CN108335770B - A kind of multi-functional gradient-structure flexible protective film - Google Patents

A kind of multi-functional gradient-structure flexible protective film Download PDF

Info

Publication number
CN108335770B
CN108335770B CN201810130004.XA CN201810130004A CN108335770B CN 108335770 B CN108335770 B CN 108335770B CN 201810130004 A CN201810130004 A CN 201810130004A CN 108335770 B CN108335770 B CN 108335770B
Authority
CN
China
Prior art keywords
nano
film
layer
micro
simple substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810130004.XA
Other languages
Chinese (zh)
Other versions
CN108335770A (en
Inventor
李兴冀
杨剑群
李红霞
吕钢
董尚利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Xingxin Technology Co ltd
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201810130004.XA priority Critical patent/CN108335770B/en
Publication of CN108335770A publication Critical patent/CN108335770A/en
Application granted granted Critical
Publication of CN108335770B publication Critical patent/CN108335770B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/08Metals; Alloys; Cermets, i.e. sintered mixtures of ceramics and metals
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/10Organic substances; Dispersions in organic carriers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/12Laminated shielding materials
    • G21F1/125Laminated shielding materials comprising metals
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F3/00Shielding characterised by its physical form, e.g. granules, or shape of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor

Abstract

A kind of multi-functional gradient-structure flexible protective film, it is related to electronic device in space environment and protects field, and especially a kind of anti-space charged particle radiation and the nano thin-film with excellent electrical and thermal conductivity performance protect metal film flexible polymer multilayered and graded structure function protecting material.The present invention is to solve existing anti-space radiation protection materials there are problems that quality is heavy, non-flexible, at high cost and be easy to generate offspring.Multi-functional gradient-structure flexible protective film is three-decker, and the three-decker is respectively nano-tube film, micro-nano simple substance layer and flexible polymer;The nano-tube film is graphene film, boron nitride nano-tube or carbon nano-tube film;Simple substance described in micro-nano simple substance layer is aluminium, nickel, titanium, copper or silver;The flexible polymer is low density polyethylene (LDPE), high density polyethylene (HDPE), ultra-high molecular weight polyethylene or micro-and nano-particles doped polymer.The present invention is protected for electronic device.

Description

A kind of multi-functional gradient-structure flexible protective film
Technical field
Protect field the present invention relates to electronic device in space environment, especially a kind of anti-space charged particle radiation and Nano thin-film with excellent electrical and thermal conductivity performance protects metal film flexible polymer multilayered and graded structure function protecting material.
Background technique
Challenge of mankind's solar-system operation by a variety of environmental factors, charged particle radiation environment are one of them.Spatial band Charged particle radiation environment includes the radiation belt of the earth, solar proton event and galactic comic ray.The primary mesh of spacecraft type design Mark first is that equipment is not by the harm of space environment in protective cabin.For a long time, the selection of space-age material, is all attached great importance to The Antiradiation injury ability and protection effect of material.Especially when executing long-term space tasks, the important of the problem is more highlighted Property.Increasing with mankind's space operation, large scale integration electronic device and chip more widely use, spatial loop The importance that border influences spacecraft also becomes increasingly conspicuous.The space flight exploration practice in more than 60 years of the mankind shows space environment pair Spacecraft be it is harsh, very important, have extremely important influence, be induce Spacecraft anomaly and failure important original Cause.Wherein, the influence with space charged particle radiation environment to spacecraft is the most prominent.In general, the traditional design of spacecraft (is adopted Use aluminium as structural material), it can preferably take into account engineering and radiation protection demand.However, aluminium is structural metallic materials after all, Still higher (the 2.7g/cm of its density3), it is unfavorable for more efficiently reducing the construction weight of spacecraft, and be easy to cause secondary Radiation.With the development of space technology, urgent need is proposed to the radiation protection material of lightweight, high-performance and low cost.It is deep Sky detection spacecraft will fly in interplanetary space for a long time, if the Mars probes flight time is up to 500 days or more, meet with silver A possibility that river ultra rays and solar proton radiation injury, is bigger.Hydrogen-rich materials such as water, polyethylene etc. are anti-with excellent radiation Shield ability.This makes polyethylene and its composite material become rich promising anti-space radiation protection material.By leaded equal heavy metals The composite material of ion doping preparation, with certain protective performance, but and pollution environment toxic containing heavy metal lead.Therefore, The high performance multi-functional excellent flexibility protective materials of one kind is prepared for protecting electronic device to be of great significance.
Summary of the invention
The present invention is to solve existing anti-space radiation protection material, that there are quality is heavy, non-flexible, at high cost and be easy to produce The problem of raw offspring, and a kind of multi-functional gradient-structure flexible protective film is provided.
A kind of multi-functional gradient-structure flexible protective film of the present invention is three-decker, and the three-decker is respectively to receive Mitron film, micro-nano simple substance layer and flexible polymer;The nano-tube film is graphene film, boron nitride nano-tube or carbon Nano-tube film;Simple substance described in micro-nano simple substance layer is aluminium, nickel, titanium, copper or silver;The flexible polymer is low density polyethylene Alkene, high density polyethylene (HDPE), ultra-high molecular weight polyethylene or micro-and nano-particles doped polymer.
A kind of multi-functional gradient-structure flexible protective film of the present invention is protected for electronic device.
The invention has the benefit that
The present invention combines polymer with nano thin-film and radiation protection metallic film, utilizes its interfacial effect and excellent Protective performance, prepare with high conduction performance, the spatial chargings such as high thermal conductivity and excellent proton, neutron and electronics The gradient-structure flexible protective film of particle radiation protective performance makes it there is multi-functional excellent protection to imitate electronic device Fruit, can become great potential is used for microelectronic component " specificity " radiation proof material.
Detailed description of the invention
Fig. 1 is the structural schematic diagram of the multi-functional gradient-structure flexible protective film of embodiment;Wherein 1 received for smooth carbon Mitron film, 2 be micro-nano simple substance aluminium layer, and 3 be hydrogen-rich flexible polyethylene film;
Fig. 2 is the proton protection ratio pair of the gradient-structure flexible protective film of aluminium, low density polyethylene (LDPE) and embodiment preparation Compare curve;Wherein 1 is aluminium, and 2 be low density polyethylene (LDPE), the 3 gradient-structure flexible protective films prepared for embodiment;
Fig. 3 is the electronic protection rate pair of the gradient-structure flexible protective film of aluminium, low density polyethylene (LDPE) and embodiment preparation Compare curve;Wherein 1 is aluminium, and 2 be low density polyethylene (LDPE), the 3 gradient-structure flexible protective films prepared for embodiment.
Specific embodiment
Specific embodiment 1: a kind of multi-functional gradient-structure flexible protective film of the present embodiment present invention is by upper Layer, middle layer and lower layer's three-decker composition, the three-decker is respectively nano-tube film, micro-nano simple substance layer and flexible polymer Object;The flexible polymer low density polyethylene (LDPE), high density polyethylene (HDPE), ultra-high molecular weight polyethylene or micro-and nano-particles doping are poly- Close object;The flexible polymer with a thickness of 0.01mm~0.05m.
Specific embodiment 2: the present embodiment is different from the first embodiment in that: the nano-tube film is stone Black alkene film, boron nitride nano-tube or carbon nano-tube film;The nano-tube film with a thickness of 0.01mm~0.05m.Other It is same as the specific embodiment one.
Specific embodiment 3: the present embodiment is different from the first and the second embodiment in that: the micro-nano simple substance Simple substance described in layer is aluminium, nickel, titanium, copper or silver;The micro-nano simple substance layer is that plated film, ginseng are carried out using vacuum coating equipment Number: vacuum degree 105Pa, power 120W, plated film time are 1~10min;The micro-nano simple substance layer with a thickness of 1nm~ 1cm.Other are the same as one or two specific embodiments.
Specific embodiment 4: unlike one of present embodiment and specific embodiment one to three: the nanotube Film is smooth carbon nano-tube film;The micro-nano simple substance layer is micro-nano simple substance aluminium layer;The flexible polymer is hydrogen-rich Flexible polyethylene film.Other are identical as one of specific embodiment one to three.
Specific embodiment 5: unlike one of present embodiment and specific embodiment one to four: lower layer is hydrogen-rich Flexible polyethylene film, middle layer are micro-nano simple substance aluminium layer, and upper layer is smooth carbon nano-tube film.Other and specific embodiment One of one to four is identical.
Specific embodiment 6: unlike one of present embodiment and specific embodiment one to five: lower layer is hydrogen-rich Flexible polyethylene film, upper layer are micro-nano simple substance aluminium layer, and middle layer is smooth carbon nano-tube film.Other and specific embodiment One of one to five is identical.
Specific embodiment 7: unlike one of present embodiment and specific embodiment one to six: middle layer is hydrogen-rich Flexible polyethylene film, upper layer are micro-nano simple substance aluminium layer, and lower layer is smooth carbon nano-tube film.Other and specific embodiment One of one to six is identical.
Specific embodiment 8: unlike one of present embodiment and specific embodiment one to seven: middle layer is hydrogen-rich Flexible polyethylene film, lower layer are micro-nano simple substance aluminium layer, and upper layer is smooth carbon nano-tube film.Other and specific embodiment One of one to seven is identical.
Specific embodiment 9: unlike one of present embodiment and specific embodiment one to eight: upper layer is hydrogen-rich Flexible polyethylene film, lower layer are micro-nano simple substance aluminium layer, and middle layer is smooth carbon nano-tube film.Other and specific embodiment One of one to eight is identical.
Specific embodiment 10: unlike one of present embodiment and specific embodiment one to nine: upper layer is hydrogen-rich Flexible polyethylene film, middle layer are micro-nano simple substance aluminium layer, and lower layer is smooth carbon nano-tube film.Other and specific embodiment One of one to nine is identical.
By following tests verifying the utility model has the advantages that
Embodiment:
A kind of multi-functional gradient-structure flexible protective film is three-decker, and lower layer is hydrogen-rich flexible polyethylene film, Middle layer is micro-nano simple substance aluminium layer, and upper layer is smooth carbon nano-tube film.One layer is plated in the lower surface of smooth carbon nano-tube film Then micro-nano simple substance aluminium layer spreads one layer of hydrogen-rich flexible polyethylene film in the lower surface of micro-nano pure aluminum.
The micro-nano simple substance layer is to carry out plated film using vacuum coating equipment, and parameter: vacuum degree 105Pa, power are 120W, plated film time are 1~10min;The micro-nano simple substance layer with a thickness of 1nm~1cm.
Respectively to aluminium, low density polyethylene (LDPE) and embodiment preparation gradient-structure flexible protective film using 3MeV proton into Row irradiation, tests its proton protection ratio.Curve is drawn, obtains test result, as shown in Fig. 2, Fig. 2 is aluminium, low density polyethylene (LDPE) With the proton protection ratio correlation curve of the gradient-structure flexible protective film of embodiment preparation;Wherein 1 is aluminium, and 2 is poly- for low-density Ethylene, the 3 gradient-structure flexible protective films prepared for embodiment;It can be seen from the figure that in identical mass thickness, With aluminium, low density polyethylene (LDPE), gradient-structure flexible protective film is best to high energy proton protection effect.
Respectively to aluminium, low density polyethylene (LDPE) and embodiment preparation gradient-structure flexible protective film using 1MeV electronics into Row irradiation, tests its electronic protection rate.Curve is drawn, obtains test result, as shown in figure 3, Fig. 3 is aluminium, low density polyethylene (LDPE) With the electronic protection rate correlation curve of the gradient-structure flexible protective film of embodiment preparation;Wherein 1 is aluminium, and 2 is poly- for low-density Ethylene, the 3 gradient-structure flexible protective films prepared for embodiment;It can be seen from the figure that in identical mass thickness, The number of absorbed dose of the high energy electron in three material of aluminium, low density polyethylene (LDPE) and gradient-structure flexible protective film, with aluminium, Low density polyethylene (LDPE), gradient-structure flexible protective film are maximum to the absorbed dose of high energy electron, and protection effect is best.

Claims (8)

1. a kind of multi-functional gradient-structure flexible protective film, it is characterised in that multi-functional gradient-structure flexible protective film It is made of the upper, middle and lower three-decker, the three-decker is respectively nano-tube film, micro-nano simple substance layer and flexibility Polymer;The flexible polymer is low density polyethylene (LDPE), high density polyethylene (HDPE), ultra-high molecular weight polyethylene or micro-and nano-particles Doped polymer;The flexible polymer with a thickness of 0.01mm~0.05m;The nano-tube film is graphene film, nitrogen Change boron nanotube or carbon nano-tube film;The nano-tube film with a thickness of 0.01mm~0.05m;The micro-nano simple substance layer Described in simple substance be aluminium, nickel, titanium, copper or silver;The micro-nano simple substance layer is to carry out plated film using vacuum coating equipment, parameter: Vacuum degree is 105Pa, and power 120W, plated film time is 1~10min;The micro-nano simple substance layer with a thickness of 1nm~1cm.
2. a kind of multi-functional gradient-structure flexible protective film according to claim 1, it is characterised in that the nanometer Pipe film is smooth carbon nano-tube film;The micro-nano simple substance layer is micro-nano simple substance aluminium layer;The flexible polymer is richness Hydrogen flexible polyethylene film.
3. a kind of multi-functional gradient-structure flexible protective film according to claim 1, it is characterised in that lower layer is richness Hydrogen flexible polyethylene film, middle layer are micro-nano simple substance aluminium layer, and upper layer is smooth carbon nano-tube film.
4. a kind of multi-functional gradient-structure flexible protective film according to claim 1, it is characterised in that lower layer is richness Hydrogen flexible polyethylene film, upper layer are micro-nano simple substance aluminium layer, and middle layer is smooth carbon nano-tube film.
5. a kind of multi-functional gradient-structure flexible protective film according to claim 1, it is characterised in that middle layer is richness Hydrogen flexible polyethylene film, upper layer are micro-nano simple substance aluminium layer, and lower layer is smooth carbon nano-tube film.
6. a kind of multi-functional gradient-structure flexible protective film according to claim 1, it is characterised in that middle layer is richness Hydrogen flexible polyethylene film, lower layer are micro-nano simple substance aluminium layer, and upper layer is smooth carbon nano-tube film.
7. a kind of multi-functional gradient-structure flexible protective film according to claim 1, it is characterised in that upper layer is richness Hydrogen flexible polyethylene film, lower layer are micro-nano simple substance aluminium layer, and middle layer is smooth carbon nano-tube film.
8. a kind of multi-functional gradient-structure flexible protective film according to claim 1, it is characterised in that upper layer is richness Hydrogen flexible polyethylene film, middle layer are micro-nano simple substance aluminium layer, and lower layer is smooth carbon nano-tube film.
CN201810130004.XA 2018-02-08 2018-02-08 A kind of multi-functional gradient-structure flexible protective film Active CN108335770B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810130004.XA CN108335770B (en) 2018-02-08 2018-02-08 A kind of multi-functional gradient-structure flexible protective film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810130004.XA CN108335770B (en) 2018-02-08 2018-02-08 A kind of multi-functional gradient-structure flexible protective film

Publications (2)

Publication Number Publication Date
CN108335770A CN108335770A (en) 2018-07-27
CN108335770B true CN108335770B (en) 2019-08-02

Family

ID=62928584

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810130004.XA Active CN108335770B (en) 2018-02-08 2018-02-08 A kind of multi-functional gradient-structure flexible protective film

Country Status (1)

Country Link
CN (1) CN108335770B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110517802A (en) * 2019-08-29 2019-11-29 深圳市欣横纵技术股份有限公司 Radiation protection material and preparation method thereof based on ray and matter interaction
CN112213004B (en) * 2020-10-12 2022-02-08 哈尔滨工业大学 Large-response-range and high-sensitivity touch sensor based on gradient elastic modulus
CN112509720B (en) * 2020-11-26 2021-10-01 哈尔滨工业大学 Cyanate ester radical anti-irradiation reinforced conformal coating and preparation method thereof
CN113046719B (en) * 2021-03-16 2023-04-18 江苏集萃脑机融合智能技术研究所有限公司 Method for determining optimal proportion of metal atoms in two-dimensional material growth alloy catalyst

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100675769B1 (en) * 2003-02-27 2007-01-29 (주)이엔이 Process of Radioactive Liquid Waste
CN101609870A (en) * 2008-06-18 2009-12-23 韩国科学技术院 Organic solar batteries and its manufacture method
CN106382997A (en) * 2016-09-18 2017-02-08 北京科技大学 Electronic skin of friction electrostatic induction type
CN107266706A (en) * 2017-06-28 2017-10-20 中国科学院合肥物质科学研究院 A kind of light flexible hydrophilic polyethylene copper sulfide photothermal deformation nano compound film and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998817A (en) * 2009-08-12 2011-03-30 鸿富锦精密工业(深圳)有限公司 Anti-electromagnetic interference molding piece and preparation method thereof
CN106024400A (en) * 2016-08-11 2016-10-12 沈阳建筑大学 Flexible dye-sensitized solar cell and preparing method thereof
CN106784652A (en) * 2016-11-23 2017-05-31 武汉理工大学 Barium oxide/carbon nano tube flexible film and its preparation method and application
CN107262079B (en) * 2017-06-20 2019-08-27 湖南大学 A kind of intelligent photonic crystalline material for monitoring simultaneously and removal uranyl ion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100675769B1 (en) * 2003-02-27 2007-01-29 (주)이엔이 Process of Radioactive Liquid Waste
CN101609870A (en) * 2008-06-18 2009-12-23 韩国科学技术院 Organic solar batteries and its manufacture method
CN106382997A (en) * 2016-09-18 2017-02-08 北京科技大学 Electronic skin of friction electrostatic induction type
CN107266706A (en) * 2017-06-28 2017-10-20 中国科学院合肥物质科学研究院 A kind of light flexible hydrophilic polyethylene copper sulfide photothermal deformation nano compound film and preparation method thereof

Also Published As

Publication number Publication date
CN108335770A (en) 2018-07-27

Similar Documents

Publication Publication Date Title
CN108335770B (en) A kind of multi-functional gradient-structure flexible protective film
KR20130114583A (en) Boron nitride and boron nitride nanotube materials for radiation shielding
CN201413644Y (en) Board energy spectrum neutron doserate monitor
JP5906088B2 (en) Generator excited by ionizing radiation
CN108492905A (en) A kind of diamond PIM Schottky types β radiation volta effect nuclear battery
CN102127391B (en) Radiation-proof composite material and preparation method thereof
Alfvén Solar magnetic field and diurnal variation of cosmic radiation
CN101908387B (en) Radiation source carbon nanotube battery device
Abuali Galehdari et al. Characterization of nanoparticle enhanced multifunctional sandwich composites subjected to space radiation
CN113683909B (en) Nano bismuth oxide anti-radiation ceramic coating, preparation method and application
CN109411103A (en) One heavy metal species-rare earth nano composite shielding material and its preparation method and application
Huang et al. HfX2 (X= Cl, Br, I) monolayer and type II heterostructures with promising photovoltaic Characteristics
Qiao et al. Large lateral photovoltaic effect in µc-SiOx: H/a-Si: H/c-Si p–i–n structure
Lu et al. Non-ionizing energy loss calculations for modeling electron-induced degradation of Cu (In, Ga) Se2 thin-film solar cells
Kang et al. Lunar surface reactor shielding study
US7964859B2 (en) Radiation-shielding material using hydrogen-filled glass microspheres
Hirota et al. Proposal for electric power generation by using X-rays and gamma rays
Imaizumi et al. Displacement damage dose analysis of alpha-ray degradation on output of an InGaP solar cell
Zhao et al. New member of micro power sources for extreme environmental explorations: X-ray-voltaic batteries
JP3243275U (en) A safety metal container device with a tandem CVD diamond semiconductor nuclear battery.
Shen et al. Protection of Materials from Space Radiation Environments on Spacecraft
Fan et al. Research and application of nuclear radiation protection materials
CN108877976A (en) A kind of space high energy proton combination radiation safeguard structure suitable for long-term manned task
He et al. Work function of boron carbide: A DFT calculation
JP3238365U (en) A tandem type CVD diamond semiconductor thin film battery device used for green hydrogen production by the water electrolysis method.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230903

Address after: Room 305-5, Building 16, No. 1616 Chuangxin Road, Songbei District, Harbin City, Heilongjiang Province, 150028

Patentee after: Harbin Xingxin Technology Co.,Ltd.

Address before: 150001 No. 92 West straight street, Nangang District, Heilongjiang, Harbin

Patentee before: HARBIN INSTITUTE OF TECHNOLOGY

TR01 Transfer of patent right