CN108123105B - 一种离子导体层修饰的锰基氧化物正极材料及制备和应用 - Google Patents

一种离子导体层修饰的锰基氧化物正极材料及制备和应用 Download PDF

Info

Publication number
CN108123105B
CN108123105B CN201611057483.4A CN201611057483A CN108123105B CN 108123105 B CN108123105 B CN 108123105B CN 201611057483 A CN201611057483 A CN 201611057483A CN 108123105 B CN108123105 B CN 108123105B
Authority
CN
China
Prior art keywords
ion conductor
conductor layer
lithium
suspension
based oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611057483.4A
Other languages
English (en)
Other versions
CN108123105A (zh
Inventor
陈剑
杨时峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201611057483.4A priority Critical patent/CN108123105B/zh
Publication of CN108123105A publication Critical patent/CN108123105A/zh
Application granted granted Critical
Publication of CN108123105B publication Critical patent/CN108123105B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明为一种离子导体层修饰的锰基氧化物正极材料及制备和应用,所述正极材料为具有一层离子导体材料包覆在体相材料表面的复合氧化物,表达式为(1‑w1‑w2)Li‑Mn‑O·w1Li4SiO4·w2Li5AlO4,其中体相材料Li‑Mn‑O可为具有尖晶石结构的Li1+xNiyMzMn2‑y‑zO4‑Δ材料,或为具有层状结构的aLi2MnO3·(1‑a)LiM’sR1‑ sO2材料,或为两类材料组成的复合材料,离子导体层为w1Li4SiO4·w2Li5AlO4组成。本发明的正极材料具有高能量密度、优异的循环稳定性和倍率性能。

Description

一种离子导体层修饰的锰基氧化物正极材料及制备和应用
技术领域
本发明属于储能领域,具体涉及一种离子导体层修饰的锰基氧化物正极材料及制备和应用。
背景技术
自1990年商业化以来,锂离子电池被广泛应用于笔记本电脑、移动电话、数码相机等便携式电子设备领域。近年来,随着能源和环境等问题的日益加剧以及电子产品轻量化的要求,锂离子电池作为具有最高能量密度和功率密度的二次电池,逐步应用于电动汽车以及航天航空、人造卫星等领域。然而,目前商业化的锂离子电池仍无法满足电动汽车对电池高能量密度的要求。研发比能量更高、寿命更长的锂离子电池是电动汽车产业发展的关键。目前,正极材料是制约锂离子电池性能提高的关键因素,开发高电压型或高比容量型正极材料是提高锂离子电池能量密度的根本途径。
钴酸锂是目前商品锂离子电池使用最多的正极材料,但钴资源稀少、价格昂贵、存在污染及安全性差等问题限制了钴酸锂电池在大容量电池应用领域的实际使用。
具有尖晶石结构的锰酸锂及其改性材料因价格低廉、安全性高、无毒等优点受到了人们的广泛关注和研究。特别是LiNi0.5Mn1.5O4正极材料具有4.7V的工作电压,理论质量比容量可达147mAh g-1;并且该化合物具有三维的Li+扩散通道,使得材料具有良好的倍率性能,成为高比能、高比功率车用锂离子电池的理想正极材料之一。但是,具有尖晶石结构的锰基氧化物正极材料一般都存在循环稳定性差、容量衰减严重等问题,导致材料的实际性能尚不理想。造成这一问题的主要原因是电解液在较高的电极电势下的分解产物可腐蚀活性物质,导致材料性能下降。同时,因受电解液分解产物侵蚀以及Mn3+歧化反应(2Mn3+→Mn2++Mn4+)的影响,Mn2+在材料与电解液的界面发生溶解,造成材料容量损失。同时,由于Jahn–Teller效应材料晶体结构由立方相转变成四方相,这种不可逆的相转变,也是造成材料容量衰减的重要原因。
具有层状结构的aLi2MnO3·(1-a)LiMO2(M=Mn,Co,Ni等)材料比容量可达250~300mAh g-1,且因组成多样化、价格低廉且环境友好等优点受到广泛关注,是高比能锂离子电池的又一理想材料。但在实际应用中,因电子电导率过低和析氧反应导致界面副反应加剧,因此该材料存在倍率性能和循环稳定性差等问题。
表面包覆是目前提高这两类材料界面稳定性和循环性能的有效手段之一。作包覆层的常用物质包括氧化物(如Al2O3、ZnO、Bi2O3、SiO2)、氟化物(AlF3、CaF2、NH4HF)和磷酸盐(AlPO4、Co3(PO4)2、FePO4)等。金属氧化物包覆层能隔绝活性物质与电解液分解产物(HF等)的接触,减少界面副反应导致活性物质结构的破坏或流失,且其半导体特性有利于电子的快速传输。Sun等人指出金属氧化物包覆层易与电解液的分解产物(HF)反应而从活性物质的表面脱落,不利于提高电极材料的长期循环稳定性(The role of AlF3 coatings inimproving electrochemical cycling of Li-enriched nickel-manganese oxideelectrodes for Li-ion batteries:Adv.Mater.,2012,24(9):1192)。氟化物和磷酸盐能够抵制HF的侵蚀,但其极差的电子导电性不利于电极材料倍率性能的提升。因此研究者转向具有较高化学稳定性的锂离子导体包覆层的研究。如Chong等人固相法合成的LiNi0.5Mn1.5O4材料在250次充放电后容量衰减至70%,而改性的LiNi0.5Mn1.5O4/Li4P2O7材料在经历了893次循环后,容量保持率仍可达到74.3%(Surface stabilized LiNi0.5Mn1.5O4cathode materials with high-rate capability and long cycle life for lithiumion batteries:Nano Energy 2013,2,283–293),材料倍率性能也有很大的提升,LiNi0.5Mn1.5O4/Li4P2O7材料40C放电比容量可达0.1C时的86.7%,而LiNi0.5Mn1.5O4仅为34.4%。该团队合成的LiPO3/LiNi0.5Mn1.5O4相较于LiNi0.5Mn1.5O4材料在循环性能和倍率性能方面也得到了很大提高(High performance LiNi0.5Mn1.5O4 cathode material with abi-functional coating for lithium ion batteries:RSC Adv.,2016,6,19245)。由此可见,离子导体包覆层是提高材料循环稳定性和倍率性能十分有效的一种优化策略。
本发明旨在公开一种离子导体层修饰的锰基氧化物正极材料及其制备方法,所制备的材料具有优异的循环稳定性和倍率性能,且合成条件简单、易控,成本低廉,易实现工业化生产。
发明内容
本发明的目的在于提供一种离子导体层修饰的锰基氧化物正极材料及制备和应用,开发出一种具有优良倍率性能和循环性能的锰基氧化物正极材料,及简单、易控,成本低廉的合成方法。
为实现上述目的,本发明的技术方案是:
一种离子导体层修饰的锰基氧化物正极材料,所述正极材料为为具有一层离子导体材料包覆在体相材料表面的复合氧化物,表达式为(1-w1-w2)Li-Mn-O·w1Li4SiO4·w2Li5AlO4,体相材料Li-Mn-O可为具有尖晶石结构的Li1+xNiyMzMn2-y-zO4-△材料,或为具有层状结构的aLi2MnO3·(1-a)LiM’sR1-sO2材料,或为两类材料组成的复合材料,其中,0.1≤x≤0.2,0≤y≤0.6,0≤z≤1.25,0≤y+z≤1.25,0≤△≤0.05;0<a<1,0.8≤s≤1;M为Co、Cr、Zr、Cu、Fe、Zn中的一种或两种以上;M’为Ni、Mn、Co中的一种或两种以上;R为Cr、Zr、Cu、Fe、Zn中的一种或两种以上;
所述正极材料的离子导体层,化学组成为w1Li4SiO4·w2Li5AlO4,厚度为1~20nm,w1和w2分别为Li4SiO4和Li5AlO4在该正极材料中所占的质量分数,0≦w1≦0.10,0<w2≦0.10,且优选0.03≦w1+w2≦0.12。
(1-w1-w2)Li-Mn-O·w1Li4SiO4·w2Li5AlO4,体相材料Li-Mn-O可为具有尖晶石结构的Li1+xNiyMzMn2-y-zO4-Δ材料,或为具有层状结构的aLi2MnO3·(1-a)LiM’sR1-sO2材料,或为两类材料组成的复合材料;所开发正极材料的外层修饰部分为离子导体,化学组成为w1Li4SiO4·w2Li5AlO4,厚度为1~20nm。表面离子导体包覆层w1Li4SiO4·w2Li5AlO4能够保护体相材料Li1+xNiyMzMn2-y-zO4-Δ和aLi2MnO3·(1-a)LiM’sR1-sO2免受电解液分解产物的侵蚀,并且促进电极/电解液界面的离子迅速传输,因此材料具有优异的循环稳定性和倍率性能。该正极材料可应用于锂离子电池或非对称型超级电容器等电化学储能装置中。
一种离子导体层修饰的锰基氧化物正极材料(1-w1-w2)Li-Mn-O·w1Li4SiO4·w2Li5AlO4的制备方法:
(1)将体相材料Li-Mn-O或者体相材料的前驱体材料分散于水或有机溶剂或两者的混合溶剂中,配制成悬浮液A,浓度为0.1~20g/L,分散方式可为超声、搅拌、表面活性剂中的一种或者两种以上;
(2)将摩尔比为100:0~10:0.01~9的锂源、硅源和铝源可直接加入悬浮液A,也可将锂源、硅源和铝源中的一种或者两种以上按上述比例溶解或分散于水或有机溶剂或两者的混合溶剂中,制得溶液或悬浮液B,逐滴滴加到悬浮液A中,溶液或悬浮液B的浓度为0.005~2.5mol/L,滴加速度为0.02~20mL/min;
(3)利用盐酸或氨水调节反应体系的pH值为4.0~11.0,并剧烈搅拌,搅速为600~6000rpm,搅拌时间为3~48h,反应温度为50~90℃;
(4)将步骤(3)中的产物离心、洗涤后过夜干燥或搅拌蒸干,与适量锂源混合后于400~900℃焙烧0.5~30h,制得离子导体层修饰的锰基氧化物正极材料。
开发的正极材料的体相材料Li-Mn-O可为具有尖晶石结构的Li1+xNiyMzMn2-y-zO4-Δ材料,或为具有层状结构的aLi2MnO3·(1-a)LiM’sR1-sO2材料,或为两类材料组成的复合材料,其中,0.1≤x≤0.2,0≤y≤0.6,0≤z≤1.25,0≤y+z≤1.25,0≤Δ≤0.05;0<a<1,0.8≤s≤1;M为Co、Cr、Zr、Cu、Fe、Zn中的一种或两种以上;M’为Ni、Mn、Co中的一种或两种以上;R为Cr、Zr、Cu、Fe、Zn中的一种或两种以上;
所开发正极材料的离子导体层,化学组成为w1Li4SiO4·w2Li5AlO4,w1和w2分别为Li4SiO4和Li5AlO4相对于体相材料的质量分数,0≦w1≦0.10,0<w2≦0.10,且优选0.03≦w1+w2≦0.12。
制备过程中所用的体相材料Li1+xNiyMzMn2-y-zO4-Δ或aLi2MnO3·(1-a)LiM’sR1-sO2或两者的复合材料的制备方法可为固相法、液相法、气相沉积法中的一种或两种以上。
分散所用有机溶剂可为甲醇、乙醇、乙二醇、异丙醇、聚乙二醇等中的一种或两种以上。
分散所用表面活性剂可为聚甲基丙烯酰胺、聚醚酰亚胺、F127、P123、聚丙烯酰胺、柠檬酸、甲酰胺、二甲基甲酰胺等中的一种或者两种以上。
锂源可以是氢氧化锂、甲酸锂、乙酸锂、柠檬酸锂、酒石酸锂中的一种或两种以上;
硅源可以是硅溶胶、硅酸钠、硅酸四乙酯等中的一种或两种以上;
铝源可以是硫酸铝、硝酸铝、异丙醇铝等中的一种或两种以上。
反应体系的pH值优选7.0~10.0,搅拌时间优选6~24h,反应温度优选65~80℃,焙烧时间优选3~12h。
一种离子导体层修饰的锰基氧化物正极材料的应用,所述正极材料应用于电化学储能装置中;所述电化学储能装置可为锂离子电池或非对称型超级电容器。
本发明具有以下的优点:
1、本发明所合成的离子导体层修饰的锰基氧化物正极材料(1-w1-w2)Li-Mn-O·w1Li4SiO4·w2Li5AlO4具有高能量密度、优异的循环稳定性和倍率性能,解决了限制这一类材料实际应用的技术瓶颈。
2、同时,本发明还提供了制备(1-w1-w2)Li-Mn-O·w1Li4SiO4·w2Li5AlO4正极材料的方法。该方法工艺简单,成本低廉,易于实现大规模生产。
本发明的正极材料的体相材料Li-Mn-O为具有4.0V(vs.Li/Li+)及以上的嵌、脱锂电极电势的Li1+xNiyMzMn2-y-zO4-Δ或具有250mAh g-1以上的比容量的aLi2MnO3·(1-a)LiM’sR1-sO2,可获得高能量密度;在该材料表面合成离子导体层w1Li4SiO4·w2Li5AlO4,能够保护体相材料Li-Mn-O免受电解液分解产物的侵蚀,且提高界面离子电导率,促进锂离子的快速传输,因此材料具有优异的循环稳定性和倍率性能。
本发明的优异之处在于:
(1)本发明合成出组成为Li4SiO4和Li5AlO4的表面层修饰的锰基氧化物正极材料(1-w1-w2)Li-Mn-O·w1Li4SiO4·w2Li5AlO4,该材料除具备体相材料Li1+xNiyMzMn2-y-zO4-Δ或aLi2MnO3·(1-a)LiM’sR1-sO2赋予的高能量密度外,表面包覆层(Li4SiO4和Li5AlO4)能显著抑制电解液分解产物的侵蚀,减少了体相材料结构的破坏和质量的损失,因而获得了优异的循环稳定性。
(2)本发明提供了Li4SiO4和Li5AlO4为组成的表面包覆层设计思路,原料储量丰富、价格低廉、生产工艺简单易行等优点,有利于大规模的工业化生产。
(3)本发明提供了Li4SiO4和Li5AlO4为组成的离子导体层设计思路,具有高电化学稳定性,如Li4SiO4·Li5AlO4电化学窗口可高达5.4V,能够适用于体相材料Li1+xNiyMzMn2-y- zO4-Δ的3.5~5.0V的充放电工作条件;此外该离子导体层离子电导率可达10-8~10-7S/cm,相比未修饰的Li-Mn-O材料表面形成的SEI膜更利于锂离子的传输,从而提高Li-Mn-O材料的循环稳定和倍率性能。
附图说明
图1为实施例1中0.95LiNi0.5Mn1.5O4·0.05Li4SiO4材料的扫描和透射图;
图2为实施例1中的材料1C倍率下的充放电曲线;
图3为实施例中材料的倍率性能曲线;
图4为实施例1材料20C倍率放电的循环性能曲线;
图5为实施例2与对比例中的材料的X射线衍射图(XRD);
图6为实施例2中材料的扫描电镜图;
图7为实施例2的材料1C倍率下的充放电曲线;
图8为实施例2和对比例中材料20C放电倍率下的循环性能曲线;
图9为实施例3中材料在1C、20C放电时的电压-容量曲线。
具体实施方式
下述实施例中所使用的材料、试剂均可从一般商业途径得到;所使用的实施方法均是常规方法。实施例是对本发明的进一步说明,但不限制本发明的范围。
本发明的正极材料具有4.0V(vs.Li/Li+)及以上的嵌、脱锂电极电势或250mAh g-1;通过提高锂源的用量和调控煅烧程序和冷却条件等实现了以LiOH、Li2CO3为组分的原位表面包覆,表面惰性包覆层LiOH、Li2CO3能够保护体相材料(Li1+xNiyMzMn2-y-zO4)免受HF侵蚀,材料因此具有优异的循环稳定性和高温稳定性。本专利提供的电极材料有望应用于高比能量和高比功率型锂离子电池,如电动车用动力电池等;所提供的合成工艺具有操作简便、成本低廉,易于实现工业化生产。
实施例1
(1)将1g LiNi0.5Mn1.5O4(固相法合成)材料分散于80mL乙醇中,超声分散0.5h,配成悬浮液A,置于60℃水浴中;
(2)取100mL 6.2*10-3mol/L乙醇分散的SiO2溶胶加入悬浮液A中,后以0.02mL/min逐滴滴加10mL 0.137mol/L柠檬酸水溶液和10mL 0.1mol/L氢氧化锂水溶液并剧烈搅拌,搅速800rpm,滴加过程中用2.5wt.%的氨水溶液调节反应体系pH~8.5,搅拌4h;
(3)于80℃搅拌蒸干,500℃焙烧5h,得到LiNi0.5Mn1.5O4@3wt.%Li4SiO4
(4)物相分析:将制备得到的材料做X射线衍射谱分析,所示得到的材料具有尖晶石结构,属于Fd-3m晶型,且具有很高的结晶度。
(5)形貌表征:对材料微观形貌进行考察,附图1显示材料粒径为2.0~4.0μm,在材料表面约有1.5nm厚的无定形层。
(6)电化学性能测试:
将LiNi0.5Mn1.5O4@3wt.%Li4SiO4作为锂离子电池正极材料,与乙炔黑、PVDF按照质量比80:15:10的比例混合得到浆料。将浆料均匀涂布在铝箔上得到工作电极,以锂片为对电极,Celgard 2400膜为隔膜,1M LiPF6/EC+DMC+EMC(EC:DMC:EMC=1:1:1)为电解液,在充满氩气的手套箱中组装成CR2016纽扣电池。将上述电池在LAND电池测试仪上进行充放电测试。充放电电压范围3.5~5.0V。如附图2所示,以1C恒流充放电,可逆充放电比容量为127.4mAh g-1,中值电压高达4.67V。附图3为材料在1C、5C、10C、15C、20C、40C、1C倍率下各充放电循环10次的测试曲线,40C放电比容量可达112mAh g-1以上,经历高倍率放电后材料仍能回复到初始1C放电时的比容量,可见LiNi0.5Mn1.5O4@3wt.%Li4SiO4材料具有优异的倍率性能。附图4所示,该材料在20C放电时比容量可达到125.7mAh g-1,400次循环后容量保持率高达88.3%。可见LiNi0.5Mn1.5O4@3wt.%Li4SiO4材料循环稳定性非常优异。
实施例2
(1)将1g Ni0.5Mn1.5Ox(固相法制备)材料分散于100mL醇水混合溶液中(乙醇与水体积比为7:1),超声分散为悬浮液A;
(2)85℃下将20mL 2.5mol/L的硅酸钠溶液以10mL/min逐滴滴加到A中,2.5wt.%氨水溶液调节反应体系的pH~10,搅拌3h;
(3)对产物进行离心、洗涤,过夜干燥,再与过量10%的乙酸锂进行混合、煅烧,煅烧程序为500℃5h+900℃12h+700℃12h。
(4)物相分析和形貌表征:附图5的X射线衍射谱表明得到的材料具有尖晶石结构,属于Fd-3m晶型,含有少量杂相LixNi1-xO(x~0.2)。对材料微观形貌进行考察(附图6),材料粒径为2~3μm且材料表面较粗糙,说明可能有表面层形成。
(6)电化学性能的测试:
以与实施例1相同的操作条件对LiNi0.5Mn1.5O4@5wt.%Li4SiO4材料进行测试。如附图7所示,该材料以1C充放电时比容量为125.8mAh g-1。附图8的循环性能曲线显示20C放电时,该材料比容量可达124.9mAh g-1,500次循环后容量仍可保持在83.0%。
实施例3
(1)将液相共沉淀法合成的0.5g LiNi0.4Cr0.2Mn1.4O4材料超声分散于40mL去离子水中,加入20mL含有0.05g聚醚酰亚胺的水溶液搅拌2h,称为悬浮液A;
(2)加入适量乙酸锂固体颗粒搅拌溶解,于80℃下向A中以20mL/min逐滴滴加0.03mol/L的硅酸四乙酯和硝酸铝溶液,利用盐酸和氨水溶液控制反应体系的pH~4.0保持2h,搅拌速度为2000rpm;
(3)将反应溶液搅拌蒸干后,进行热处理:500℃3h,制得0.88LiNi0.4Cr0.2Mn1.4O4·0.07Li4SiO4·0.05Li5AlO4材料。
(4)物相分析和形貌表征:X射线衍射谱表明得到的材料具有尖晶石结构,属于Fd-3m晶型,材料的结晶度稍差,可能是由于离子导体形成过程中队体相材料的结构造成了破坏。对材料微观形貌进行考察,材料粒径2~4um,在材料表面可观察到~20nm厚的无定形层。
(5)电化学性能的测试:以与实施例1相同的操作、条件对0.88LiNi0.4Cr0.2Mn1.4O4·0.07Li4SiO4·0.05Li5AlO4材料进行测试。如附图9所示,该材料1C、20C放电时比容量分别为118.0mAh g-1和112.7mAh g-1,可见该材料具有不错的倍率性能。
实施例4
(1)将3g PTA-Ni,Mn(PTA-Ni,Mn为PTA与Ni、Mn形成的配位聚合物)材料分散于75mL异丙醇溶液中,加入适量的F123进行分散,为悬浮液A;
(2)50℃下将5mL 0.01mol/L的硅酸四乙酯溶液和10mL 0.2mol/L的异丙醇铝溶液以0.1mL/min逐滴滴加到A中,10wt.%盐酸溶液调节反应体系的pH~7,搅拌48h;
(3)对产物进行离心、洗涤,过夜干燥,再与适量的碳酸锂进行混合、煅烧,煅烧程序为500℃5h+900℃10h。
(4)物相分析和形貌表征:X射线衍射谱表明得到的材料具有尖晶石结构,属于Fd-3m晶型,含有少量杂相LixNi1-xO(x~0.2)。对材料微观形貌进行考察,材料粒径为1~3μm且材料表面粗糙,说明有表面层形成,利用电感耦合等离子体质谱等技术,得到的样品为0.885LiNi0.5Mn1.5O4·0.003Li4SiO4·0.11Li5AlO4材料。
(6)电化学性能的测试:
以与实施例1相同的操作条件对0.885LiNi0.5Mn1.5O4·0.003Li4SiO4·0.11Li5AlO4材料进行测试。该材料以1C充放电时比容量为115.8mAh g-1,20C放电时,该材料比容量可达104.6mAh/g,500次循环后容量仍可保持在85.0%。
对比例
与实施例2制备方法相同,不同之处在于pH值~9,最终制得LiNi0.5Mn1.5O4@5wt.%Li4SiO4材料。将X射线衍射谱(附图5)表明制得的材料具有尖晶石结构但含有较明显的杂相LixNi1-xO(0≦x≦0.5)。在透射电镜下几乎观测不到表面层的形成。以与实施例1相同的条件进行测试,20C循环性能如附图8所示,以20C倍率进行500次放电后,比容量仅为80.9mAhg-1,容量保持率为72.9%,循环稳定性比实施例2中的同组成的材料(500次容量保持率为83.0%)差很多,可见离子包覆层的成功合成有利于提高体相材料的循环稳定性。

Claims (7)

1.一种离子导体层修饰的锰基氧化物正极材料,其特征在于:
所述正极材料为具有一层离子导体包覆在体相材料表面的复合氧化物,表达式为(1-w1-w2)Li-Mn-O·w1Li4SiO4·w2Li5AlO4
所述体相材料Li-Mn-O可为具有尖晶石结构的Li1NiyMzMn2-y-zO4-△材料,或为具有层状结构的aLi2MnO3·(1-a)LiM’sR1-sO2材料,或为两类材料组成的复合材料,其中,0≤y≤0.6,0≤z≤1.25,0≤y+z≤1.25,0≤△≤0.05;0<a<1,0.8≤s≤1;M为Co、Cr、Zr、Cu、Fe、Zn中的一种或两种以上;M’为Ni、Mn、Co中的一种或两种以上;R为Cr、Zr、Cu、Fe、Zn中的一种或两种以上;
所述正极材料的离子导体层,化学组成为w1Li4SiO4·w2Li5AlO4,厚度为1~20nm,w1和w2分别为Li4SiO4和Li5AlO4在该正极材料中所占的质量分数,0<w1≦0.10,0<w2≦0.10,且优选0.03≦w1+w2≦0.12;
所述离子导体层修饰的锰基氧化物正极材料的制备方法如下:
(1)将体相材料分散于水中,配制成悬浮液A,浓度为0.1~20g/L,分散方式可为超声、搅拌、表面活性剂中的一种或者两种以上;体相材料的前驱体材料可为氧化物、碳酸盐、氢氧化物、金属-有机配位聚合物中的一种或者两种以上;
(2)将摩尔比为100:0~10:0.01~9的锂源、硅源和铝源可直接加入悬浮液A,也可将锂源、硅源和铝源中的一种或者两种以上按上述比例溶解或分散于水或有机溶剂或两者的混合溶剂中,制得溶液或悬浮液B,逐滴滴加到悬浮液A中,溶液或悬浮液B的浓度为0.005~2.5mol/L,滴加速度为0.02~20mL/min;
(3)利用盐酸或氨水调节反应体系的pH值为7.0≤pH≤10.0且pH≠9,并剧烈搅拌,搅速为600~6000rpm,搅拌时间为6~24h,反应温度为65~80℃;
(4)将步骤(3)中的产物离心、洗涤后过夜干燥或搅拌蒸干,与适量锂源混合后于400~900℃焙烧3~12h,制得离子导体层修饰的锰基氧化物正极材料。
2.根据权利要求1所述离子导体层修饰的锰基氧化物正极材料,其特征在于:体相材料Li1+xNiyMzMn2-y-zO4-△或aLi2MnO3·(1-a)LiM’sR1-sO2或两者的复合材料的制备方法可为固相法、液相法、气相沉积法中的一种或两种以上。
3.一种权利要求1所述离子导体层修饰的锰基氧化物正极材料的制备方法,其特征在于:
(1)将体相材料Li-Mn-O分散于水中,配制成悬浮液A,浓度为0.1~20g/L,分散方式可为超声、搅拌、表面活性剂中的一种或者两种以上;体相材料的前驱体材料可为氧化物、碳酸盐、氢氧化物、金属-有机配位聚合物中的一种或者两种以上;
(2)将摩尔比为100:0~10:0.01~9的锂源、硅源和铝源可直接加入悬浮液A,也可将锂源、硅源和铝源中的一种或者两种以上按上述比例溶解或分散于水或有机溶剂或两者的混合溶剂中,制得溶液或悬浮液B,逐滴滴加到悬浮液A中,溶液或悬浮液B的浓度为0.005~2.5mol/L,滴加速度为0.02~20mL/min;
(3)利用盐酸或氨水调节反应体系的pH值为7.0≤pH≤10.0且pH≠9,并剧烈搅拌,搅速为600~6000rpm,搅拌时间为6~24h,反应温度为65~80℃;
(4)将步骤(3)中的产物离心、洗涤后过夜干燥或搅拌蒸干,与适量锂源混合后于400~900℃焙烧3~12h,制得离子导体层修饰的锰基氧化物正极材料。
4.按照权利要求1或3所述的离子导体层修饰的锰基氧化物正极材料的制备方法,其特征在于:有机溶剂可为甲醇、乙醇、乙二醇、异丙醇、聚乙二醇等中的一种或两种以上。
5.按照权利要求1或3所述的离子导体层修饰的锰基氧化物正极材料的制备方法,其特征在于:分散所用表面活性剂为聚甲基丙烯酰胺、聚醚酰亚胺、F127、P123、聚丙烯酰胺、柠檬酸、甲酰胺、二甲基甲酰胺等中的一种或者两种以上。
6.按照权利要求1或3所述的离子导体层修饰的锰基氧化物正极材料的制备方法,其特征在于:锂源是氢氧化锂、甲酸锂、乙酸锂、柠檬酸锂或酒石酸锂中的一种或两种以上;
硅源是硅溶胶、硅酸钠或硅酸四乙酯中的一种或两种以上;
铝源是硫酸铝、硝酸铝、异丙醇铝中的一种或两种以上。
7.一种权利要求1所述的离子导体层修饰的锰基氧化物正极材料的应用,其特征在于:所述正极材料应用于电化学储能装置中,所述电化学储能装置可为锂离子电池或非对称型超级电容器。
CN201611057483.4A 2016-11-26 2016-11-26 一种离子导体层修饰的锰基氧化物正极材料及制备和应用 Active CN108123105B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611057483.4A CN108123105B (zh) 2016-11-26 2016-11-26 一种离子导体层修饰的锰基氧化物正极材料及制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611057483.4A CN108123105B (zh) 2016-11-26 2016-11-26 一种离子导体层修饰的锰基氧化物正极材料及制备和应用

Publications (2)

Publication Number Publication Date
CN108123105A CN108123105A (zh) 2018-06-05
CN108123105B true CN108123105B (zh) 2021-09-17

Family

ID=62223579

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611057483.4A Active CN108123105B (zh) 2016-11-26 2016-11-26 一种离子导体层修饰的锰基氧化物正极材料及制备和应用

Country Status (1)

Country Link
CN (1) CN108123105B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108862406B (zh) * 2018-06-27 2020-09-08 中南大学 一种碳酸盐前驱体及其制备方法和应用
CN110943206A (zh) * 2018-09-25 2020-03-31 深圳市比亚迪锂电池有限公司 正极活性材料及其制备方法和含有该正极活性材料的电池
CN110336020B (zh) * 2019-07-22 2021-05-14 广东邦普循环科技有限公司 一种高电压复合钴酸锂正极材料及其制备方法和应用
CN116314622B (zh) * 2023-03-24 2023-10-03 南开大学 具有自析出包覆层的单晶无钴铝掺杂镍酸锂正极材料及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100814826B1 (ko) * 2006-11-20 2008-03-20 삼성에스디아이 주식회사 리튬 이차 전지
KR100913178B1 (ko) * 2007-11-22 2009-08-19 삼성에스디아이 주식회사 리튬 이차 전지용 활물질 및 이를 포함하는 리튬 이차 전지
CN105118988A (zh) * 2015-10-08 2015-12-02 清华大学深圳研究生院 锂离子电池用高电压尖晶石结构正极材料及制备方法
CN105938899B (zh) * 2016-06-01 2019-05-10 中南大学 一种快离子导体包覆改性锂离子电池正极材料的制备方法及应用

Also Published As

Publication number Publication date
CN108123105A (zh) 2018-06-05

Similar Documents

Publication Publication Date Title
Zheng et al. Nanoscale gadolinium doped ceria (GDC) surface modification of Li-rich layered oxide as a high performance cathode material for lithium ion batteries
Li et al. A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO 2-inlaid LiNi 0.5 Co 0.2 Mn 0.3 O 2 as a high-performance cathode material for lithium ion batteries
JP4211865B2 (ja) 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
Liu et al. CaF2-coated Li1. 2Mn0. 54Ni0. 13Co0. 13O2 as cathode materials for Li-ion batteries
CN107706390B (zh) 一种快离子导体和导电聚合物双重修饰的锂离子电池三元正极材料的制备方法
Hu et al. Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries
Wu et al. Li [Li0. 2Mn0. 54Ni0. 13Co0. 13] O2–MoO3 composite cathodes with low irreversible capacity loss for lithium ion batteries
US8574765B2 (en) Li-Ni composite oxide particles for non-aqueous electrolyte secondary battery, process for producing the same, and non-aqueous electrolyte secondary battery
Liu et al. Enhancing electrochemical performance of LiNi0. 6Co0. 2Mn0. 2O2 by lithium-ion conductor surface modification
EP2910528A1 (en) Li-Ni COMPLEX OXIDE PARTICLE POWDER AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
Yi et al. High-performance xLi2MnO3·(1-x) LiMn1/3Co1/3Ni1/3O2 (0.1⿤ x⿤ 0.5) as Cathode Material for Lithium-ion Battery
CN110226251A (zh) 镍活性物质前驱体及其制备方法、镍活性物质以及锂二次电池
Yan et al. Effect of precipitators on the morphologies and electrochemical properties of Li1. 2Mn0. 54Ni0. 13Co0. 13O2 via rapid nucleation and post-solvothermal method
Chen et al. Controlled synthesis of spherical hierarchical LiNi1− x− yCoxAlyO2 (0< x, y< 0.2) via a novel cation exchange process as cathode materials for High-Performance Lithium Batteries
CN108123105B (zh) 一种离子导体层修饰的锰基氧化物正极材料及制备和应用
CN104600285A (zh) 一种球形镍锰酸锂正极材料的制备方法
Zhou et al. Novel solid-state preparation and electrochemical properties of Li1. 13 [Ni0. 2Co0. 2Mn0. 47] O2 material with a high capacity by acetate precursor for Li-ion batteries
Meng et al. Preparation and characterization of LiNi0. 8Co0. 15Al0. 05O2 with high cycling stability by using AlO2-as Al source
ZhenYao et al. The enhanced electrochemical performance of nanocrystalline Li [Li0. 26Ni0. 11Mn0. 63] O2 synthesized by the molten-salt method for Li-ion batteries
Jiang et al. A design strategy of large grain lithium-rich layered oxides for lithium-ion batteries cathode
Zhou et al. Enhanced electrochemical performances of LiNi0. 8Co0. 1Mn0. 1O2 synthesized using the new green and low cost preparation process
Shi et al. Morphology and electrochemical performance of Li [Li0. 2Mn0. 56Ni0. 16Co0. 08] O2 cathode materials prepared with different metal sources
Du et al. Zn‐Doped LiNi1/3Co1/3Mn1/3O2 Composite as Cathode Material for Lithium Ion Battery: Preparation, Characterization, and Electrochemical Properties
Zhou et al. Hierarchical LiNi 0.5 Mn 1.5 O 4 micro-rods with enhanced rate performance for lithium-ion batteries
Zi et al. Hierarchical Li-rich oxide microspheres assembled from {010} exposed primary grains for high-rate lithium-ion batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant