CN107999093A - 一种钴掺杂二维硒化钨电催化剂及其制备方法 - Google Patents

一种钴掺杂二维硒化钨电催化剂及其制备方法 Download PDF

Info

Publication number
CN107999093A
CN107999093A CN201711479880.5A CN201711479880A CN107999093A CN 107999093 A CN107999093 A CN 107999093A CN 201711479880 A CN201711479880 A CN 201711479880A CN 107999093 A CN107999093 A CN 107999093A
Authority
CN
China
Prior art keywords
preparation
tungsten selenide
catalyst
elctro
dimension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711479880.5A
Other languages
English (en)
Inventor
郑晓莉
张帼媛
许群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN201711479880.5A priority Critical patent/CN107999093A/zh
Publication of CN107999093A publication Critical patent/CN107999093A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • B01J27/0573Selenium; Compounds thereof
    • B01J35/33
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

本发明属于电催化剂制备领域,公开一种钴掺杂二维硒化钨电催化剂的制备方法。将硒粉、硼氢化钠分散于N,N‑二甲基甲酰胺中,在40~60℃条件下搅拌均匀;将二水合钨酸钠和四水合乙酸钴溶解于水中;混合两溶液,搅拌均匀;于160~200℃条件下反应8~12 h;反应结束后,离心洗涤,将所得沉淀在真空下干燥;所得产物在惰性气体保护下300~500℃碳化3~5 h,即得。本发明方法制备的钴掺杂二维硒化钨在广泛的pH范围内都展现出比商业硒化钨优异的电催化析氢性能,这在催化领域具有良好的应用前景。

Description

一种钴掺杂二维硒化钨电催化剂及其制备方法
技术领域
本发明属于电催化剂制备领域,具体涉及一种钴掺杂二维硒化钨电催化剂的制备方法。
背景技术
过渡金属硫族化合物作为一种新型的二维层状材料,具有类似于石墨烯的特性,广泛用于场效应晶体管、传感、储能和催化等方面。实验和理论研究表明,过渡金属硫族化合物暴露的边缘具有可媲美贵金属铂的电催化性能。但是由于过渡金属硫族化合物二维层状结构的特性,很容易在范德华力作用下聚集重叠在一起,大大降低了其边缘活性位点的暴露。因此如何制备具有高密度活性位点的过渡金属硫族化合物存在难题。截至目前,提高过渡金属硫族化合物活性位点密度的制备方法主要是剥离分散和减小尺寸,但是该过程的操作产量低且复杂,并且提高的活性位点密度有限,极大地限制了其在催化领域方面的应用。硒化钨作为一个未被广泛开发的过渡金属硫族化合物,是具有前景的非贵金属催化剂,它的性能同样受活性位点的密度的影响。因此,寻找一种行之的方法得到高活性的二维硒化钨的电催化剂仍然是一个挑战。此外,氢气作为一种高效、可再生的清洁燃料,二维材料催化剂对其电化学制备多局限在酸性条件下。 因此,开发成本低且在碱性水电解条件下工作的新型高效析氢电催化剂具有重要意义。
发明内容
针对上述现有技术的缺陷与不足,本发明的目的在于提供一种钴掺杂二维硒化钨电催化剂的制备方法。
为实现上述目的,本发明采取的技术方案如下:
一种钴掺杂二维硒化钨电催化剂的制备方法,步骤如下:
(1)、将硒粉、硼氢化钠分散于 N,N-二甲基甲酰胺中,在40~60 ℃条件下搅拌均匀,配成硒粉、硼氢化钠的质量浓度分别为(10~15)×10-3 g/mL、(5~6)×10-3 g/mL的溶液;
(2)、将二水合钨酸钠和四水合乙酸钴溶解于水中, 配成二水合钨酸钠和四水合乙酸钴的质量浓度为(100~150)×10-3 g/mL、(10~30)×10-3 g/mL的溶液;其中N,N-二甲基甲酰胺和水的体积比为(4~5)∶1,
(3)、将步骤(2)所得溶液加入步骤(1)所得溶液中,搅拌均匀;
(4)、将步骤(3)所得溶液于160~200 ℃条件下反应8~12 h;
(5)、步骤(4)反应结束后,离心洗涤,将所得沉淀在真空下干燥;
(6)、将步骤(5)所得产物在惰性气体保护下300~500 ℃碳化3~5 h,即得钴掺杂二维硒化钨电催化剂。
较好地,离心洗涤时,先用水洗涤再用乙醇洗涤;每次离心时,速度为7000~9000rpm,时间为5~10 min。
更好地,水和乙醇各自洗涤三次。
较好地,真空干燥的温度为40~60 ℃。
利用所述制备方法制备的钴掺杂二维硒化钨电催化剂。
本发明相对于现有技术,有以下优点:
1、本发明制备方法工艺简单、操作简便、后处理简单、安全,具有重复性;
2、本发明制备方法提供了一种钴掺杂二维硒化钨电催化剂的制备方法,相对于气相金属掺杂方法的高温长时间等苛刻的操作环境,此方法较温和安全而且产量大,有应用在器件上的潜力;
3、本发明方法制备的钴掺杂二维硒化钨在广泛的pH范围内都展现出比商业硒化钨优异的电催化析氢性能,这在催化领域具有良好的应用前景。
附图说明
图1:本发明实施例1制备的钴掺杂二维硒化钨的扫描电镜图。
图2:本发明实施例1制备的钴掺杂二维硒化钨的X射线光电子能谱图,(a)钨元素,(b)硒元素,(c)钴元素。
图3:本发明实施例1制备的钴掺杂二维硒化钨的透射电镜照片。
图4:本发明实施例1制备的钴掺杂二维硒化钨的X射线衍射谱图(a)和拉曼谱图(b)。
图5:商业硒化钨与本发明实施例1-3制备的钴掺杂二维硒化钨在0.5 M H2SO4酸性(a)和1 M KOH碱性(b)电解液中的极化曲线对比。
具体实施方式
以下以具体实施例来说明本发明的技术方案,但本发明的保护范围并不局限于此:
实施例1
(1)、将640 mg硒粉和300 mg硼氢化钠分散在50 mL N,N-二甲基甲酰胺中,封上保鲜膜在60 ℃条件下搅拌两个小时直至溶液变为棕黄色,形成硒粉、硼氢化钠的质量浓度分别为12.8×10-3 g/mL、6×10-3 g/mL的溶液;
(2)、将1320 mg二水合钨酸钠和200 mg 四水合乙酸钴加入10 mL去离子水中,超声0.5小时,形成二水合钨酸钠和四水合乙酸钴的质量浓度为132×10-3 g/mL、20×10-3 g/mL的溶液;
(3)、将步骤(2)所得溶液加入步骤(1)所得溶液中,继续60 ℃搅拌0.5小时;
(4)、将步骤(3)所得溶液转至反应釜中,在200 ℃条件下反应12小时;
(5)、分别用去离子水和无水乙醇洗涤三次,每次离心时,速度为7000 rpm,时间为10分钟,提取离心管下层沉淀在40 ℃下真空干燥;
(6)、将步骤(5)所得产物在氮气保护下炭化炉300 ℃碳化5小时,即得钴掺杂二维硒化钨电催化剂。
实施例2
与实施例1的不同之处在于:将步骤(2)中的四水合乙酸钴调至100 mg,其它均同实施例1。
实施例3
与实施例1的不同之处在于:将步骤(2)中的四水合乙酸钴调至300 mg,其它均同实施例1。
结构表征和性能测试
(一)结构表征
图1为本发明实施例1制备的钴掺杂二维硒化钨的扫描电子显微镜图,从图中可以看出合成的产物为二维片状结构,横向尺寸为100 nm,纵向尺寸为25 nm。
图2为本发明实施例1制备的钴掺杂二维硒化钨的X射线光电子能谱图,分别为(a)W 4f和(b)Se 3d以及(c) Co 2p谱图,从图中可以看出钴是以正二价态的形式掺杂进原有的硒化钨结构中。
图3为本发明实施例1制备的钴掺杂二维硒化钨的透射电子显微镜图,掺杂后的材料仍是尺寸较小的片状结构。
图4为本发明实施例1制备的钴掺杂二维硒化钨的X射线衍射谱图(a)和拉曼谱图(b),(a)图中除了保留原有硒化钨的特征峰以外都还有新峰的出现,并且通过对比PDF卡片可以将新峰归属为Co9Se8,(b)图中除了原来250 cm-1位置处的硒化钨特征振动模式外还有新峰的出现同样表明钴成功掺杂进硒化钨。
(二)性能测试
分别把实施例1-3制备的钴掺杂二维硒化钨与商业硒化钨作为催化剂加载到玻碳电极上作为工作电极,银/氯化银电极为参比电极,碳棒为对电极,组装三电极体系测试析氢性能,电解液为0.5 M H2SO4或1 M KOH,扫描速度为5 mv/s。工作电极的制备过程为:将5 mg样品溶解于1 mL无水乙醇中并加入5 μL 5wt%萘酚溶液超声1 小时左右直至均匀分散,用移液枪取10 μL均匀涂敷在玻碳电极上,在室温下干燥。
图5为商业硒化钨与本发明实施例1-3制备的钴掺杂二维硒化钨在0.5 M H2SO4酸性(a)和1 M KOH碱性(b)电解液中的极化曲线对比,从图中可以看到:相对于商业硒化钨,少量钴掺杂催化剂(实施例2)的析氢性能无论在酸性还是碱性条件下都有很大提高,但是当钴掺杂量相对较大时,催化剂(实施例1、实施例3)析氢性能相对商业硒化钨虽然有很大提高,但是催化剂析氢性能并不与钴掺杂量成正比,而是存在一个最合适的掺杂量;本发明实施例1制备的掺钴硒化钨不仅在酸性条件下比商业硒化钨和实施例2以及实施例3制备的钴掺杂硒化钨的催化性能高,在碱性条件下析氢性能也最优。

Claims (5)

1.一种钴掺杂二维硒化钨电催化剂的制备方法,其特征在于,步骤如下:
(1)、将硒粉、硼氢化钠分散于 N,N-二甲基甲酰胺中,在40~60 ℃条件下搅拌均匀,配成硒粉、硼氢化钠的质量浓度分别为(10~15)×10-3 g/mL、(5~6)×10-3 g/mL的溶液;
(2)、将二水合钨酸钠和四水合乙酸钴溶解于水中, 配成二水合钨酸钠和四水合乙酸钴的质量浓度为(100~150)×10-3 g/mL、(10~30)×10-3 g/mL的溶液;其中N,N-二甲基甲酰胺和水的体积比为(4~5)∶1,
(3)、将步骤(2)所得溶液加入步骤(1)所得溶液中,搅拌均匀;
(4)、将步骤(3)所得溶液于160~200 ℃条件下反应8~12 h;
(5)、步骤(4)反应结束后,离心洗涤,将所得沉淀在真空下干燥;
(6)、将步骤(5)所得产物在惰性气体保护下300~500 ℃碳化3~5 h,即得钴掺杂二维硒化钨电催化剂。
2.如权利要求1所述的制备方法,其特征在于:离心洗涤时,先用水洗涤再用乙醇洗涤;每次离心时,速度为7000~9000 rpm,时间为5~10 min。
3.如权利要求2所述的制备方法,其特征在于:水和乙醇各自洗涤三次。
4.如权利要求1所述的制备方法,其特征在于:真空干燥的温度为40~60 ℃。
5.一种利用如权利要求1~4任意一项所述制备方法制备的钴掺杂二维硒化钨电催化剂。
CN201711479880.5A 2017-12-29 2017-12-29 一种钴掺杂二维硒化钨电催化剂及其制备方法 Pending CN107999093A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711479880.5A CN107999093A (zh) 2017-12-29 2017-12-29 一种钴掺杂二维硒化钨电催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711479880.5A CN107999093A (zh) 2017-12-29 2017-12-29 一种钴掺杂二维硒化钨电催化剂及其制备方法

Publications (1)

Publication Number Publication Date
CN107999093A true CN107999093A (zh) 2018-05-08

Family

ID=62049427

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711479880.5A Pending CN107999093A (zh) 2017-12-29 2017-12-29 一种钴掺杂二维硒化钨电催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN107999093A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105776154A (zh) * 2016-05-10 2016-07-20 电子科技大学 二硒化钨纳米片的制备方法
CN106215954A (zh) * 2016-07-27 2016-12-14 中国地质大学(北京) 一种碳纤维@二硒化钨纳米片核壳复合结构及其制备方法
CN106824070A (zh) * 2017-01-22 2017-06-13 青岛科技大学 一种二硒化钨‑氮掺杂石墨烯光催化吸附材料及其制备方法
CN107190361A (zh) * 2017-04-19 2017-09-22 江苏大学 一种硒化钨/石墨烯/碳纳米纤维复合材料及其制备方法
CN107519899A (zh) * 2017-10-11 2017-12-29 陕西科技大学 一种硒化钴助催化剂及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105776154A (zh) * 2016-05-10 2016-07-20 电子科技大学 二硒化钨纳米片的制备方法
CN106215954A (zh) * 2016-07-27 2016-12-14 中国地质大学(北京) 一种碳纤维@二硒化钨纳米片核壳复合结构及其制备方法
CN106824070A (zh) * 2017-01-22 2017-06-13 青岛科技大学 一种二硒化钨‑氮掺杂石墨烯光催化吸附材料及其制备方法
CN107190361A (zh) * 2017-04-19 2017-09-22 江苏大学 一种硒化钨/石墨烯/碳纳米纤维复合材料及其制备方法
CN107519899A (zh) * 2017-10-11 2017-12-29 陕西科技大学 一种硒化钴助催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BO YU 等: "Enhanced photocatalytic properties of graphene modified few-layered WSe2 nanosheets", 《APPLIED SURFACE SCIENCE》 *
YANMIN HUANG 等: "An efficient WSe2/Co0.85Se/grapheme hybrid catalyst for electrochemical hydrogen evolution reaction", 《ROYAL SOCIETY OF CHEMISTRY》 *

Similar Documents

Publication Publication Date Title
CN110479379B (zh) 一种基于负载Ru纳米颗粒的共价有机框架材料催化剂及其制备方法和应用
Sakthivel et al. Synthesis and characterization of bimetallic nickel-cobalt chalcogenides (NiCoSe2, NiCo2S4, and NiCo2O4) for non-enzymatic hydrogen peroxide sensor and energy storage: Electrochemical properties dependence on the metal-to-chalcogen composition
CN112551571B (zh) 一种超薄纳米片微单元空心硫化铟锌纳米笼的制备与应用
CN111729675B (zh) ZIF-67衍生的Co3S4与ZnIn2S4形成的复合光催化剂的制备方法及应用
Majumder et al. Effect of SILAR-anchored ZnFe2O4 on the BiVO4 nanostructure: an attempt towards enhancing photoelectrochemical water splitting
CN109082683A (zh) 二元复合金属氮化物纳米线全分解水电催化剂及合成方法
CN106694006A (zh) 一种氧化还原固定方法制备高分散碳化钼/碳复合电催化剂
Sreedhar et al. Facile growth of novel morphology correlated Ag/Co-doped ZnO nanowire/flake-like composites for superior photoelectrochemical water splitting activity
CN105044180A (zh) 一种异质结光电极的制备方法和用途
Zhe et al. Surface engineering of carbon selenide nanofilms on carbon cloth: An advanced and ultrasensitive self-supporting binder-free electrode for nitrite sensing
Ramaraj et al. Ultrasound-assisted synthesis of two-dimensional layered ytterbium substituted molybdenum diselenide nanosheets with excellent electrocatalytic activity for the electrochemical detection of diphenylamine anti-scald agent in fruit extract
Derakhshi et al. Synthesis and characterization of NiO nanoparticle as a high sensitive voltammetric sensor for vitamin C determination in food samples
Momeni et al. Effect of electrodeposition time on morphology and photoelecrochemical performance of bismuth vanadate films
CN107694580A (zh) 一种纳米复合硒化物及其制备方法
Wang et al. Photocorrosion behavior of Cu2O nanowires during photoelectrochemical CO2 reduction
Zhang et al. Surface plasmon resonance metal-coupled biomass carbon modified TiO2 nanorods for photoelectrochemical water splitting
Skorupska et al. Combinatorial investigations of high temperature CuNb oxide phases for photoelectrochemical water splitting
Li et al. Metal-organic framework-derived three-dimensional CoSe2/Cd0. 8Zn0. 2S Schottky junction for highly efficient photocatalytic H2 evolution
Zhang et al. Understanding the Role of Oxygen and Hydrogen Defects in Modulating the Optoelectronic Properties of P-Type Metal Oxide Semiconductors
Sun et al. Noble-metal-free ultrathin CdS–NiFeS 2D–2D heterojunction nanosheets for significantly enhanced photocatalytic hydrogen evolution
Li et al. Unraveling the role of iron on Ni-Fe alloy nanoparticles during the electrocatalytic ethanol-to-acetate process
CN106964362A (zh) 金属钼酸盐/碳复合纳米纤维及其制备方法以及复合材料及其应用
CN106881078A (zh) 一种Z型结ZnO‑WO3电极、其制备方法及其在光电催化中的应用
Guan et al. In situ synthesized In2O3/CuBi2O4 heterojunction photocathodes for efficient photoelectrochemical water splitting
Song et al. Comprehensive evaluation of copper vanadate (α-CuV2O6) for use as a photoanode material for photoelectrochemical water splitting

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180508

RJ01 Rejection of invention patent application after publication