CN108206281A - 一种三元材料及其制备方法以及电池浆料和正极与锂电池 - Google Patents

一种三元材料及其制备方法以及电池浆料和正极与锂电池 Download PDF

Info

Publication number
CN108206281A
CN108206281A CN201611187632.9A CN201611187632A CN108206281A CN 108206281 A CN108206281 A CN 108206281A CN 201611187632 A CN201611187632 A CN 201611187632A CN 108206281 A CN108206281 A CN 108206281A
Authority
CN
China
Prior art keywords
ternary material
preparation
lithium
solution
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611187632.9A
Other languages
English (en)
Other versions
CN108206281B (zh
Inventor
陈靖华
游军飞
徐茶清
曹文玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BYD Co Ltd
Original Assignee
BYD Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BYD Co Ltd filed Critical BYD Co Ltd
Priority to CN201611187632.9A priority Critical patent/CN108206281B/zh
Priority to PCT/CN2017/114264 priority patent/WO2018113506A1/zh
Priority to EP17883636.7A priority patent/EP3557668A4/en
Priority to US16/471,534 priority patent/US20190386293A1/en
Priority to JP2019533012A priority patent/JP2020502029A/ja
Priority to KR1020197017566A priority patent/KR20190082307A/ko
Publication of CN108206281A publication Critical patent/CN108206281A/zh
Application granted granted Critical
Publication of CN108206281B publication Critical patent/CN108206281B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种三元材料及其制备方法以及电池浆料和正极与锂电池。该三元材料具有通式LiNi1‑x‑yCoxMyO2所示组成,其中所述M为Mn或Al,0<x<1,0<y<1,x+y<1;且所述三元材料的颗粒物中包括粒径由小到大的三层级颗粒,所述三层级颗粒包括具有晶体结构的一次粒子,由多颗一次粒子局部熔融形成的中间粒子,以及由中间粒子团聚形成的二次球。该三元材料的颗粒物中通过同时包括三层级颗粒,使其同时兼备了小颗粒优异的低温、倍率性能和大颗粒优异的高温储存、高温循环性能。

Description

一种三元材料及其制备方法以及电池浆料和正极与锂电池
技术领域
本发明涉及锂电池生产领域,具体地,涉及一种三元材料及其制备方法以及电池浆料和正极与锂电池。
背景技术
锂离子电池以其工作电压高、比能量大、重量轻、体积小、循环寿命长、无记忆效应、可快速充放电和无环境污染等一系列显著的优点而受到广泛的关注。锂离子电池研究的两大任务是提高性能(主要是高的能量密度和功率密度、长寿命、安全性)和降低成本。而正极材料是提高锂离子电池性能的关键,它决定锂离子电池的主要性能指标。
近年来新起的层状嵌锂三元材料Li-Ni-Co-Mn-O复合氧化物的发展迅速,其代表物为镍钴锰酸锂(LiNi1/3Co1/3Mn1/3O2)。此类材料电化学性能稳定、放电容量和放电倍率高、热稳定性好、安全性好,其综合性能优于任一种单组份化合物,是一种有望替代钴酸锂的新型正极材料。现有的三元材料的制备方法主要包括两种,一种为传统的高温固相法,另一种为传统的水热法。
其中,传统高温固相法制备三元材料是通过将三元材料前驱体和锂源混合后高温烧结获得。这种方法存在以下问题:①材料经过长时间高温烧结后,一次颗粒较大,一般都会超过500nm,甚至达到微米级别,这种大颗粒的材料,比表面较小,因而高温储存和高温循环性能还可以、压实密度也较高,但是低温性能和大电流的倍率性能却较差,无法满足动力电池对高倍率性能的要求;②采用前驱体和锂盐混合,再高温烧结的形式制备三元材料,锂元素在高温下要扩散入前驱体二次球内部,需要长时间的高温烧结,而且要加 入超过理论计量值将近10%的锂盐才能保证锂的充分分布,这会增加材料成本;另外,未充分扩散入二次球内部的多余锂盐,会以游离锂的形式分布在二次球表层,会造成材料的PH偏高,同时材料的粉体阻抗也较大,这最终会造成电池在高温储存和循环过程中,厚度变化大,内阻增加幅度大等问题,大大降低了电池的安全性能。
其中,传统水热法制备三元材料(如专利申请CN201410184691.5),是将正极材料前驱体、锂化合物、以及水加入到高压釜中;然后再升温至指定温度T,在超临界水热条件下恒温一段时间H1后,在高温高压下用增压泵加入氧化剂,再恒温一段时间H2后;降温至室温,经过压滤洗涤后将其最终产物送入气氛炉中烧结。这种方法存在以下问题:①用传统水热法制备三元材料,一次颗粒较小(一般在300nm以内),且疏松分散,难以团聚成二次球,材料的比表面积很大,与电解液的接触面积大,材料的容量、低温和倍率较好,但是材料的压实密度较低,一般只有2.9g/cm3,远远低于固相法制备的三元材料,在能量密度方面比固相法约低了将近20%;这使得材料的高温储存、高温循环和常温循环性能都较差,无法达到动力电池的使用要求;②传统水热法制备的三元材料,由于锂含量偏低,一般低于理论计量比,在后期的高温烧结过程中,锂会进一步损失,材料缺锂后,会造成最终的电池的循环性能较差,电池寿命短。
发明内容
本发明的目的是提供一种三元材料及其制备方法以及电池浆料和正极与锂电池,以兼顾应用该所述三元材料的锂电池在低温、高温和高倍率下的电化学性能。
为了实现上述目的,根据本发明的第一个方面,提供了一种三元材料,该三元材料具有通式LiNi1-x-yCoxMyO2所示组成,其中所述M为Mn或Al,0<x<1,0<y<1,x+y<1;且所述三元材料的颗粒物中包括粒径由小到大的三层级颗粒,所述三层级颗粒包括具有晶体结构的一次粒子,由多颗一次粒子局部熔融形成的中间粒子,以及由中间粒子团聚形成的二次球。
根据本发明的第二个方面,提供了一种三元材料的制备方法,该制备方法包括以下步骤:S1、将可溶性的镍盐、钴盐、M盐、以及第一锂源和氧化剂体系溶解在溶剂中,配制混合溶液,所述M为锰或铝;S2、促使所述混合溶液发生氧化反应,并在反应后过滤、清洗、干燥氧化反应产物得到粉末产物,然后在所述粉末产物中混入第二锂源,得到混合粉末;S3、对所述混合粉末进行一次烧结,得到二次球;S4、对所述二次球进行二次烧结,得到所述三元材料;其中,所述二次烧结的温度高于所述一次烧结的温度。
根据本发明的第三个方面,提供了一种根据本发明上述制备方法制备得到的三元材料。
根据本发明的第四个方面,提供了一种电池浆料,该电池浆料是根据本发明的三元材料配制形成的固含量为10-70wt%的浆料组合物。
根据本发明的第五个方面,提供了一种正极,该正极包括集流体和设置在所述集流体上的正极材料层,所述正极材料层包括根据本发明的三元材料。
根据本发明的第六个方面,提供了一种锂电池,该锂电池包括正极,且所述正极包括根据本发明的正极。
在本发明所提供的三元材料的颗粒物中包括粒径由小到大的三层级颗粒,具体为具有晶体结构的一次粒子(最小组成单元),由多颗一次粒子局部熔融形成的中间粒子,以及由中间粒子团聚形成的二次球。应用本发明上述技术方案具有如下技术效果:
(1)通过形成一次粒子,利用一次粒子粒径较小的特点,使得三元材料具有短的锂离子脱嵌路径,进而优化应用该三元材料的锂电池的容量、低 温和倍率性能;
(2)通过形成二次球,将一次粒子团聚在一起,以降低相同重量下的三元材料的比表面积和孔隙率,提高三元材料的压实密度,降低热膨胀和电阻变化,以提高应用该三元材料的锂电池的安全性能;
(3)通过形成中间粒子,使得团聚在二次球中的松散的一次粒子能部分融合在一起,以提高三元材料的压实密度、能量密度,并优化应用该三元材料的锂电池的热储存性能和热循环性能;
(4)通过使得三元材料的颗粒物中同时包括三层级颗粒,使其同时兼备了小颗粒的优异低温、倍率性能和大颗粒的好高温储存、高温循环性能。
本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1示出了根据本发明实施例1所制备的三元材料的3K倍下的扫描电子显微镜(SEM)图谱;
图2示出了根据本发明实施例1所制备的三元材料的50K倍下的扫描电子显微镜(SEM)图谱;
图3示出了根据本发明对比例1所制备的三元材料的50K倍下的扫描电子显微镜(SEM)图谱;
图4示出了根据本发明对比例2所制备的三元材料的50K倍下的扫描电子显微镜(SEM)图谱。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
针对于现有技术中通过传统高温固相法或传统的水热法制备的三元材料,无法兼顾应用该所述三元材料的锂电池的低温、高温和大倍率下的电化学性能的问题。在本发明中提供了一种三元材料,该三元材料具有通式LiNi1-x-yCoxMyO2所示组成,其中所述M为Mn或Al,0<x<1,0<y<1,x+y<1;且所述三元材料的颗粒物中包括粒径由小到大的三层级颗粒,所述三层级颗粒包括具有晶体结构的一次粒子,由多颗一次粒子局部熔融形成的中间粒子,以及由中间粒子团聚形成的二次球。
在本发明中所提及的“一次粒子”和“二次球”均为行业内的常规用语,其中“一次粒子”为三元材料颗粒物中具有晶体结构的最小颗粒单元,例如饭团中的一粒米饭。所述“二次球”是指经过烧结所形成的颗粒物,本发明所述“二次球”与现有技术中“二次球”的主要区别在于,现有技术的“二次球”是由一次粒子团聚而成,其中不存在中间粒子;而本发明中的“二次球”由中间粒子团聚而成。
在本发明中所提及的“中间粒子”是本申请首次提出的新概念,其团聚在二次球中,且由多颗一次粒子局部熔融形成。在每颗二次球中团聚有多颗中间粒子以满足二次球的粒径要求,且团聚在该二次球中的中间粒子与中间粒子之间晶界分明,通过扫描电子显微镜(SEM)图谱能够轻易地划分出每 一个中间粒子。在每颗中间粒子中融合有多颗一次粒子以满足中间粒子的粒径要求,通过扫描电子显微镜(SEM)图谱能够看出每一个中间粒子融合的一次粒子的边界线。
根据本发明的三元材料,优选情况下,所述三元材料具有通式LiNi1-x-yCoxMyO2所示组成,其中M为Mn或Al,且0.05≤x≤0.4,0.03≤y≤0.5。
根据本发明的三元材料,通过控制一次粒子的平均粒径,能够调整三元材料中锂离子的脱嵌路径。优选情况下,所述一次粒子的平均粒径小于500nm,优选为10-200nm。通过缩小一次粒径的尺寸,以所选三元材料中锂离子的脱嵌路径,进而进一步优化应用该三元材料的锂电池的容量、低温和倍率性能。
根据本发明的三元材料,通过控制中间粒子的平均粒径,有利于调整三元材料的压实密度和能量密度,优选情况下,所述中间粒子的平均粒径小于3μm,优选为500nm-2μm。通过调整中间粒子的尺寸,有利于在降低一次粒子粒径的情况下,提高三元材料的压实密度和能量密度,进而进一步优化应用该三元材料的锂电池的容量、低温和倍率性能。
根据本发明的三元材料,通过控制中间层级和二次球的颗粒尺寸和致密度,有利于在降低相同重量下三元材料的比表面积和孔隙率,提高三元材料的压实密度,降低热膨胀和电阻变化。优选情况下,所述二次球的平均粒径为1-20μm,优选为5-20μm。
根据本发明的三元材料,上述一次粒子、中间粒子和二次球的平均粒径的计算方法为在10K放大倍数的SEM照片中,依次量出100个目标颗粒的尺寸,然后求出平均值作为该层级颗粒的平均粒径。
根据本发明的三元材料,通过控制一次粒子、中间粒子、二次球的粒径从而调整三元材料整体的压实密度,有利于优化应用该三元材料的锂电池的容量、低温和倍率性能。优选情况下,所述三元材料的压实密度大于3.2g/cm3, 优选大于3.3g/cm3,更优选为3.4-3.7g/cm3
根据本发明的三元材料,通过调整三元材料的粉体阻抗,有利于改善锂电池在高温储存和循环过程中,正极表面三元材料层的厚度和内阻变化,以优化相应锂电池的高温储存性能和循环性能。优选情况下,所述三元材料的粉体阻抗在500N的压力下,纯三元材料粉体阻抗为0.1-13kΩ,优选为0.1-5kΩ,更优选为0.1-1kΩ。
同时,在本发明中还提供了一种三元材料的制备方法,该制备方法包括以下步骤:S1、将可溶性的镍盐、钴盐、M盐、第一锂源、以及氧化剂体系溶解在溶剂中,配制混合溶液,所述M为锰或铝;S2、促使所述混合溶液发生氧化反应,并在反应后过滤、清洗、干燥氧化反应产物得到前驱体粉末,然后在所述前驱体粉末中混入第二锂源,得到混合粉末;S3、对所述混合粉末进行一次烧结,得到二次球;S4、对所述二次球进行二次烧结,得到所述三元材料;其中,所述二次烧结的温度高于所述一次烧结的温度。
本发明所提供的方法,能够形成本发明上述具有三层级颗粒的三元材料,而且,该方法通过在所述前驱体粉末中混入第二锂源,不但能满足三元材料对于锂盐含量的要求,而且还能够降低分散在二次球表面多余锂盐的含量,进而降低材料的PH值和的粉体阻抗,进而降低电池在高温储存和循环过程中厚度的增加值、以及内阻的增加值。
根据本发明的制备方法,所述一次粒子的平均粒径小于500nm,优选为10-200nm;所述中间粒子的平均粒径小于3μm,优选为500nm-2μm,所述二次球的平均粒径为1-20μm,优选为5-20μm。
根据本发明的制备方法,所述氧化剂体系包括氧化剂和pH值调节剂,所述S1配制混合溶液的步骤包括:S11、将镍盐、钴盐、以及M盐溶解于溶剂中,形成溶液A;S12、将氧化剂溶解于溶剂中,形成溶液B;S13、将pH值调节剂和第一锂源溶于溶剂中,形成溶液C;S14、将所述溶液A、溶 液B和溶液C搅拌混合,并在混合后持续搅拌30-60min,得到所述混合溶液;其中,所述M盐和所述氧化剂同时为高锰酸钾时,所述高猛酸钾部分溶于溶液A中,部分溶于溶液B中,或者全部溶于溶液B中。
根据本发明的制备方法,所述混合溶液中Ni、Co和M元素的摩尔比为(1-x-y):x:y,其中0.05≤x≤0.4,0.03≤y≤0.5。
根据本发明的制备方法,所述混合溶液中Li的摩尔量为Ni、Co和M总摩尔用量的1至8倍。通过将第一锂源的摩尔用量控制在该范围内,有利于使得进入晶格位置的锂满足所需量的70~80%。
根据本发明的制备方法,所述氧化剂的用量为使得混合溶液中Ni、Co和M三者的综合价态为正3价,其可以根据本领域所常规采用的原料和用量进行选择;优选地,所述氧化剂为选自双氧水、高锰酸钾和硫代硫酸钠中的一种或多种;优选地,所述PH调节剂为选自氨水、氢氧化钠、氢氧化钾、硫酸、硝酸和盐酸中的一种或多种。其中当所述氧化剂为高锰酸钾时,高猛酸钾也能向混合溶液中提供锰离子,此时,需降低锰源的用量,使得混合溶液中锰离子的总摩尔量为所需量。
在本发明中所提及的“Ni、Co和M三者的综合价态为正3价”是指Ni的化合价与摩尔数的乘积、Co的化合价与摩尔数的乘积、以及M的化合价与摩尔数的乘积的加和与Ni、Co和M三者的总摩尔数的比值为3。
根据本发明的制备方法,优选情况下所述氧化剂为高锰酸钾,所述pH调节剂为氢氧化钠和氨水(NH3·H2O)的混合物,且氢氧化钠和氨水的比例为摩尔比为1-10:1,所述pH调节剂的添加量为使得混合溶液的pH值为8-10。
根据本发明的制备方法,优选情况下,配制溶液A、溶液B和溶液C的溶剂包括但不限于去离子水、乙醇和丙酮中的一种或几种。优选所述溶剂为去离子水。优选情况下,所配制的溶液A、溶液B和溶液C的浓度并没 有特殊要求,优选情况下,所述溶液A的浓度为0.1~3mol/L,所述溶液B的浓度为0.1~3mol/L,所述溶液C的浓度为0.1~3mol/L。
根据本发明的制备方法,优选情况下,所述S14中,在惰性气氛下,将所述溶液A、溶液B和溶液C搅拌混合。其中所述惰性气氛是通过充入氮气、氩气和氦气中的一种或多种形成。
根据本发明的制备方法,对于所述S2中氧化反应的条件可以没有要求,只要能够促使混合溶液中Ni、Co和M元素发生反应至综合价态为正3价即可,优选情况下,所述氧化反应的条件包括:先向反应器内部充入含氧气体至反应器内部压力为0.6-1.2Mpa,然后在密封条件下,将所述反应器内部温度升至170-220℃温度,恒温恒压反应8h以上。在高温高压下,能够保证锂、镍、钴、锰的充分反应结晶。
根据本发明的制备方法,对于所述S2中氧化反应所采用的含氧气体可以没有特殊要求,优选含氧气体中氧气含量越高越好。然而出于原料成本考虑,优选在所述混合溶液中Ni的摩尔量为Ni、Co和Mn元素的总摩尔数的50wt%以上时,所述含氧气体中氧气含量为50体积%以上。通过增加所通入的含氧气体中的氧气,更有利于促使Ni元素发生氧化反应,其中,所述含氧气体为氧气、空气或两者的混合气体。
根据本发明的制备方法,对于所述S2中干燥所述反应产物得到前驱体粉末的步骤并没有特殊要求,采用本领域的常规技术方法即可,例如包括但不限于真空干燥、惰性气体保护加热干燥、冷冻干燥、闪蒸干燥、高速混合机抽真空干燥、喷雾干燥等。在本发明中优选采用喷雾干燥的方式。
根据本发明的制备方法,在氧化反应后,还包括过滤和清洗的步骤,该步骤会去除氧化反应产物中多余的Li离子。优选情况下,对于前述过滤步骤所生产的滤液进行冷冻结晶处理,以回收滤液中多余的锂盐等,以避免原料浪费,降低原料成本。优选情况下,清洗的步骤采用去离子水、乙醇和丙 酮进行清洗,且经清洗所得到的清洗液可以进行冷冻结晶处理,以回收滤液中多余的锂盐,同时脱除了多余锂盐(和钾盐)的去离子水可作为溶剂回用于溶液A、B和C配制过程。
根据本发明的制备方法,优选情况下,所述S2在所述前驱体粉末中混入第二锂源的步骤包括:先测量所述前驱体粉末中Li、Ni、Co和Mn的摩尔量(例如采用原子吸收光谱测量法AAS和/或ICP光谱分析测量法),并计算Li与Ni、Co和Mn总量的摩尔比;根据Li与Ni、Co和Mn总量的摩尔比,换算第二锂源的加入量,使得混合粉末中,Li与Ni、Co和Mn总量的摩尔比为(1-1.1):1;按比例将所述前驱体粉末与可选的第二锂源混合,得到混合粉体。
根据本发明的制备方法,对于所述S3中一次烧结的条件并没有特殊要求,可以参照本领域在制备二次球(对应于现有技术中由一次粒子团聚形成的一次球)进行烧结的过程中的常规烧结温度。优选情况下,所述一次烧结的条件包括:在600-900℃,优选700-800℃,含氧气氛下,烧结8h以上,优选烧结8-24h。
根据本发明的制备方法,对于所述S4中二次烧结的条件并没有特殊要求,只要该温度比一次烧结的温度高即可。优选情况下,所述二次烧结的条件包括:在900-1100℃,优选900-1000℃,含氧气氛下,烧结10-60min。
根据本发明的制备方法,在完成一次烧结以及二次烧结处理的步骤后,还进一步包括冷却所生产的颗粒物的步骤,该步骤可以是自然冷却,也可以通过控制外部温度进行的加速冷却。
根据本发明的制备方法,所述镍源为选自硫酸镍、硝酸镍和氯化镍中的一种或多种;所述钴源为选自硫酸钴、硝酸钴和氯化钴中的一种或多种;所述锰源为选自硫酸锰、硝酸锰、氯化锰和高锰酸钾中的一种或多种;所述第一锂源和第二锂源分别独立为选自氢氧化锂、碳酸锂、氯化锂、硝酸锂和硫 酸锂中的一种或多种。优选情况下,所述第一锂源为氢氧化锂。
根据本发明的制备方法,所涉及的搅拌混合的步骤可以在任选的机械搅拌机、剪切机、均质机或高速混合机中运行。
此外,根据本发明的第三个方面,还提供了一种由上述制备方法制备获得的三元材料。该三元材料具有通式LiNi1-x-yCoxMyO2所示组成,其中所述M为Mn或Al,0<x<1,0<y<1,x+y<1;且所述三元材料的颗粒物中包括粒径由小到大的三层级颗粒,所述三层级颗粒包括具有晶体结构的一次粒子,由多颗一次粒子局部熔融形成的中间粒子,以及由中间粒子团聚形成的二次球。由该方法所制备的三元材料具有与前述三元材料相同的结构与性质,具体说明如前所述。
另外,根据本发明的第四个方面,还提供了一种电池浆料,该电池浆料是由上述三元材料配制形成的固含量为10-70wt%的浆料。该电池浆料中还包括粘结剂和导电剂。其中粘结剂和导电剂的种类和用量均可以参照本领域常规选择,例如粘结剂可以为聚偏氟乙烯等,导电剂可以为乙炔黑等。三元材料、导电剂和粘结剂的重量比为100:4:4。
根据本发明的第五个方面,还提供了一种正极,该正极包括集流体和设置在所述集流体上的正极材料层,所述正极材料层包括本发明三元材料。优选地,上述集流体可以参照本领域常规使用的导电金属材料,例如包括但不限于铂(Pt)箔、钯(Pd)箔、铝(Al)箔等。
根据本发明的第六个方面,还提供了一种锂电池,所述锂电池包括正极,该正极包括(为)本发明上述正极。本发明所提供的这种锂电池,通过采用本发明所提供的上述正极,有利于提高电池的常温循环性能及高温循环性能。
以下将结合具体实施例与对比例进一步说明本发明三元材料及其制备方法与电池浆料和锂电池的有益效果。
在如下实施例和对比例中一次粒子、中间粒子和二次球的颗粒平均粒径通过10K放大倍数的SEM照片,依次量取100个目标颗粒的尺寸,然后求平均值作为该层级颗粒的平均粒径的方法测量;压实密度通过将三元材料与导电剂(乙炔黑)和粘结剂(聚偏氟乙烯)按照重量比100:4:4分散在溶液N-甲基吡咯烷酮(NMP)中形成电池浆料,将所述电池浆料涂布在厚度为12μm的光面铝箔上,然后进行烘干、冲切、2Mpa压力下压片形成厚度为37μm的正极,计算所制备的正极上单位体积内所敷三元材料的重量的方法测量;粉体阻抗通过在500N压力下将粉体压实,并在500N恒压力下,直接测试粉体的电阻的方法测量。
在如下实施例和对比例中扫描电子显微镜(SEM)图谱是采用S4800扫描电子显微镜,在电压为5KV,不同倍数下拍摄获取的,其中样品是将三元材料粉末粘在导电胶带上,进行喷金处理获得,且该样品在测试前在真空干燥箱中进行干燥保存。
实施例1
用于说明本发明三元材料及其制备方法,具体制备方法如下:
将1mol的NiSO4·6H2O(纯度为99.5%)、1molCoSO4·7H2O(纯度为99.5%)、0.4molMnSO4·H2O(纯度为99.5%)用15L去离子水溶解后形成溶液A,将0.6molKMnO4(纯度为99.7%)用1.5L去离子水溶解后形成溶液B,将3molLiOH·H2O、6molNaOH和0.6molNH3·H2O用15L去离子水溶解形成溶液C,将溶液A、B和C分别用计量泵同步并流加入到反应釜中,边滴加边搅拌反应,过程用N2对浆料进行气氛保护,滴加完毕后持续搅拌30min形成混合溶液(pH值为8.5),然后将所得到的混合溶液泵入到50L高压反应釜中(填充度约为70%),然后向其中充入空气(空气氧气含量为20.947体积%)至压力为0.8MPa,将反应器升温至200℃,然后氧化反应24小时, 自然冷却后对浆料进行过滤、去离子水洗涤三次,最后用喷雾干燥机对浆料喷雾造粒(进口温度为260℃,出风口温度为110℃),获得前驱体粉末D(平均粒径为103nm);
通过AAS测量法和IPC测量法联合测量前驱体粉末D中Li、Ni、Co和Mn的摩尔量,经计算Li、Ni、Co和Mn的摩尔比为0.78:0.34:0.33:0.33。向1mol的所述前驱体粉末D(Li0.78Ni1/3Co1/3Mn1/3O2)中加入0.14molLi2CO3(纯度为99.5%)进行混合形成混合粉末,并将所述混合粉末装入坩埚中,在管式炉中,通入压缩空气,在800℃下恒温烧结14小时,然后升温至960℃继续烧结20分钟,自然冷却后即得到Li1.06Ni1/3Co1/3Mn1/3O2材料。
如图1和图2所示,图1和图2为前述制备的Li1.06Ni1/3Co1/3Mn1/3O2材料的不同倍率下的扫描电子显微镜(SEM)图谱,由图1可以看出上述Li1.06NiCoMnO2材料的二次球尺寸相对均匀,经计算二次球的平均粒径为11.2μm;由图2可以看出上述Li1.06Ni1/3Co1/3Mn1/3O2材料的二次球由中间粒子团聚而成,而在中间粒子中存在明显的一次粒径的晶体的边界线;且经计算中间粒子的平均粒径为896nm,一次粒子的平均粒径为142nm。前述制备的Li1.06Ni1/3Co1/ 3Mn1/3O2材料的压实密度为3.56g/cm3,粉体阻抗为0.2KΩ。
实施例2
用于说明本发明三元材料及其制备方法,具体制备方法如下:
将1.5mol的NiSO4·6H2O(纯度为99.5%)、0.6molCoSO4·7H2O(纯度为99.5%)、0.45molMnSO4·H2O(纯度为99.5%)一起用15L去离子水溶解后形成溶液A,将0.45molKMnO4用1.5L去离子水溶解后形成溶液B,将6molLiOH·H2O、6molNaOH和0.9molNH3·H2O用15L去离子水溶解形成溶液C,将溶液A、B和C分别用计量泵同步并流加入到反应釜中,边滴加 边搅拌反应,过程用N2对浆料进行气氛保护,滴加完毕后持续搅拌30min形成混合溶液(pH值为8.8),然后将所得到的混合溶液泵入到50L高压反应釜中(填充度约为70%),然后向其中充入纯氧气体(氧含量为99.999%)至压力为0.6MPa,将反应器升温至220℃,然后氧化反应20小时,自然冷却后对浆料进行过滤、去离子水洗涤三次,最后用喷雾干燥机对浆料喷雾造粒(进口温度为260℃,出风口温度为110℃),获得前驱体粉末D(平均粒径为122nm);
通过AAS测量法和IPC测量法联合测量前驱体粉末D中Li、Ni、Co和Mn的摩尔量,经计算Li、Ni、Co和Mn的摩尔比为0.81:0.51:0.19:0.30。向1mol的前驱体粉末D和0.099molLi2CO3(纯度为99.7%)进行混合形成混合粉末,并将所述混合粉末装入坩埚中,在管式炉中,通入压缩空气,在700℃下恒温烧结20小时,然后升温至900℃继续烧结30分钟,自然冷却后即得到Li1.04Ni0.51Co0.19Mn0.3O2材料。
由前述制备的Li1.04Ni0.51Co0.19Mn0.3O2材料的不同倍率下的扫描电子显微镜(SEM)图谱可以计算出,该Li1.04Ni0.51Co0.19Mn0.3O2材料的二次球的平均粒径为12.4μm,中间粒子的平均粒径为893nm,一次粒子的平均粒径为126nm。且经检测可知前述制备的Li1.04Ni0.51Co0.19Mn0.3O2材料压实密度为3.61g/cm3,粉体阻抗为0.24KΩ。
实施例3
用于说明本发明三元材料及其制备方法,具体制备方法如下:
将1.8mol的NiSO4·6H2O(纯度为99.5%)、0.6molCoSO4·7H2O(纯度为99.5%)、0.45molMnSO4·H2O(纯度为99.5%)一起用15L去离子水溶解后形成溶液A,将0.15molKMnO4用1.5L去离子水溶解后形成溶液B,将24molLiOH·H2O、6molNaOH和0.9molNH3·H2O用15L去离子水溶解形成 溶液C,将溶液A、B和C分别用计量泵同步并流加入到反应釜中,边滴加边搅拌反应,过程用N2对浆料进行气氛保护,滴加完毕后持续搅拌30min形成混合溶液(pH值为9.6),然后将所得到的混合溶液泵入到50L高压反应釜中(填充度约为70%),然后向其中充入纯氧气体(氧含量为99.999wt%)至压力为1.2MPa,将反应器升温至170℃,然后氧化反应10小时,自然冷却后对浆料进行过滤、去离子水洗涤三次,最后用喷雾干燥机对浆料喷雾造粒(进口温度为260℃,出风口温度为110℃),获得前驱体粉末D(平均粒径为114nm);
通过AAS测量法和IPC测量法联合测量前驱体粉末D中Li、Ni、Co和Mn的摩尔量,经计算Li、Ni、Co和Mn的摩尔比为0.86:0.61:0.19:0.20。向1mol的前驱体粉末D和0.08molLi2CO3(纯度为99.7%)进行混合形成混合粉末,并将所述混合粉末装入坩埚中,在管式炉中,通入压缩空气至压力为0.8MPa,在750℃下恒温烧结12小时,然后升温至100℃继续烧结15分钟,自然冷却后即得到Li1.02Ni0.61Co0.19Mn0.2O2材料。
由前述制备的Li1.02Ni0.61Co0.19Mn0.2O2材料的不同倍率下的扫描电子显微镜(SEM)图谱可以计算出,该Li1.02Ni0.61Co0.19Mn0.2O2材料的二次球的平均粒径为12.6μm,中间粒子的平均粒径为884nm,一次粒子的平均粒径为118nm。且经检测可知前述制备的Li1.02Ni0.61Co0.19Mn0.2O2材料压实密度为3.61g/cm3,粉体阻抗为0.3KΩ。
实施例4
用于说明本发明三元材料及其制备方法,具体制备方法如下:
将2.1mol的NiSO4·6H2O(纯度为99.5%)和0.45molCoSO4·7H2O(纯度为99.5%)一起用15L去离子水溶解后形成溶液A,将0.45molKMnO4用1.5L去离子水溶解后形成溶液B,将3molLiOH·H2O、10.5molLi2SO4、6molNaOH和1.2molNH3·H2O用15L去离子水溶解形成溶液C,将溶液A、B和C分别用计量泵同步并流加入到反应釜中,边滴加边搅拌反应,过程用N2对浆料进行气氛保护,滴加完毕后持续搅拌30min形成混合溶液(PH为8.6),然后将所得到的混合溶液泵入到50L高压反应釜中(填充度约为70%),然后向其中充入纯氧气体(氧含量为99.999wt%)至压力为0.8MPa,将反应器升温至183℃,然后氧化反应20小时,自然冷却后对浆料进行过滤、去离子水洗涤三次,最后用喷雾干燥机对浆料喷雾造粒(进口温度为260℃,出风口温度为110℃),获得前驱体粉末D(平均粒径为128nm);
通过AAS测量法和IPC测量法联合测量前驱体粉末D中Li、Ni、Co和Mn的摩尔量,经计算Li、Ni、Co和Mn的摩尔比为0.74:0.70:0.15:0.15。向1mol的前驱体粉末D和0.28molLiOH(纯度为99.27%)进行混合形成混合粉末,并将所述混合粉末装入坩埚中,在管式炉中,通入99.999%的纯氧气,在780℃下恒温烧结24小时,然后升温至910℃继续烧结20分钟,自然冷却后即得Li1.02Ni0.7Co0.15Mn0.15O2材料。
由前述制备的Li1.02Ni0.7Co0.15Mn0.15O2材料的不同倍率下的扫描电子显微镜(SEM)图谱可以计算出,该Li1.02Ni0.7Co0.15Mn0.15O2材料的二次球的平均粒径为12.9μm,中间粒子的平均粒径为927nm,一次粒子的平均粒径为134nm。且经检测可知前述制备的Li1.02Ni0.7Co0.15Mn0.15O2材料压实密度为3.62g/cm3,粉体阻抗为0.19KΩ。
实施例5
用于说明本发明三元材料及其制备方法,具体制备方法如下:
将2.4mol的NiSO4·6H2O(纯度为99.5%)、0.3molCoSO4·7H2O(纯度为99.5%)一起用15L去离子水溶解后形成溶液A,将0.3molKMnO4用1.5L去离子水溶解后形成溶液B,将9molLiOH·H2O、7.5molLi2SO4、7.5molNaOH 和0.9molNH3·H2O用15L去离子水溶解形成溶液C,将溶液A、B和C分别用计量泵同步并流加入到反应釜中,边滴加边搅拌反应,过程用N2对浆料进行气氛保护,滴加完毕后持续搅拌30min形成混合溶液(pH值为9.0),然后将所得到的混合溶液泵入到50L高压反应釜中(填充度约为70%),然后向其中充入纯氧气体(氧含量为99.999wt%)至压力为0.8MPa,将反应器升温至180℃,然后氧化反应24小时,自然冷却后对浆料进行过滤、去离子水洗涤三次,最后用喷雾干燥机对浆料喷雾造粒(进口温度为260℃,出风口温度为110℃),获得前驱体粉末D(粒径为102nm);
通过AAS测量法和IPC测量法联合测量前驱体粉末D中Li、Ni、Co和Mn的摩尔量,经计算Li、Ni、Co和Mn的摩尔比为0.70:0.79:0.11:0.1。向1mol的前驱体粉末D和0.31molLiOH(纯度为99.27%)进行混合形成混合粉末,并将所述混合粉末装入坩埚中,在管式炉中,通入99.999%纯氧气,在760℃下恒温烧结18小时,然后升温至900℃继续烧结20分钟,自然冷却后即得到Li1.01Ni0.79Co0.11Mn0.1O2材料。
由前述制备的Li1.01Ni0.79Co0.11Mn0.1O2材料的不同倍率下的扫描电子显微镜(SEM)图谱可以计算出,该Li1.01Ni0.79Co0.11Mn0.1O2材料的二次球的平均粒径为13.7μm,中间粒子的平均粒径为706nm,一次粒子的平均粒径为140nm。且经检测可知前述制备的Li1.01Ni0.79Co0.11Mn0.1O2材料压实密度为3.56g/cm3,粉体阻抗为0.43KΩ。
实施例6
用于说明本发明三元材料及其制备方法,具体制备方法如下:参照实施例1,区别在于,将所述混合粉末装入坩埚中,在管式炉中,通入压缩空气,在900℃下恒温烧结14小时,然后升温至1100℃继续烧结30分钟,自然冷却后即得到Li1.06Ni1/3Co1/3Mn1/3O2材料。
由前述制备的Li1.06Ni1/3Co1/3Mn1/3O2材料的不同倍率下的扫描电子显微镜(SEM)图谱可以计算出,该Li1.06Ni1/3Co1/3Mn1/3O2材料的二次球的平均粒径为12.4μm,中间粒子的平均粒径为2.6μm,一次粒子的平均粒径为226nm。且经检测可知前述制备的Li1.06Ni1/3Co1/ 3Mn1/3O2材料压实密度为3.6g/cm3,粉体阻抗为0.3KΩ。
实施例7
用于说明本发明三元材料及其制备方法,具体制备方法如下:
将2.46mol的NiSO4·6H2O(纯度为99.5%)、0.45molCoSO4·7H2O(纯度为99.5%)、0.03molAl3(SO4)2(纯度为99.5%)一起用15L去离子水溶解后形成溶液A,将0.45mol硫代硫酸钠用1.5L去离子水溶解后形成溶液B,将24molLiOH·H2O、6molNaOH和0.9molNH3·H2O用15L去离子水溶解形成溶液C,将溶液A、B和C分别用计量泵同步并流加入到反应釜中,边滴加边搅拌反应,过程用N2对浆料进行气氛保护,滴加完毕后持续搅拌30min形成混合溶液(pH值为9.7),然后将所得到的混合溶液泵入到50L高压反应釜中(填充度约为70%),然后向其中充入纯氧气体(氧含量为99.999wt%)至压力为1.5MPa,将反应器升温至180℃,然后氧化反应24小时,自然冷却后对浆料进行过滤、去离子水洗涤三次,最后用喷雾干燥机对浆料喷雾造粒(进口温度为260℃,出风口温度为110℃),获得前驱体粉末D(粒径为146nm);
通过AAS测量法和IPC测量法联合测量前驱体粉末D中Li、Ni、Co和Mn的摩尔量,经计算Li、Ni、Co和Al的摩尔比为0.8:0.82:0.15:0.03。向1mol的前驱体粉末D和0.21molLiOH(纯度为99.27%)进行混合形成混合粉末,并将所述混合粉末装入坩埚中,在管式炉中,通入99.999%纯氧气,在760℃下恒温烧结18小时,然后升温至900℃继续烧结10分钟,自然冷却后即得到Li1.01Ni0.82Co0.15Al0.03O2材料。
由前述制备的Li1.01Ni0.82Co0.15Al0.03O2材料的不同倍率下的扫描电子显微镜(SEM)图谱可以计算出,该Li1.01Ni0.82Co0.15Al0.03O2材料的二次球的平均粒径为14.2μm,中间粒子的平均粒径为1135nm,一次粒子的平均粒径为153nm。且经检测可知前述制备的Li1.01Ni0.82Co0.15Al0.03O2材料压实密度为3.64g/cm3,粉体阻抗为0.11KΩ。
对比例1
用于参比说明本发明三元材料及其制备方法,具体制备方法如下:
将1mol的NiSO4·6H2O(纯度为99.5%)、1molCoSO4·7H2O(纯度为99.5%)、1molMnSO4·H2O(纯度为99.5%)用15L去离子水溶解后形成溶液A,将6molNaOH和0.6molNH3·H2O用15L去离子水溶解形成溶液B,将溶液A、B分别用计量泵同步并流加入到反应釜中,边滴加边搅拌反应,过程用N2对浆料进行气氛保护,滴加完毕后持续搅拌180min形成混合溶液,然后将所得沉淀物用去离子水过滤洗涤三次,然后在真空烘箱中,在110℃和N2保护下烘干24小时,即获得前驱体粉末C(二次球平均粒径为12μm);
通过AAS测量法和IPC测量法联合测量前驱体粉末C中Ni、Co和Mn的摩尔量,经计算Ni、Co和Mn的摩尔比为0.34:0.33:0.33。向1mol的所述前驱体粉末C中加入0.53molLi2CO3(纯度为99.5%)进行混合形成混合粉末,并将所述混合粉末装入坩埚中,在管式炉中,通入压缩空气,在950℃下恒温烧结14小时,然后自然冷却后即得到Li1.06Ni1/3Co1/3Mn1/3O2材料。
由图3可以看出上述Li1.06Ni1/3Co1/3Mn1/3O2材料由最小的一次粒子和由一次颗粒聚集而成的二次球两个层级的颗粒组成,其中并不存在中间粒子,从图中可以看出,一次粒子的尺寸较大,平均粒径达到532nm,二次球的平均粒径在12.4μm左右,由前述制备的Li1.06Ni1/3Co1/3Mn1/3O2材料的压实密度 为3.59g/cm3,粉体阻抗为26KΩ。
对比例2
用于参比说明本发明三元材料及其制备方法,具体制备方法如下:
将40mol正极材料前驱体Ni0.5Co0.2Mn0.3(OH)2,40molLiOH,20L纯水加入到高压反应釜中,然后再升温至220℃,在该温度下恒温2h后,用增压泵加入30mol双氧水,再恒温5h后;降温至室温,经过压滤洗涤后将待烧结产物。将该产物送入马弗炉中,在纯氧流量为0.8m3/h下,以5℃/min的速率升温,然后50℃恒温烧结2h,100℃恒温烧结2h,迅速升温到500℃恒温烧结4h,780℃恒温烧结16h。制成的LiNi0.5Co0.2Mn0.3O2正极材料。
由图4可以看出上述LiNi0.5Co0.2Mn0.3O2材料存在最小的一次粒子,且一次粒子较为松散,并未形成紧密团聚的二次球结构,经计算该一次粒子的平均粒径为121nm;且由前述制备的LiNi0.5Co0.2Mn0.3O2材料的压实密度为1.8g/cm3,粉体阻抗为15KΩ。
对比例3
用于参比说明本发明三元材料及其制备方法,其中制备三元材料的方法:参照实施例2中方法,其中在形成混合粉末后,将所述混合粉末装入坩埚中,在管式炉中,通入压缩空气,在960℃下恒温烧结24小时,自然冷却后即得到Li1.04Ni0.51Co0.19Mn0.3O2材料。
由前述制备的Li1.04Ni0.51Co0.19Mn0.3O2材料的不同倍率下的扫描电子显微镜(SEM)图谱可以计算出,该Li1.01Ni0.82Co0.15Al0.03O2材料的由最小的一次粒子和由一次颗粒聚集而成的二次球两个层级的颗粒组成,其中并不存在中间粒子,从图中可以看出,二次球的平均粒径为12.9μm,一次粒子的平均粒径为659nm。且经检测可知前述制备的Li1.01Ni0.82Co0.15Al0.03O2材料压实密度 为3.5g/cm3,粉体阻抗为0.4KΩ。
对比例4
用于参比说明本发明三元材料及其制备方法,其中制备三元材料的方法:参照实施例1中方法,其中不包括向前驱体粉末D中加入Li2CO3进行混合形成混合粉末的步骤,直接将前驱体粉末D装入职坩埚中,进行后续烧结步骤。
由前述制备的Li0.78Ni1/3Co1/3Mn1/3O2材料的不同倍率下的扫描电子显微镜(SEM)图谱可以计算出,该Li0.78Ni1/3Co1/3Mn1/3O2材料的二次球的平均粒径为12.2μm,中间粒子的平均粒径为903nm,一次粒子的平均粒径为124nm。且经检测可知前述制备的Li0.78Ni1/3Co1/ 3Mn1/3O2材料压实密度为3.62g/cm3,粉体阻抗为18KΩ。
应用例
(1)电池浆料、正极和锂电池的制备。
将实施例1至7和对比例1至4所制备的三元材料与导电剂(乙炔黑)和粘结剂(聚偏氟乙烯)按照重量比100:4:4分散在溶液N-甲基吡咯烷酮(NMP)中形成电池浆料;
将所述电池浆料涂布在厚度为12μm的光面铝箔上,然后进行烘干、冲切、2Mpa压力下压片形成厚度为37μm的正极;
应用所述正极制作053450型单片电池,在该电池中负极材料为天然石墨,隔膜材料为商购自Celgard公司的Celgard PE膜,电解液为1mol/LLiPF6/(EC+DMC)(其中LiPF6为六氟磷酸锂,EC为碳酸乙烯酯,DMC为碳酸二甲酯,EC与DMC的体积比为1:1)。
其中,应用实施例1至7和对比例1至4所制备的三元材料制作的电池, 分别记为S1至S7和D1至D4。
(2)电化学性能测试
测试项目及方法如下:
-20℃容量保持率测试:电池在室温1C倍率下,恒流充电到4.3V,然后在4.3V下恒压到电流为0.1C时截止,然后在1C下恒流放电到2.5V,接着再在1C倍率下,恒流充电到4.3V,然后在4.3V下恒压到电流为0.1C时截止,将电池放入-20℃的冷柜中,在1C倍率下恒流放电到2.5V,此时-20℃下的放电容量与室温下的放电容量的比值即为该电池的低温容量保持率;
5C倍率下的放电容量保持率测试:0.2C倍率下CCCV充到4.3V,截止电流为0.02C,然后在5C倍率下CC放电到2.5V,5C倍率下的放电容量与0.2C倍率的放电容量的比值为5C倍率下的放电倍率效率。
60℃、30天容量恢复率测试:将电池0.5CCCV下充满电,然后将电池置于60℃的烘箱中储存30天,取出后在0.5C下放电到2.5V,接着在0.5CCCV下充电到4.3V,接着放电到2.5V,经过高温储存后的电池充电容量与储存前的充电容量的比值即为该电池的高温储存容量恢复率;
60℃、1C、500次容量保持率测试:在60℃的环境中,在1C倍率下,电池经过500次充放电循环后,第500次与第1次的容量的比值即为该电池的高温循环容量保持率;
电池厚度增加值:在60℃的环境中,在1C倍率下,电池经过500次充放电循环后,第500次与第1次厚度的差值即为该电池的厚度变化值;
电池内阻增加值测试:在60℃的环境中,在1C倍率下,电池经过500次充放电循环后,第500次与第1次的电池阻抗的差值即为该电池内阻增加值;
测试结果:如表1和表2所示。
表1.
S1 S2 S3 S4 S5
-20℃容量保持率(%) 66 65.3 65.4 62.2 62.1
5C倍率下的放电容量保持率(%) 95 94.1 94.2 93.1 92.3
60℃、30天容量恢复率(%) 98.2 96.1 94.7 93.6 92.7
60℃、1C、500次容量保持率(%) 87.8 87.5 87.2 84.6 82.3
60℃、1C、500次电池厚度增加值(mm) 0.19 0.2 0.22 0.26 0.28
60℃、1C、500次电池内阻增加值(mΩ) 1.5 1.6 1.6 1.9 2.1
表2.
S6 S7 D1 D2 D3 D4
-20℃容量保持率(%) 63.8 64.2 52.7 60.4 54.6 54.3
5C倍率下的放电容量保持率(%) 93.4 93.6 82.7 91.5 84.6 86.4
60℃、30天容量恢复率(%) 94.4 91.9 92.8 84.3 92.4 88.5
60℃、1C、500次容量保持率(%) 83.8 81.7 87.1 80.3 86.9 81.2
60℃、1C、500次电池厚度增加值(mm) 0.27 0.28 0.24 0.37 0.31 0.32
60℃、1C、500次电池内阻增加值(mΩ) 2.2 2.2 1.8 2.6 2.3 2.5
由此可见,与电池D1-D4相比,应用在本发明所提供的三元材料的颗粒物制备的电池S1-S7具有如下技术效果:
(1)通过形成一次粒子,利用一次粒子粒径较小的特点,使得三元材料具有短的锂离子脱嵌路径,进而优化应用该三元材料的低温和倍率性能;
(2)通过形成二次球,将一次粒子团聚在一起,以降低相同质量下的三元材料的比表面积和孔隙率,提高三元材料的压实密度,降低热膨胀和电阻变化,以提高应用该三元材料的锂电池的安全性能
(3)通过形成中间粒子,使得团聚在二次球中的松散的一次粒子能部 分融合在一起,以提高三元材料的压实密度、能量密度,并优化应用该三元材料的锂电池的热储存性能和热循环性能。
(4)通过使得三元材料的颗粒物中同时包括三层级颗粒,使其同时兼备了小颗粒的优异低温、倍率性能和大颗粒的好高温储存、高温循环性能。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (20)

1.一种三元材料,其特征在于,所述三元材料具有通式LiNi1-x-yCoxMyO2所示组成,其中所述M为Mn或Al,0<x<1,0<y<1,x+y<1;且所述三元材料的颗粒物中包括粒径由小到大的三层级颗粒,所述三层级颗粒包括具有晶体结构的一次粒子,由多颗一次粒子局部熔融形成的中间粒子,以及由中间粒子团聚形成的二次球。
2.根据权利要求1所述的三元材料,其中,所述三元材料的通式LiNi1-x-yCoxMyO2中,0.05≤x≤0.4,0.03≤y≤0.5。
3.根据权利要求1所述的三元材料,其中,所述一次粒子的平均粒径小于500nm,优选为10-200nm;所述中间粒子的平均粒径小于3μm,优选为500nm-2μm,所述二次球的平均粒径为1μm-20μm,优选为5-20μm。
4.根据权利要求1所述的三元材料,其中,所述三元材料的压实密度大于3.2g/cm3,优选为3.4-3.7g/cm3
5.根据权利要求1所述的三元材料,其中,所述三元材料的粉体阻抗为0.1-13KΩ,优选为0.1-5KΩ,更优选为0.1-1KΩ。
6.一种三元材料的制备方法,其特征在于,所述制备方法包括以下步骤:
S1、将可溶性的镍盐、钴盐、M盐、第一锂源、以及氧化剂体系溶解在溶剂中,配制混合溶液,所述M为锰或铝;
S2、促使所述混合溶液发生氧化反应,并在反应后过滤、清洗、干燥氧化反应产物得到前驱体粉末,然后在所述前驱体粉末中混入第二锂源,得到混合粉末;
S3、对所述混合粉末进行一次烧结,得到二次球;
S4、对所述二次球进行二次烧结,得到所述三元材料;
其中,所述二次烧结的温度高于所述一次烧结的温度。
7.根据权利要求6所述的制备方法,其中,所述一次粒子的平均粒径小于500nm,优选为10-200nm;所述中间粒子的平均粒径小于3μm,优选为500nm-2μm,所述二次球的平均粒径为1-20μm,优选为5-20μm。
8.根据权利要求6所述的制备方法,其中,所述氧化剂体系包括氧化剂和PH值调节剂,所述S1配制混合溶液的步骤包括:
S11、将镍盐、钴盐、以及M盐溶解于溶剂中,形成溶液A;
S12、将氧化剂溶解于溶剂中,形成溶液B;
S13、将PH值调节剂和第一锂源溶于溶剂中,形成溶液C;
S14、将所述溶液A、溶液B和溶液C搅拌混合,并在混合后持续搅拌30-60min,得到所述混合溶液;
其中,所述M盐和所述氧化剂同时为高锰酸钾时,所述高猛酸钾部分溶于溶液A中,部分溶于溶液B中,或者全部溶于溶液B中。
9.根据权利要求8所述的制备方法,其中,所述混合溶液中Ni、Co和M元素的摩尔比为(1-x-y):x:y,其中,0.05≤x<0.4,0.03≤y<0.5。
10.根据权利要求8所述的制备方法,其中,所述混合溶液中Li的摩尔量为Ni、Co和M总摩尔用量的1至8倍。
11.根据权利要求8所述的制备方法,其中,所述氧化剂的用量为使得混合溶液中Ni、Co和M三者的综合价态为正3价;
优选地,所述氧化剂为选自双氧水、高锰酸钾和硫代硫酸钠中的一种或多种;
优选地,所述PH调节剂为选自氨水、氢氧化钠、氢氧化钾、硫酸、硝酸和盐酸中的一种或多种。
12.根据权利要求6所述的制备方法,其中,所述S2中氧化反应的条件包括:先向反应器内部充入含氧气体至反应器内部压力至0.6-1.2Mpa,然后在密封条件下,将所述反应器内部温度升至170-220℃温度,恒温恒压反应8h以上。
13.根据权利要求6所述的制备方法,其中,所述S2中在所述粉末产物中混入第二锂源的步骤包括:测量所述前驱体粉末中Li、Ni、Co和Mn的摩尔量,并计算Li与Ni、Co和Mn总量的摩尔比;根据Li与Ni、Co和Mn总量的摩尔比,换算第二锂源的加入量,使得混合粉末中Li与Ni、Co和Mn总量的摩尔比为(1-1.1):1;接着按比例将所述前驱体粉末与第二锂源混合,得到混合粉体。
14.根据权利要求6所述的制备方法,其中,所述S3中一次烧结的条件包括:在600-900℃,优选700-800℃,含氧气氛下,烧结8h以上,优选烧结8-24h。
15.根据权利要求6所述的制备方法,其中,所述S4中二次烧结的条件包括:在900-1100℃,优选900-1000℃下,烧结10-60min。
16.根据权利要求6至15所述的制备方法,其中,
所述镍源为选自硫酸镍、硝酸镍和氯化镍中的一种或多种;
所述钴源为选自硫酸钴、硝酸钴和氯化钴中的一种或多种;
所述锰源为选自硫酸锰、硝酸锰、氯化锰和高锰酸钾中的一种或多种;
所述第一锂源和第二锂源分别独立为选自氢氧化锂、碳酸锂、氯化锂、硝酸锂和硫酸锂中的一种或多种,优选所述第一锂盐为氢氧化锂。
17.一种由权利要求6至16中任意一项所述的制备方法制备得到的三元材料。
18.一种电池浆料,其特征在于,所述电池浆料是由权利要求1至5、以及17中任意一项所述的三元材料配制形成的固含量为10-70wt%的浆料组合物。
19.一种正极,所述正极包括集流体和设置在所述集流体上的正极材料层,其特征在于,所述正极材料层包括权利要求1至5、以及17中任意一项所述的三元材料。
20.一种锂电池,所述锂电池包括正极,其特征在于,所述正极包括权利要求19所述的正极。
CN201611187632.9A 2016-12-20 2016-12-20 一种三元材料及其制备方法以及电池浆料和正极与锂电池 Active CN108206281B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201611187632.9A CN108206281B (zh) 2016-12-20 2016-12-20 一种三元材料及其制备方法以及电池浆料和正极与锂电池
PCT/CN2017/114264 WO2018113506A1 (zh) 2016-12-20 2017-12-01 一种三元材料及其制备方法以及电池浆料和正极与锂电池
EP17883636.7A EP3557668A4 (en) 2016-12-20 2017-12-01 TERNARY MATERIAL AND PRODUCTION METHOD THEREFOR, BATTERY SLUDGE, POSITIVE ELECTRODE AND LITHIUM BATTERY
US16/471,534 US20190386293A1 (en) 2016-12-20 2017-12-01 Ternary material and preparation method thereof, battery slurry, positive electrode and lithium battery
JP2019533012A JP2020502029A (ja) 2016-12-20 2017-12-01 三元系材料及びその製造方法、並びに電池用ペースト、正極及びリチウム電池
KR1020197017566A KR20190082307A (ko) 2016-12-20 2017-12-01 3원계 재료 및 그 제조방법, 배터리 슬러리, 양극 및 리튬 배터리

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611187632.9A CN108206281B (zh) 2016-12-20 2016-12-20 一种三元材料及其制备方法以及电池浆料和正极与锂电池

Publications (2)

Publication Number Publication Date
CN108206281A true CN108206281A (zh) 2018-06-26
CN108206281B CN108206281B (zh) 2020-06-19

Family

ID=62604425

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611187632.9A Active CN108206281B (zh) 2016-12-20 2016-12-20 一种三元材料及其制备方法以及电池浆料和正极与锂电池

Country Status (6)

Country Link
US (1) US20190386293A1 (zh)
EP (1) EP3557668A4 (zh)
JP (1) JP2020502029A (zh)
KR (1) KR20190082307A (zh)
CN (1) CN108206281B (zh)
WO (1) WO2018113506A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111048739A (zh) * 2019-12-25 2020-04-21 中国科学院过程工程研究所 一种三元正极浆料及其制备方法和锂电电池
CN111384377A (zh) * 2018-12-29 2020-07-07 宁德时代新能源科技股份有限公司 一种正极材料及其制备方法和用途
CN112125351A (zh) * 2019-06-25 2020-12-25 惠州比亚迪实业有限公司 一种三元前驱体及其制备方法、三元材料及其制备方法、锂离子电池
CN113451548A (zh) * 2020-03-25 2021-09-28 比亚迪股份有限公司 磷酸铁锂正极片及制备方法、磷酸铁锂锂离子电池
CN114204011A (zh) * 2021-12-07 2022-03-18 万华化学(四川)有限公司 一种镍钴锰酸锂三元正极材料的制备方法
CN114678525A (zh) * 2022-04-12 2022-06-28 浙江极氪智能科技有限公司 三元正极材料及其制备方法、锂离子电池
CN115286055A (zh) * 2022-10-08 2022-11-04 宜宾锂宝新材料有限公司 三元正极材料及其制备方法、正极以及锂离子电池

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114728808A (zh) * 2019-09-12 2022-07-08 特斯拉公司 生产用于可再充电锂电池的阴极材料的方法
CN111977704A (zh) * 2020-07-27 2020-11-24 昆明理工大学 一种废旧三元锂离子电池正极材料的快速再生方法
CN114639825A (zh) * 2020-12-16 2022-06-17 天津国安盟固利新材料科技股份有限公司 一种长循环高压实密度高镍正极材料的制备方法
CN113443656B (zh) * 2021-06-07 2022-11-15 四川三联新材料有限公司 一种钴酸锂前驱体、正极材料及其制备方法
CN113800576B (zh) * 2021-08-24 2023-09-15 南通金通储能动力新材料有限公司 一种高功率三元前驱体及其制备方法
CN113968593B (zh) * 2021-09-30 2022-11-15 广东邦普循环科技有限公司 三元材料微粉回收处理的方法及其应用
CN114349069B (zh) * 2021-12-03 2023-07-07 宜宾光原锂电材料有限公司 一种高镍三元正极材料前驱体及其制备方法
CN114368793A (zh) * 2021-12-17 2022-04-19 合肥国轩高科动力能源有限公司 一种高压实三元复合材料的制备方法
CN114455646A (zh) * 2022-01-19 2022-05-10 广州明美新能源股份有限公司 一种ncm811正极材料前驱体及其制备方法与应用
CN115072801A (zh) * 2022-06-22 2022-09-20 浙江钠创新能源有限公司 一种正极材料前驱体、正极材料及其制备方法、应用
CN116072874B (zh) * 2023-03-06 2023-08-01 宜宾锂宝新材料有限公司 正极材料及其制备方法、正极和锂离子电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1774400A (zh) * 2003-04-17 2006-05-17 清美化学股份有限公司 含锂-镍-钴-锰复合氧化物及锂二次电池用正极活性物质用原料和它们的制造方法
JP2006261062A (ja) * 2005-03-18 2006-09-28 Sumitomo Osaka Cement Co Ltd 電極材料の製造方法
CN103247780A (zh) * 2013-04-18 2013-08-14 河南科隆新能源有限公司 一种锂离子电池正极材料及其制备方法
JP2013211114A (ja) * 2012-03-30 2013-10-10 Sumitomo Metal Mining Co Ltd リチウム二次電池用正極活物質の前駆体とその製造方法および該前駆体を用いたリチウム二次電池用正極活物質とその製造方法、並びに該正極活物質を用いたリチウム二次電池
CN105375020A (zh) * 2015-11-28 2016-03-02 中信大锰矿业有限责任公司大新锰矿分公司 一种二次球形镍钴锰酸锂前驱混合物的制备方法
CN105514420A (zh) * 2010-12-03 2016-04-20 Jx日矿日石金属株式会社 锂离子电池用正极活性物质、锂离子电池用正极及锂离子电池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130138073A (ko) * 2012-06-08 2013-12-18 한양대학교 산학협력단 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지
TWI547002B (zh) * 2012-06-11 2016-08-21 輔仁大學學校財團法人輔仁大學 鋰鎳鈷正極材料粉體
CN104347865B (zh) * 2013-07-26 2017-05-31 比亚迪股份有限公司 一种锂电池正极材料及其制备方法
JP5709231B1 (ja) * 2014-02-20 2015-04-30 Necエナジーデバイス株式会社 リチウムイオン二次電池用正極およびそれを用いたリチウムイオン二次電池
CN104779387B (zh) * 2015-04-14 2018-04-24 哈尔滨工程大学 锂离子电池LiNi1-x-yCoxAlyO2材料的制备方法
CN104953110B (zh) * 2015-06-25 2017-07-14 中南大学 具有空心结构的锂离子电池用富锂锰基正极材料及其制备方法
CN105428640B (zh) * 2015-12-04 2018-07-06 中信国安盟固利电源技术有限公司 一种核壳结构三元正极材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1774400A (zh) * 2003-04-17 2006-05-17 清美化学股份有限公司 含锂-镍-钴-锰复合氧化物及锂二次电池用正极活性物质用原料和它们的制造方法
JP2006261062A (ja) * 2005-03-18 2006-09-28 Sumitomo Osaka Cement Co Ltd 電極材料の製造方法
CN105514420A (zh) * 2010-12-03 2016-04-20 Jx日矿日石金属株式会社 锂离子电池用正极活性物质、锂离子电池用正极及锂离子电池
JP2013211114A (ja) * 2012-03-30 2013-10-10 Sumitomo Metal Mining Co Ltd リチウム二次電池用正極活物質の前駆体とその製造方法および該前駆体を用いたリチウム二次電池用正極活物質とその製造方法、並びに該正極活物質を用いたリチウム二次電池
CN103247780A (zh) * 2013-04-18 2013-08-14 河南科隆新能源有限公司 一种锂离子电池正极材料及其制备方法
CN105375020A (zh) * 2015-11-28 2016-03-02 中信大锰矿业有限责任公司大新锰矿分公司 一种二次球形镍钴锰酸锂前驱混合物的制备方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111384377A (zh) * 2018-12-29 2020-07-07 宁德时代新能源科技股份有限公司 一种正极材料及其制备方法和用途
US11942636B2 (en) 2018-12-29 2024-03-26 Contemporary Amperex Technology Co., Limited Positive electrode material, preparation method and uses thereof
CN112125351B (zh) * 2019-06-25 2023-12-08 惠州比亚迪实业有限公司 一种三元前驱体及其制备方法、三元材料及其制备方法、锂离子电池
CN112125351A (zh) * 2019-06-25 2020-12-25 惠州比亚迪实业有限公司 一种三元前驱体及其制备方法、三元材料及其制备方法、锂离子电池
CN111048739B (zh) * 2019-12-25 2022-02-18 中国科学院过程工程研究所 一种三元正极浆料及其制备方法和锂电电池
CN111048739A (zh) * 2019-12-25 2020-04-21 中国科学院过程工程研究所 一种三元正极浆料及其制备方法和锂电电池
CN113451548A (zh) * 2020-03-25 2021-09-28 比亚迪股份有限公司 磷酸铁锂正极片及制备方法、磷酸铁锂锂离子电池
CN113451548B (zh) * 2020-03-25 2022-09-09 比亚迪股份有限公司 磷酸铁锂正极片及制备方法、磷酸铁锂锂离子电池
CN114204011A (zh) * 2021-12-07 2022-03-18 万华化学(四川)有限公司 一种镍钴锰酸锂三元正极材料的制备方法
CN114204011B (zh) * 2021-12-07 2024-02-27 万华化学(四川)有限公司 一种镍钴锰酸锂三元正极材料的制备方法
CN114678525A (zh) * 2022-04-12 2022-06-28 浙江极氪智能科技有限公司 三元正极材料及其制备方法、锂离子电池
CN114678525B (zh) * 2022-04-12 2023-08-18 浙江极氪智能科技有限公司 三元正极材料及其制备方法、锂离子电池
CN115286055B (zh) * 2022-10-08 2023-02-03 宜宾锂宝新材料有限公司 三元正极材料及其制备方法、正极以及锂离子电池
CN115286055A (zh) * 2022-10-08 2022-11-04 宜宾锂宝新材料有限公司 三元正极材料及其制备方法、正极以及锂离子电池

Also Published As

Publication number Publication date
US20190386293A1 (en) 2019-12-19
EP3557668A4 (en) 2020-02-19
WO2018113506A1 (zh) 2018-06-28
KR20190082307A (ko) 2019-07-09
CN108206281B (zh) 2020-06-19
JP2020502029A (ja) 2020-01-23
EP3557668A1 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
CN108206281A (zh) 一种三元材料及其制备方法以及电池浆料和正极与锂电池
CN112750999B (zh) 正极材料及其制备方法和锂离子电池
CN105047906B (zh) 锂钴复合氧化物正极材料及其制备方法
JP6063397B2 (ja) 複合粒子、その製造方法、及びそれを含む物品
CN105692721B (zh) 一种钠离子电池正极材料及其制备方法和使用方法
CN109360963A (zh) 三元正极材料微米级片状单晶结构团聚体及其制备方法
WO2016155315A1 (zh) 高镍型锂离子二次电池正极材料及其制备方法
CN105514373A (zh) 一种高容量锂离子电池正极材料及其制备方法
CN106654210B (zh) 一种高温长循环锂离子电池高镍正极材料及其制备方法
CN108493435B (zh) 锂离子电池正极材料Li(Ni0.8Co0.1Mn0.1)1-xYxO2及制备方法
CN111453776B (zh) 一种锂离子电池富锂锰基正极材料的磷、钨共掺杂改性制备方法
CN105271424B (zh) 一种针状尖晶石型锰酸锂正极材料的制备方法
CN111082009B (zh) 一种采用磷酸盐改善的富锂锰基复合正极材料及制备方法
CN104701538A (zh) 一种用于锂离子电池正极材料磷酸铁锂的制备方法
CN110085845A (zh) 一种具有核壳结构的镍基正极材料及其制备方法
CN111180724A (zh) 一种三元单晶正极材料的制备方法
WO2022089205A1 (zh) 一种掺杂型高镍三元材料及其制备方法
CN113845153A (zh) 一种多元高熵固溶体正极材料以及制备方法和用途
CN105024065A (zh) 一种锂离子电池正极材料及其制备方法
CN108807928B (zh) 一种金属氧化物及锂离子电池的合成
CN105336944A (zh) 一种高容量锂离子电池正极材料及其制备方法
CN112744872A (zh) 一种高镍正极材料的液相法磷元素掺杂改性制备方法
EP4113660A1 (en) Method for preparing material having composition gradient characteristic, and application in battery
CN113346055A (zh) 复合磷酸盐包覆的锂离子电池高镍正极材料及其制备方法
CN103258993B (zh) 一种用于锂离子电池正极材料的磷酸铁锂粉体的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant