CN108335770B - 一种多功能的梯度结构柔性防护薄膜 - Google Patents

一种多功能的梯度结构柔性防护薄膜 Download PDF

Info

Publication number
CN108335770B
CN108335770B CN201810130004.XA CN201810130004A CN108335770B CN 108335770 B CN108335770 B CN 108335770B CN 201810130004 A CN201810130004 A CN 201810130004A CN 108335770 B CN108335770 B CN 108335770B
Authority
CN
China
Prior art keywords
nano
film
layer
micro
simple substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810130004.XA
Other languages
English (en)
Other versions
CN108335770A (zh
Inventor
李兴冀
杨剑群
李红霞
吕钢
董尚利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Xingxin Technology Co ltd
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201810130004.XA priority Critical patent/CN108335770B/zh
Publication of CN108335770A publication Critical patent/CN108335770A/zh
Application granted granted Critical
Publication of CN108335770B publication Critical patent/CN108335770B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/08Metals; Alloys; Cermets, i.e. sintered mixtures of ceramics and metals
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/10Organic substances; Dispersions in organic carriers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/12Laminated shielding materials
    • G21F1/125Laminated shielding materials comprising metals
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F3/00Shielding characterised by its physical form, e.g. granules, or shape of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor

Abstract

一种多功能的梯度结构柔性防护薄膜,它涉及空间环境中电子器件防护领域,特别是一种抗空间带电粒子辐射以及具有优异导电导热性能的纳米薄膜防护金属膜柔性聚合物多层梯度结构功能防护材料。本发明是要解决现有抗空间辐射防护材料存在质量重、非柔性、成本高及易于产生二次粒子的问题。多功能的梯度结构柔性防护薄膜为三层结构,所述三层结构分别为纳米管薄膜、微纳米单质层和柔性聚合物;所述纳米管薄膜为石墨烯薄膜、氮化硼纳米管或碳纳米管薄膜;微纳米单质层中所述单质为铝、镍、钛、铜或银;所述柔性聚合物为低密度聚乙烯、高密度聚乙烯、超高分子量聚乙烯或微纳米粒子掺杂聚合物。本发明用于电子器件防护。

Description

一种多功能的梯度结构柔性防护薄膜
技术领域
本发明涉及空间环境中电子器件防护领域,特别是一种抗空间带电粒子辐射以及具有优异导电导热性能的纳米薄膜防护金属膜柔性聚合物多层梯度结构功能防护材料。
背景技术
人类航天活动受到多种环境因素的挑战,带电粒子辐射环境是其中之一。空间带电粒子辐射环境包括地球辐射带、太阳质子事件和银河宇宙线。航天器型号设计的首要目标之一是防护舱内设备不受空间环境的危害。长期以来,航天器用材料的选择,都十分重视材料的抗辐射损伤能力与防护效果。尤其在执行长期空间任务时,更加突显该问题的重要性。随着人类空间活动的日益增多,大规模集成化电子器件和芯片更加广泛的使用,空间环境对于航天器影响的重要性也日益突出。人类六十余年的航天探索实践表明,空间环境对航天器是苛刻的、不可忽视的,有着极其重要的影响,是诱发航天器异常和故障的重要原因。其中,以空间带电粒子辐射环境对航天器的影响最为突出。通常,航天器的传统设计(采用铝作为结构材料),能够较好地兼顾工程和辐射防护需求。然而,铝毕竟是金属结构材料,其密度尚较高(2.7g/cm3),不利于更加有效地降低航天器的结构重量,而且容易造成二次辐射。随着航天技术的发展,对轻质、高性能和低成本的辐射防护材料提出了迫切需求。深空探测航天器要长时间在行星际空间飞行,如火星探测器飞行时间长达500天以上,遭遇银河宇宙线和太阳质子辐射损伤的可能性更大。富氢材料如水、聚乙烯等具有优异的辐射防护能力。这使聚乙烯及其复合材料成为富有前途的抗空间辐射防护材料。将含铅等重金属离子掺杂制备的复合材料,具有一定的防护性能,但是含重金属铅有毒且污染环境。因此,制备一种高性能的多功能的优异柔性防护材料用于防护电子器件具有重要意义。
发明内容
本发明是要解决现有抗空间辐射防护材料存在质量重、非柔性、成本高及易于产生二次粒子的问题,而提供一种多功能的梯度结构柔性防护薄膜。
本发明一种多功能的梯度结构柔性防护薄膜为三层结构,所述三层结构分别为纳米管薄膜、微纳米单质层和柔性聚合物;所述纳米管薄膜为石墨烯薄膜、氮化硼纳米管或碳纳米管薄膜;微纳米单质层中所述单质为铝、镍、钛、铜或银;所述柔性聚合物为低密度聚乙烯、高密度聚乙烯、超高分子量聚乙烯或微纳米粒子掺杂聚合物。
本发明一种多功能的梯度结构柔性防护薄膜用于电子器件防护。
本发明的有益效果为:
本发明将聚合物与纳米薄膜以及防辐射金属薄膜相结合,利用其界面效应和优异的防护性能,制备出具有高导电性能,高导热性能以及优异的质子、中子和电子等空间带电粒子辐射防护性能的梯度结构柔性防护薄膜,使其对电子器件具有多功能的优异防护效果,能够成为极具潜力的用于微电子器件“特定性”防辐射材料。
附图说明
图1为实施例的多功能的梯度结构柔性防护薄膜的结构示意图;其中1为平整碳纳米管薄膜,2为微纳米单质铝层,3为富氢柔性聚乙烯薄膜;
图2为铝、低密度聚乙烯和实施例制备的梯度结构柔性防护薄膜的质子防护率对比曲线;其中1为铝,2为低密度聚乙烯,3为实施例制备的梯度结构柔性防护薄膜;
图3为铝、低密度聚乙烯和实施例制备的梯度结构柔性防护薄膜的电子防护率对比曲线;其中1为铝,2为低密度聚乙烯,3为实施例制备的梯度结构柔性防护薄膜。
具体实施方式
具体实施方式一:本实施方式本发明一种多功能的梯度结构柔性防护薄膜由上层、中层和下层三层结构组成,所述三层结构分别为纳米管薄膜、微纳米单质层和柔性聚合物;所述柔性聚合物低密度聚乙烯、高密度聚乙烯、超高分子量聚乙烯或微纳米粒子掺杂聚合物;所述柔性聚合物的厚度为0.01mm~0.05m。
具体实施方式二:本实施方式与具体实施方式一不同的是:所述纳米管薄膜为石墨烯薄膜、氮化硼纳米管或碳纳米管薄膜;所述纳米管薄膜的厚度为0.01mm~0.05m。其他与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是:所述微纳米单质层中所述单质为铝、镍、钛、铜或银;所述微纳米单质层是采用真空镀膜机进行镀膜,其参数:真空度为105Pa,功率为120W,镀膜时间为1~10min;所述微纳米单质层的厚度为1nm~1cm。其他与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:所述纳米管薄膜为平整碳纳米管薄膜;所述微纳米单质层为微纳米单质铝层;所述柔性聚合物为富氢柔性聚乙烯薄膜。其他与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:下层为富氢柔性聚乙烯薄膜,中层为微纳米单质铝层,上层为平整碳纳米管薄膜。其他与具体实施方式一至四之一相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:下层为富氢柔性聚乙烯薄膜,上层为微纳米单质铝层,中层为平整碳纳米管薄膜。其他与具体实施方式一至五之一相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是:中层为富氢柔性聚乙烯薄膜,上层为微纳米单质铝层,下层为平整碳纳米管薄膜。其他与具体实施方式一至六之一相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是:中层为富氢柔性聚乙烯薄膜,下层为微纳米单质铝层,上层为平整碳纳米管薄膜。其他与具体实施方式一至七之一相同。
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是:上层为富氢柔性聚乙烯薄膜,下层为微纳米单质铝层,中层为平整碳纳米管薄膜。其他与具体实施方式一至八之一相同。
具体实施方式十:本实施方式与具体实施方式一至九之一不同的是:上层为富氢柔性聚乙烯薄膜,中层为微纳米单质铝层,下层为平整碳纳米管薄膜。其他与具体实施方式一至九之一相同。
通过以下试验验证有益效果:
实施例:
一种多功能的梯度结构柔性防护薄膜为三层结构,下层为富氢柔性聚乙烯薄膜,中层为微纳米单质铝层,上层为平整碳纳米管薄膜。在平整碳纳米管薄膜的下表面镀一层微纳米单质铝层,然后在微纳米单质铝的下表面铺一层富氢柔性聚乙烯薄膜。
所述微纳米单质层是采用真空镀膜机进行镀膜,其参数:真空度为105Pa,功率为120W,镀膜时间为1~10min;所述微纳米单质层的厚度为1nm~1cm。
分别对铝、低密度聚乙烯和实施例制备的梯度结构柔性防护薄膜采用3MeV质子进行辐照,测试其质子防护率。绘制曲线,得出试验结果,如图2所示,图2为铝、低密度聚乙烯和实施例制备的梯度结构柔性防护薄膜的质子防护率对比曲线;其中1为铝,2为低密度聚乙烯,3为实施例制备的梯度结构柔性防护薄膜;从图中可以看出,在相同质量厚度情况下,与铝、低密度聚乙烯,梯度结构柔性防护薄膜对高能质子防护效果最好。
分别对铝、低密度聚乙烯和实施例制备的梯度结构柔性防护薄膜采用1MeV电子进行辐照,测试其电子防护率。绘制曲线,得出试验结果,如图3所示,图3为铝、低密度聚乙烯和实施例制备的梯度结构柔性防护薄膜的电子防护率对比曲线;其中1为铝,2为低密度聚乙烯,3为实施例制备的梯度结构柔性防护薄膜;从图中可以看出,在相同质量厚度情况下,高能电子在铝、低密度聚乙烯及梯度结构柔性防护薄膜三材料中的吸收剂量的多少,与铝、低密度聚乙烯,梯度结构柔性防护薄膜对高能电子的吸收剂量最大,防护效果最好。

Claims (8)

1.一种多功能的梯度结构柔性防护薄膜,其特征在于多功能的梯度结构柔性防护薄膜由上层、中层和下层三层结构组成,所述三层结构分别为纳米管薄膜、微纳米单质层和柔性聚合物;所述柔性聚合物为低密度聚乙烯、高密度聚乙烯、超高分子量聚乙烯或微纳米粒子掺杂聚合物;所述柔性聚合物的厚度为0.01mm~0.05m;所述纳米管薄膜为石墨烯薄膜、氮化硼纳米管或碳纳米管薄膜;所述纳米管薄膜的厚度为0.01mm~0.05m;所述微纳米单质层中所述单质为铝、镍、钛、铜或银;所述微纳米单质层是采用真空镀膜机进行镀膜,其参数:真空度为105Pa,功率为120W,镀膜时间为1~10min;所述微纳米单质层的厚度为1nm~1cm。
2.根据权利要求1所述的一种多功能的梯度结构柔性防护薄膜,其特征在于所述纳米管薄膜为平整碳纳米管薄膜;所述微纳米单质层为微纳米单质铝层;所述柔性聚合物为富氢柔性聚乙烯薄膜。
3.根据权利要求1所述的一种多功能的梯度结构柔性防护薄膜,其特征在于下层为富氢柔性聚乙烯薄膜,中层为微纳米单质铝层,上层为平整碳纳米管薄膜。
4.根据权利要求1所述的一种多功能的梯度结构柔性防护薄膜,其特征在于下层为富氢柔性聚乙烯薄膜,上层为微纳米单质铝层,中层为平整碳纳米管薄膜。
5.根据权利要求1所述的一种多功能的梯度结构柔性防护薄膜,其特征在于中层为富氢柔性聚乙烯薄膜,上层为微纳米单质铝层,下层为平整碳纳米管薄膜。
6.根据权利要求1所述的一种多功能的梯度结构柔性防护薄膜,其特征在于中层为富氢柔性聚乙烯薄膜,下层为微纳米单质铝层,上层为平整碳纳米管薄膜。
7.根据权利要求1所述的一种多功能的梯度结构柔性防护薄膜,其特征在于上层为富氢柔性聚乙烯薄膜,下层为微纳米单质铝层,中层为平整碳纳米管薄膜。
8.根据权利要求1所述的一种多功能的梯度结构柔性防护薄膜,其特征在于上层为富氢柔性聚乙烯薄膜,中层为微纳米单质铝层,下层为平整碳纳米管薄膜。
CN201810130004.XA 2018-02-08 2018-02-08 一种多功能的梯度结构柔性防护薄膜 Active CN108335770B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810130004.XA CN108335770B (zh) 2018-02-08 2018-02-08 一种多功能的梯度结构柔性防护薄膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810130004.XA CN108335770B (zh) 2018-02-08 2018-02-08 一种多功能的梯度结构柔性防护薄膜

Publications (2)

Publication Number Publication Date
CN108335770A CN108335770A (zh) 2018-07-27
CN108335770B true CN108335770B (zh) 2019-08-02

Family

ID=62928584

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810130004.XA Active CN108335770B (zh) 2018-02-08 2018-02-08 一种多功能的梯度结构柔性防护薄膜

Country Status (1)

Country Link
CN (1) CN108335770B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110517802A (zh) * 2019-08-29 2019-11-29 深圳市欣横纵技术股份有限公司 基于射线与物质相互作用的辐射防护材料及其制备方法
CN112213004B (zh) * 2020-10-12 2022-02-08 哈尔滨工业大学 基于梯度弹性模量的大响应范围、高灵敏触觉传感器
CN112509720B (zh) * 2020-11-26 2021-10-01 哈尔滨工业大学 一种氰酸酯基抗辐照加固保形涂层及其制备方法
CN113046719B (zh) * 2021-03-16 2023-04-18 江苏集萃脑机融合智能技术研究所有限公司 确定二维材料生长合金催化剂中金属原子最佳配比的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100675769B1 (ko) * 2003-02-27 2007-01-29 (주)이엔이 방사성 액체 폐기물 처리방법
CN101609870A (zh) * 2008-06-18 2009-12-23 韩国科学技术院 有机太阳能电池和其制造方法
CN106382997A (zh) * 2016-09-18 2017-02-08 北京科技大学 一种摩擦静电感应式电子皮肤
CN107266706A (zh) * 2017-06-28 2017-10-20 中国科学院合肥物质科学研究院 一种轻质柔性亲水聚乙烯‑硫化铜光热转换纳米复合薄膜及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998817A (zh) * 2009-08-12 2011-03-30 鸿富锦精密工业(深圳)有限公司 抗电磁干扰模塑件及其制备方法
CN106024400A (zh) * 2016-08-11 2016-10-12 沈阳建筑大学 一种柔性染料敏化太阳能电池及其制备方法
CN106784652A (zh) * 2016-11-23 2017-05-31 武汉理工大学 钒氧化物/碳纳米管柔性薄膜及其制备方法和应用
CN107262079B (zh) * 2017-06-20 2019-08-27 湖南大学 一种用于同时监测和去除铀酰离子的智能光子晶体材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100675769B1 (ko) * 2003-02-27 2007-01-29 (주)이엔이 방사성 액체 폐기물 처리방법
CN101609870A (zh) * 2008-06-18 2009-12-23 韩国科学技术院 有机太阳能电池和其制造方法
CN106382997A (zh) * 2016-09-18 2017-02-08 北京科技大学 一种摩擦静电感应式电子皮肤
CN107266706A (zh) * 2017-06-28 2017-10-20 中国科学院合肥物质科学研究院 一种轻质柔性亲水聚乙烯‑硫化铜光热转换纳米复合薄膜及其制备方法

Also Published As

Publication number Publication date
CN108335770A (zh) 2018-07-27

Similar Documents

Publication Publication Date Title
CN108335770B (zh) 一种多功能的梯度结构柔性防护薄膜
KR20130114583A (ko) 방사선 차폐를 위한 질화붕소 및 질화붕소 나노튜브 물질
CN103183861A (zh) 一种具有中子和伽玛综合屏蔽效果的复合屏蔽材料
JP5906088B2 (ja) 電離放射線により励起される発電機
CN102127391B (zh) 一种抗辐射复合材料及其配备方法
Kirchartz et al. Efficiency limits of Si/SiO2 quantum well solar cells from first-principles calculations
Zeng et al. Development of polymer composites in radiation shielding applications: a review
CN101908387B (zh) 一种辐射源碳纳米管电池装置
Abuali Galehdari et al. Characterization of nanoparticle enhanced multifunctional sandwich composites subjected to space radiation
CN113683909B (zh) 一种纳米氧化铋抗辐射陶瓷涂层、制备方法及应用
CN109411103A (zh) 一种重金属-稀土纳米复合屏蔽材料及其制备方法和应用
Huang et al. HfX2 (X= Cl, Br, I) monolayer and type II heterostructures with promising photovoltaic Characteristics
CN108877976A (zh) 一种适用于长期载人任务的空间高能质子组合辐射防护结构
Kang et al. Lunar surface reactor shielding study
US7964859B2 (en) Radiation-shielding material using hydrogen-filled glass microspheres
Hirota et al. Proposal for electric power generation by using X-rays and gamma rays
Liu et al. Single-walled carbon nanotube film-silicon heterojunction radioisotope betavoltaic microbatteries
Zhao et al. New member of micro power sources for extreme environmental explorations: X-ray-voltaic batteries
JP3243275U (ja) タンデム型cvdダイヤモンド半導体原子力電池を設けた安全性の金属製容器装置。
Shen et al. Protection of Materials from Space Radiation Environments on Spacecraft
Fan et al. Research and application of nuclear radiation protection materials
He et al. Work function of boron carbide: A DFT calculation
JP3238365U (ja) 水電解法によるグリーン水素製造に用いたタンデム型cvdダイヤモンド半導体薄膜電池装置。
CN115536947B (zh) 用于空间带电粒子辐射防护的复合材料及其制备方法
KR20220168498A (ko) 방사선, 전자기파 및 자기장 차폐용 복합소재 조성물 및 그 조성물을 이용한 복합시트

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230903

Address after: Room 305-5, Building 16, No. 1616 Chuangxin Road, Songbei District, Harbin City, Heilongjiang Province, 150028

Patentee after: Harbin Xingxin Technology Co.,Ltd.

Address before: 150001 No. 92 West straight street, Nangang District, Heilongjiang, Harbin

Patentee before: HARBIN INSTITUTE OF TECHNOLOGY

TR01 Transfer of patent right