min;
超声条件:超生频率为40kHz,超声功率为150W;
4)将0.0176-0.1232g Zn(NO3)2·6H20,0.0045-0.0315g In(NO3)3·4.5H2O,0.0572-0.4004g L-Cysteine溶于17.5mL丙三醇和10mL步骤2)所得的金胶体混合溶液中,然后搅拌15min;
5)将步骤3),4)所得的两个溶液混合后搅拌30min,使g-C3N4吸附游离的离子和L-Cysteine分子,得到ZnIn2S4/Au/g-C3N4的前驱体溶液;
6)将步骤5)所得前驱体溶液转入100mL含聚四氟乙烯内衬的不锈钢水热反应釜中,在160-200℃下反应20-26h,获得粉末状样品;
7)将步骤6)获得的粉末状样品取出,分别用酒精和去离子水清洗数次,真空冷冻干燥获得粉末状ZnIn2S4/Au/g-C3N4二维层状复合光催化剂;
真空冷冻干燥条件:-40℃预冻4h,真空度5Pa,真空干燥6h;
所得ZnIn2S4/Au/g-C3N4二维层状复合催化剂中g-C3N4与ZnIn2S4的质量比为1:0.05-0.35。
本发明以L型半胱氨酸作为硫源,通过生物分子半胱氨酸表面丰富的官能团与金属离子、Au胶体以及g-C3N4的交互作用,使得ZnIn2S4以层片状生长在层片状g-C3N4表面,形成一种二维复合结构,大大增加了接触面积,为反应提供了更多电子转移位点,并且金粒子作为一种良好的电子传导体可以进一步增加光催化效率。
本发明原材料易得,一釜合成,可靠性强,操作简便;本发明所制备的ZnIn2S4/Au/g-C3N4二维层状复合催化剂在可见光区具有较强的光催化活性;可在环境污染治理,太阳能的利用,水解制氢等方面应用,有广泛的应用前景。
附图说明
图1为实施例1中复合光催化剂的扫描电子显微镜照片;
图2为实施例3中复合光催化剂的扫描电子显微镜照片;
图3为实施例3中复合光催化剂的透射电子显微镜照片;
图4为实施例1-4中复合光催化剂对甲基橙降解性能测试图。
具体实施方式
下面用具体实施例详述本发明。
实施例1
1)取7.3525g的C6H5Na3O7·2H2O溶解于50mL去离子水中,搅拌30min;
2)取2.5mL 0.01M/L的HAuCl4,稀释至100mL,加热至沸腾后加入步骤1)配制的柠檬酸钠溶液200uL,保持沸腾15min,恢复体积至100mL,冷却至室温,得到稳定的金胶体混合溶液;
3)将0.5g g-C3N4溶解到52.5mL乙醇中超声30min;
超声条件:超生频率为40kHz,超声功率为150W;
4)将0.0176g Zn(NO3)2·6H20,0.0045g In(NO3)3·4.5H2O,0.0572g L-Cysteine溶于17.5mL丙三醇和10mL步骤2)所得的金胶体混合溶液中,然后搅拌15min;
5)将步骤3),4)所得的两个溶液混合后搅拌30min,使g-C3N4吸附游离的离子和L-Cysteine分子,得到ZnIn2S4/Au/g-C3N4的前驱体溶液;
6)将步骤5)所得前驱体溶液转入100ml含聚四氟乙烯内衬的不锈钢水热反应釜中,在180℃下反应24h,获得粉末状样品。
7)将步骤6)获得的粉末状样品取出,分别用酒精和去离子水清洗数次,真空冷冻干燥获得粉末状ZnIn2S4/Au/g-C3N4二维层状复合催化剂。
真空冷冻干燥条件:-40℃预冻4h,真空度5Pa,真空干燥6h。
本实施例所制备的ZnIn2S4/Au/g-C3N4二维层状复合催化剂中g-C3N4与ZnIn2S4的质量比为1:0.05。ZnIn2S4/Au/g-C3N4二维层状复合催化剂的扫描电镜照片见图1。
实施例2,同实施例1,不同的是,
4)将0.0528g Zn(NO3)2·6H20,0.0135g In(NO3)3·4.5H2O,0.1716g L-Cysteine溶于17.5mL丙三醇和10mL步骤2)所得的金胶体混合溶液中,然后搅拌15min;
5)将步骤3),4)所得的两个溶液混合后搅拌30min,使g-C3N4吸附游离的离子和L-Cysteine分子,得到ZnIn2S4/Au/g-C3N4的前驱体溶液;
6)将步骤5)所得前驱体溶液转入100mL含聚四氟乙烯内衬的不锈钢水热反应釜中,在180℃下反应24h,获得粉末状样品。
夲实施例所制备的ZnIn2S4/Au/g-C3N4二维层状复合催化剂中g-C3N4与ZnIn2S4的质量比为1:0.15。
实施例3,同实施例1,不同的是,
4)将0.088g Zn(NO3)2·6H20,0.0225g In(NO3)3·4.5H2O,0.286g L-Cysteine溶于17.5mL丙三醇和10mL步骤2)所得的金胶体混合溶液中,然后搅拌15min;
5)将步骤3),4)所得的两个溶液混合后搅拌30min,使g-C3N4吸附游离的离子和L-Cysteine分子,得到ZnIn2S4/Au/g-C3N4的前驱体溶液;
6)将步骤5)所得前驱体溶液转入100mL含聚四氟乙烯内衬的不锈钢水热反应釜中,在160℃下反应26h,获得粉末状样品。
本实施例所制备的ZnIn2S4/Au/g-C3N4二维层状复合催化剂中g-C3N4与ZnIn2S4的质量比为1:0.25。粉末状ZnIn2S4/Au/g-C3N4二维层状复合催化剂的扫描电镜照片见图2,透射电镜照片见图3。
实施例4,同实施例1,不同的是,
4)将0.1232g Zn(NO3)2·6H20,0.0315g In(NO3)3·4.5H2O,0.4004g L-Cysteine溶于17.5mL丙三醇和10mL步骤2)所得的金胶体混合溶液中,然后搅拌15min;
5)将步骤3),4)所得的两个溶液混合后搅拌30min,使g-C3N4吸附游离的离子和L-Cysteine分子,得到ZnIn2S4/Au/g-C3N4的前驱体溶液;
6)将步骤5)所得前驱体溶液转入100mL含聚四氟乙烯内衬的不锈钢水热反应釜中,在200℃下反应20h,获得粉末状样品。
本实施例所制备的ZnIn2S4/Au/g-C3N4二维层状复合催化剂中g-C3N4与ZnIn2S4的质量比为1:0.35。
从图1的扫描电镜照片中观察到了层片状的g-C3N4,图2的ZnIn2S4/Au/g-C3N4的扫描电镜照片相比于图1,明显发现了g-C3N4表面形成了层片状的ZnIn2S4,而在图3的ZnIn2S4/Au/g-C3N4的透射电镜照片中还观察到了层状结构中金粒子的存在,因此说明了本发明层状二维结构的成功构成。
本申请人以300W氙灯作为光源,400nm波长的截止片将光辐照控制在可见光区域,对甲基橙(MO)进行降解。催化剂选用实施例1、2、3、4所制备的粉末ZnIn2S4/Au/g-C3N4复合催化剂样品。
方法如下:分别称取100mg实施例1、2、3、4所制备的ZnIn2S4/Au/g-C3N4复合催化剂,置于100ml浓度为10mg/L的甲基橙水溶液中,在光催化反应器中进行实验。在光照之前,将体系置于暗箱中搅拌30min,达到吸附平衡,取2mL溶液,采用紫外-可见光分光光度计测试其浓度,并作为光反应初始浓度。然后打开光源并每隔5min取样,用紫外-可见分光光度计进行检测。检测结果如图4所示。
从图4可见,在波长大于400nm的可见光照射20min之后,实施例1所制备的ZnIn2S4/Au/g-C3N4二维层状复合催化剂对甲基橙溶液的降解率只有了43.3%,实施例2所制备的ZnIn2S4/Au/g-C3N4二维层状复合催化剂的降解率为82.5%,实施例3所制备的ZnIn2S4/Au/g-C3N4二维层状复合催化剂对甲基橙溶液的降解率达到了99.4%,实施例4所制备的ZnIn2S4/Au/g-C3N4二维层状复合催化剂对甲基橙溶液的降解率为96.5%,说明用本发明制备的ZnIn2S4/Au/g-C3N4复合催化剂对甲基橙具有显著的降解效果,二维层状结构的构建确实对光催化性能带来了很大的提升,而其中以实施例2所制备的ZnIn2S4/Au/g-C3N4样品,即g-C3N4与ZnIn2S4的质量比为1:0.25的ZnIn2S4/Au/g-C3N4二维层状复合催化剂效果最佳。

Claims (2)

1.一种硫铟锌金氮化碳二维层状复合光催化剂的制备方法,其特征在于:具体步骤如下:
1)取7.3525g的C6H5Na3O7·2H2O溶解于50mL去离子水中,搅拌30min;
2)取2.5mL 0.01M/L的HAuCl4,稀释至100mL,加热至沸腾后加入步骤1)配制的柠檬酸钠溶液200uL,保持沸腾15min,恢复体积至100mL,冷却至室温,得到稳定的金胶体混合溶液;
3)将0.5g g-C3N4溶解到52.5mL乙醇中超声30min;
超声条件:超生频率为40kHz,超声功率为150W;
4)将0.0176-0.1232g Zn(NO3)2·6H2O ,0.0045-0.0315g In(NO3)3·4.5H2O,0.0572-0.4004g L-Cysteine溶于17.5mL丙三醇和10mL步骤2)所得的金胶体混合溶液中,然后搅拌15min;
5)将步骤3),4)所得的两个溶液混合后搅拌30min,使g-C3N4吸附游离的离子和L-Cysteine分子,得到ZnIn2S4/Au/g-C3N4的前驱体溶液;
6)将步骤5)所得前驱体溶液转入100mL含聚四氟乙烯内衬的不锈钢水热反应釜中,在160-200℃下反应20-26h,获得粉末状样品;
7)将步骤6)获得的粉末状样品取出,分别用酒精和去离子水清洗数次,真空冷冻干燥获得粉末状ZnIn2S4/Au/g-C3N4二维层状复合光催化剂;
真空冷冻干燥条件:-40℃预冻4h,真空度5Pa,真空干燥6h;
所得ZnIn2S4/Au/g-C3N4二维层状复合催化剂中g-C3N4与ZnIn2S4的质量比为1:0.05-0.35。
2.根据权利要求1所述的一种硫铟锌金氮化碳二维层状复合光催化剂的制备方法,其特征在于:ZnIn2S4/Au/g-C3N4二维层状复合催化剂中g-C3N4与ZnIn2S4的质量比为1:0.25。
CN201810251076.XA 2018-03-26 2018-03-26 一种硫铟锌金氮化碳二维层状复合光催化剂的制备方法 Active CN108404960B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810251076.XA CN108404960B (zh) 2018-03-26 2018-03-26 一种硫铟锌金氮化碳二维层状复合光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810251076.XA CN108404960B (zh) 2018-03-26 2018-03-26 一种硫铟锌金氮化碳二维层状复合光催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN108404960A CN108404960A (zh) 2018-08-17
CN108404960B true CN108404960B (zh) 2021-01-08

Family

ID=63132536

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810251076.XA Active CN108404960B (zh) 2018-03-26 2018-03-26 一种硫铟锌金氮化碳二维层状复合光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN108404960B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110354883B (zh) * 2019-06-25 2022-03-04 北京清云阳光环保科技有限公司 一种BiVO4@CuIn2S4/g-C3N4可见光响应光催化剂及其制备方法
CN110354882B (zh) * 2019-06-25 2022-03-04 杭州魁山环保科技有限公司 一种BiVO4@ZnIn2S4/g-C3N4可见光响应光催化剂及其制备方法
CN110624583A (zh) * 2019-09-03 2019-12-31 沈阳化工大学 一种复合石墨相氮化碳异质结光催化剂的制备方法
CN111085234B (zh) * 2019-12-25 2021-05-28 西安交通大学 一种2d/2d氮掺杂钛酸镧/硫铟锌异质结光催化剂的制备方法
CN111659271B (zh) * 2020-03-18 2022-06-14 闽南师范大学 一种用于溶解石墨相氮化碳的溶解体系及溶解方法
CN113996323B (zh) * 2021-11-24 2023-11-17 新乡学院 一种硫化铟锌复合可见光催化剂及其制备方法和应用
CN114894874B (zh) * 2022-04-18 2023-02-14 湖南大学 自供能双光电极传感器及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066529A (ja) * 2007-09-13 2009-04-02 Tokyo Univ Of Science 光触媒およびその製造方法並びに水素ガス発生方法
CN102895987A (zh) * 2012-10-12 2013-01-30 中南大学 一种Au/g-C3N4复合型微纳米材料的制备方法
CN104722316A (zh) * 2015-03-26 2015-06-24 电子科技大学 一种二硫化钼复合纳米金光催化剂及其制备方法
CN104971762A (zh) * 2015-07-16 2015-10-14 华南理工大学 一种g-C3N4/CaIn2S4可见光复合光催化剂的制备方法与应用
CN106111175A (zh) * 2016-06-20 2016-11-16 江苏大学 一种三元复合半导体材料的制备方法
CN106563431A (zh) * 2016-11-07 2017-04-19 杭州同净环境科技有限公司 一种复合光催化剂及其制备方法、应用
JP2017100923A (ja) * 2015-12-03 2017-06-08 国立研究開発法人産業技術総合研究所 脱臭用金属複合化窒化炭素とその製造方法
CN106807430A (zh) * 2017-03-24 2017-06-09 湖北工业大学 具有特殊包覆结构的g‑C3N4@硅藻土复合光催化剂的制备方法
CN107008484A (zh) * 2017-04-17 2017-08-04 武汉理工大学 一种二元金属硫化物/氮化碳复合光催化材料及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066529A (ja) * 2007-09-13 2009-04-02 Tokyo Univ Of Science 光触媒およびその製造方法並びに水素ガス発生方法
CN102895987A (zh) * 2012-10-12 2013-01-30 中南大学 一种Au/g-C3N4复合型微纳米材料的制备方法
CN104722316A (zh) * 2015-03-26 2015-06-24 电子科技大学 一种二硫化钼复合纳米金光催化剂及其制备方法
CN104971762A (zh) * 2015-07-16 2015-10-14 华南理工大学 一种g-C3N4/CaIn2S4可见光复合光催化剂的制备方法与应用
JP2017100923A (ja) * 2015-12-03 2017-06-08 国立研究開発法人産業技術総合研究所 脱臭用金属複合化窒化炭素とその製造方法
CN106111175A (zh) * 2016-06-20 2016-11-16 江苏大学 一种三元复合半导体材料的制备方法
CN106563431A (zh) * 2016-11-07 2017-04-19 杭州同净环境科技有限公司 一种复合光催化剂及其制备方法、应用
CN106807430A (zh) * 2017-03-24 2017-06-09 湖北工业大学 具有特殊包覆结构的g‑C3N4@硅藻土复合光催化剂的制备方法
CN107008484A (zh) * 2017-04-17 2017-08-04 武汉理工大学 一种二元金属硫化物/氮化碳复合光催化材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Enhanced photocatalytic hydrogen evolution along with byproducts suppressing over Z-Sscheme CdxZn1-xS/Au/g-C3N4 photocatalysts under visible light";Zhao He et al;《SCIENCE BULLETIN》;20170307;第62卷(第9期);第603页左栏第2段以及第2.1-2.3节 *
"Hierarchical sheet-on-sheet ZnIn2S4/g-C3N4 heterostructure with highly efficient photocatalytic H-2 production based on photoinduced interfacial charge transfer";Zhang Zhenyi et al;《SCIENCE REPORTS》;20160112;第6卷;第8页倒数第2段-倒数第3段 *

Also Published As

Publication number Publication date
CN108404960A (zh) 2018-08-17

Similar Documents

Publication Publication Date Title
CN108404960B (zh) 一种硫铟锌金氮化碳二维层状复合光催化剂的制备方法
Huang et al. Broad spectrum response flower spherical-like composites CQDs@ CdIn2S4/CdS modified by CQDs with up-conversion property for photocatalytic degradation and water splitting
CN110773213B (zh) 一维硫化镉/二维碳化钛复合光催化剂及其制备方法与应用
CN103934004B (zh) 一种二硫化锡/石墨烯复合光催化剂及其制备方法
CN111203231B (zh) 硫化铟锌/钒酸铋复合材料及其制备方法和应用
CN110252346B (zh) 一种MoS2/SnS2/r-GO复合光催化剂的制备方法与用途
CN102266787A (zh) 一种新型不含贵金属光解水制氢催化剂的制备方法
CN109847786A (zh) 一种Z型光催化剂MgAlLDH/CN-H的制备方法及应用
CN103611551B (zh) 硫化铋/氧化钼铋异质结光催化复合材料的制备方法
Dai et al. ZnIn2S4 modified CaTiO3 nanocubes with enhanced photocatalytic hydrogen performance
CN107224986B (zh) 一种二硫化钼/铌酸锡复合纳米材料及用途
CN105709793A (zh) 硫化镉纳米粒子修饰的五氧化二铌纳米棒/氮掺杂石墨烯复合光催化剂、制备方法与应用
CN104722298A (zh) 一种二氧化钛复合纳米金光催化剂的制备方法
CN109225276B (zh) 一种花状二硒化钼/碳纳米管复合材料及合成方法和应用
CN114160164B (zh) CeO2-xSx/CdZnS/ZnO纳米材料的制备方法及应用
CN104307537A (zh) 一种MoS2/Ag2S纳米复合光催化材料的制备方法
CN111185210A (zh) 二碳化三钛/二氧化钛/黑磷纳米片复合光催化剂及其制备方法和应用
CN107308973B (zh) 一种碱式磷酸钴纳米针复合lton光催化剂及其制备方法和应用
CN110026207B (zh) CaTiO3@ZnIn2S4纳米复合材料及其制备方法与应用
Yuan et al. Selective oxidation of 5-hydroxymethylfurfural to furan-2, 5-dicarbaldehyde using chitosan-based biochar composite cadmium sulfide quantum dots
CN104857975A (zh) CdIn2S4-石墨烯复合光催化剂的制备方法与应用
CN104549281A (zh) 一种活性石墨烯-金属氧化物复合光催化剂、其制备方法及其应用
WO2023272413A1 (zh) 二硫化锡纳米催化剂在压电催化分解水产氢中的应用
CN113680366A (zh) 一种石墨相氮化碳基复合光催化剂及其制备方法和应用
CN104801317A (zh) 一种响应可见光的光解水制氢催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant