CN107957560B - 一种基于等效电路的锂离子电池soc估计算法 - Google Patents

一种基于等效电路的锂离子电池soc估计算法 Download PDF

Info

Publication number
CN107957560B
CN107957560B CN201711376573.4A CN201711376573A CN107957560B CN 107957560 B CN107957560 B CN 107957560B CN 201711376573 A CN201711376573 A CN 201711376573A CN 107957560 B CN107957560 B CN 107957560B
Authority
CN
China
Prior art keywords
soc
voltage
temperature
equivalent circuit
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711376573.4A
Other languages
English (en)
Other versions
CN107957560A (zh
Inventor
方彦彦
唐玲
云凤玲
栗敬敬
崔义
王琳舒
黄倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Automotive Battery Research Institute Co Ltd
Original Assignee
China Automotive Battery Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Automotive Battery Research Institute Co Ltd filed Critical China Automotive Battery Research Institute Co Ltd
Priority to CN201711376573.4A priority Critical patent/CN107957560B/zh
Publication of CN107957560A publication Critical patent/CN107957560A/zh
Application granted granted Critical
Publication of CN107957560B publication Critical patent/CN107957560B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供一种基于等效电路的锂离子电池SOC估计算法,包括步骤:S1、在不同的温度下,获取开路电压UOCV与SOC及温度T的关系,S2、建立等效电路模型,获取模型参数与SOC及温度T的关系,S3、计算当前温度T和时间t下的SOC值,包括简化电压特性方程,对电压特性方程进行求解。本发明提供的锂离子电池的SOC估计方法,原理简单,估计精度高,对锂离子电池的SOC估计精度最大偏差不超过1%。

Description

一种基于等效电路的锂离子电池SOC估计算法
技术领域
本发明属于检测领域,具体涉及一种锂离子电池荷电状态的估算方法。
背景技术
近年,全球的汽车数量急剧攀升,对能源的需求也越来越大,同时对环境造成的污染也愈发严重。新能源汽车,尤其是电动汽车已成为未来汽车的发展方向,但其发展速度仍受着动力电池及其应用技术的制约。如何延长电池的使用寿命、提高电池的能量效率及可靠性,是电动汽车产业化必须解决的问题,因此研究电池管理技术具有十分重大的意义。
动力电池荷电状态(State of Charge)简称SOC。锂离子电池的剩余电量是电池在运行过程中最重要的性能参数之一,剩余电量的估计是一个不可忽视的环节。对于电动车来说,准确地估计电池的SOC,不仅可以提高续航能力,还可以延长电池寿命,提高安全性。
发明内容
针对本领域存在的不足之处,本发明公开了一种基于等效电路的锂离子电池SOC估计算法,以准确地估计电池的SOC。
实现本发明上述目的技术方案为:
一种基于等效电路的锂离子电池SOC估计算法,包括步骤:
S1、在不同的温度下,获取开路电压UOCV与SOC及温度T的关系,
S2、建立等效电路模型,获取所述模型参数与所述SOC及温度T的关系,该步骤具体为
S21、建立三阶等效电路模型,等效电路内包含串联的欧姆电阻R0和三个RC单元,每个RC单元由并联的电阻和电容组成;确定所述等效电路端电压U与开路电压UOCV的特性关系;
S22、获取所述等效电路模型中的欧姆内阻R0与SOC及温度T的关系:确定脉冲放电结束瞬间的电压特性。
S222、获取温度T下欧姆内阻R0与SOC的关系
S223、获得其它温度下欧姆内阻R0与SOC的关系
S23、获取所述等效电路模型中的RC单元参数R1,C1,R2,C2,R3,C3与SOC及温度T的关系;
S231、测定脉冲放电结束瞬间后的等效电路的电压U(t);
S232、获取相同温度下RC单元参数R1,C1,R2,C2,R3,C3与SOC的关系。
S233、获取其它温度下并联RC单元参数R1,C1,R2,C2,R3,C3与SOC的关系。
S3、估计当前温度T和电池运行的时间t下的SOC值,包括S31、简化电压特性方程,S32、对电压特性方程进行求解。
其中,步骤S1中,获取一系列温度T下开路电压UOCV与SOC的关系,T的温度范围为-10~50℃,SOC为0.1~0.9范围内的至少9个值。
进一步地,将温度T下开路电压UOCV与SOC的关系以五阶多项式表达:
UOCV=a0+a1SOC+a2SOC2+a3SOC3+a4SOC4+a5SOC5
其中Uocv表示电池开路电压,a0~a5为多项式系数,且为常数,SOC为电池的荷电状态。
可选地,T在低于10℃时每4-8℃获取一组UOCV与SOC的关系,T在10℃以上时每8-12℃获取一组UOCV与SOC的关系。
其中,所述步骤S21为:
针对三阶等效电路模型,建立电池模型的特性方程:
Figure BDA0001514692300000031
其中,U0为所述欧姆内阻R0两端的电压,U1~U3为所述三个RC单元两端的电压,I为电流;
求解式(1),可得等效电路端电压的表达式为:
Figure BDA0001514692300000032
其中,U1(0)、U2(0)和U3(0)分别为脉冲放电(HPPC)计时开始时,三个RC单元两端的电压初值。
步骤S22中,脉冲放电(HPPC)为已有的测试方法,脉冲放电时间、电流等均为已有的规范(例如依据Freedom电池测试手册)。
根据图2的结构可知,脉冲放电结束瞬间,电压的变化完全是由欧姆内阻R0产生。因此,欧姆内阻R0采用下式获取:
Figure BDA0001514692300000033
式中,UL为脉冲放电结束的电压突变,I为脉冲放电电流值。
其中,所述步骤S22为:
根据温度T下,电池在不同SOC下的HPPC实验得到的电压响应曲线,采用式(4)计算得到不同SOC下的欧姆内阻R0和R0-SOC曲线。所述SOC值为0.1~0.9范围内的至少9个数值。对该温度下的R0-SOC曲线进行多项式拟拟合,所述多项式拟合式为:
R0=b0+b1SOC+b2SOC2+b3SOC3+b4SOC4+b5SOC5
其中R0表示欧姆内阻,b0~b5为多项式系数,且为常数,SOC为电池的荷电状态。
脉冲放电结束瞬间,电流为零,图2所示电路结构为零输入响应,其电压特性方程为:
Figure BDA0001514692300000041
进一步地,所述步骤S231具体为:
由图2的电路结构可知,脉冲放电结束瞬间后,欧姆内阻两端的电压变为零,但三个RC单元两端的电压不会变为零。因此式(3)变为:
Figure BDA0001514692300000042
原则上,采用数学软件的非线性拟合工具,可以直接根据式(4)对电压响应曲线拟合,得到三个RC单元的参数值。但是,由于式(4)中存在指数函数,且图2结构中的电容的数值从几十到几百kF不等,因此,采用式(5)直接拟合,难以对拟合过程进行控制,同时由于拟合参数处于分母位置,每次迭代运算,均会引入截断误差。得到的结果稳定性较差。所以,将式(5)可写为:
Figure BDA0001514692300000043
其中,c1~c3和d1~d3为与RC单元参数相关的常数。
其中,步骤S231中将脉冲放电结束瞬间后的电压特性方程确定为
Figure BDA0001514692300000044
其中,ts是脉冲放电后静置的时间,c1~c3和d1~d3为与RC单元参数相关的常数。
HPPC实验包括先对电池进行脉冲放电,再静置。ts的计时起点为脉冲结束时,即脉冲放电结束后的时间。
其中,步骤S232为:
根据温度T下,电池在不同SOC下的HPPC实验脉冲放电后静置的电压响应曲线,采用(6)式通过非线性拟合得到不同SOC下的c1~c3和d1~d3值。所述SOC值为0.1~0.9范围内的至少9个数值,再根据下式计算得到不同SOC下的RC单元参数值:
Figure BDA0001514692300000051
根据得到的不同SOC下的Ri和Ci值,对R1-SOC,R2-SOC,R3-SOC,C1-SOC,C2-SOC和C3-SOC的参数表进行三次样条插值,得到加密后的R1-SOC,R2-SOC,R3-SOC,C1-SOC,C2-SOC和C3-SOC的参数表。
其中,所述步骤S233具体为,改变温度T,重复S232,获取其它温度下加密后的R1-SOC,R2-SOC,R3-SOC,C1-SOC,C2-SOC和C3-SOC的参数表,建立R1、R2、R3、C1、C2和C3随SOC和温度的二维参数网络
进一步地,步骤S32中在计算当前温度T和时间t下的SOC值时不直接采用数学软件的非线性方程求解工具求解等效电路模型得到的高度非线性方程,而采用编写程序的方式求解,包括:
i)设定SOC初始值为0.9,计算电池的端电压值U;
ii)计算当前t下的电池端电压值U*与U的相对偏差
Δ=|U-U*|/U;
iii)若Δ≥0.001,则令SOC值减小0.001,重复i)~ii);若Δ<0.001,则输出此SOC值,即为当前温度T和时间t下的SOC值。
由于已经得到了式(2)Uocv、R0、R1、R2、R3、C1、C2和C3在不同SOC及温度T下的值,因此,步骤S31为:
等效电路端电压的表达式写为:
Figure BDA0001514692300000052
对于当前温度T和时间t,则式(8)中的U(t),U1(0)、U2(0)和U3(0)和I均为已知量,且Uocv、R0、R1、R2、R3、C1、C2和C3只与SOC相关,则式(8)可写作
Figure BDA0001514692300000061
对式(9)进行求解,即可得到当前温度T和时间t下的SOC值。
本发明的有益效果在于:
本发明提供一种锂离子电池的SOC估计方法。该方法的原理简单,估计精度高。具体包括:
1、本发明提供的SOC估计方法对锂离子电池的SOC估计精度最大偏差不超过1%。
2、本发明提供的SOC估计方法在对等效电路模型的RC单元参数进行非线性拟合时,改变了拟合的参数形式,能够有效提高拟合的稳定性和速度。
3、本发明提供的SOC估计方法在获取等效电路模型的RC单元参数与SOC的关系时,不采用多项式拟合方法,而采用三次样条插值技术建立参数表,能够有效避免多项式拟合带来的偏差。
4、本发明提供SOC估计方法在求解等效电路电压特性方程时,不直接求解非线性方程,采用编写程序的方法求解,有效提高求解精度,降低求解时间。
附图说明
图1为本发明基于等效电路的电池SOC的估计方法的流程图;
图2为等效电路的电路结构;
图3采用编写程序的方式求解式(9)的流程图。
图4为拟合得到的开路电压与SOC的关系。
图5为拟合得到的欧姆内阻与SOC的关系。
图6至图11分别为R1-SOC,R2-SOC,R3-SOC,C1-SOC,C2-SOC和C3-SOC的参数表。
图12为所得到的SOC估计值与实验值对比,
图13估算结果的偏差情况。
具体实施方式
下面通过最佳实施例来说明本发明。本领域技术人员所应知的是,实施例只用来说明本发明而不是用来限制本发明的范围。
实施例中,如无特别说明,所用手段均为本领域常规的手段。
实施例1
本实施例结合一款正极材料为三元材料的电池,T=25℃为例,采用以下估计方法,对其SOC进行估计。
具体过程包括下列步骤:
S1、获取所述开路电压UOCV与所述SOC及温度T的关系
根据温度25℃下恒流放电得到的电池在不同SOC下的开路电压Uocv,所述SOC值为0.1~0.9范围内的至少9个数值。对25℃下的Uocv-SOC曲线进行多项式拟拟合。
所述多项式拟合公式为:
UOCV=a0+a1SOC+a2SOC2+a3SOC3+a4SOC4+a5SOC5
其中Uocv表示电池开路电压,a0~a5为多项式系数,且为常数,SOC为电池的荷电状态。
图4为拟合的结果,得到的开路电压与SOC的关系为:
UOCV=3.3233+0.02455SOC-8.9131×10-4SOC2
+1.6196×10-5SOC3-1.2246×10-7SOC4+3.3391×10-10SOC5
S2、建立等效电路模型,获取所述模型参数与所述SOC及温度T的关系,该步骤包括如下子步骤:
S21、建立三阶等效电路模型,明确所述电池端电压U与开路电压UOCV的特性关系。
针对图2所示电路图,建立电池模型的特性方程:
Figure BDA0001514692300000081
Figure BDA0001514692300000082
Figure BDA0001514692300000083
U0=IR0
U=Uocv-U0-U1-U2-U3
其中,U0为所述欧姆内阻R0两端的电压,U1~U3为三个RC单元两端的电压,I为电流。
求解式(1),可得端电压的表达式为:
Figure BDA0001514692300000084
其中,U1(0)、U2(0)和U3(0)分别为计时开始时,三个RC单元两端的电压初值。
S22、获取所述等效电路模型中的欧姆内阻R0与SOC及温度T的关系。
S221、确定脉冲放电结束瞬间的电压特性。
脉冲放电结束瞬间,电流为零,图2所示电路结构为零输入响应,其电压特性方程为:
Figure BDA0001514692300000085
根据图2的结构可知,脉冲放电结束瞬间,电压的变化完全是由欧姆内阻R0产生。因此,欧姆内阻R0采用下式获取:
Figure BDA0001514692300000086
其中,UL为脉冲放电结束的电压突变,I为脉冲放电电流值。
S222、获取某相同温度下欧姆内阻R0与SOC的关系
根据温度25℃下,电池在不同SOC下的HPPC实验得到的电压响应曲线,采用S221所述方法计算得到不同SOC下的欧姆内阻R0和R0-SOC曲线。所述SOC值为0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8和0.9。对25℃下的R0-SOC曲线进行如下的多项式拟合:
R0=b0+b1SOC+b2SOC2+b3SOC3+b4SOC4+b5SOC5
其中R0表示欧姆内阻,b0~b5为多项式系数,且为常数,SOC为电池的荷电状态。
图5为拟合结果,得到的欧姆内阻与SOC的关系为:
R0=2.5800-0.03058SOC-4.5770×10-4SOC2
+1.6125×10-6SOC3-8.6662×10-8SOC4+5.0321×10-10SOC5
S23、获取所述等效电路模型中的并联RC单元参数R1,C1,R2,C2,R3,C3与SOC及温度T的关系。包含如下子步骤:
S231、确定脉冲放电结束瞬间后的电压特性。
由图2的电路结构可知,脉冲放电结束瞬间后,欧姆内阻两端的电压变为零,但三个RC单元两端的电压不会变为零。因此式(3)变为:
Figure BDA0001514692300000091
原则上,采用数学软件的非线性拟合工具,可以直接根据式(4)对电压响应曲线拟合,得到三个RC单元的参数值。但是,由于式(4)中存在指数函数,且图2结构中的电容的数值从几十到几百kF不等,同时由于拟合参数处于分母位置,每次迭代运算,均会引入截断误差。因此,采用式(5)直接拟合,难以对拟合过程进行控制,得到的结果稳定性较差。所以,将式(5)写为:
Figure BDA0001514692300000092
其中,c1~c3和d1~d3为与RC单元参数相关的常数。
S232、获取某相同温度下并联RC单元参数R1,C1,R2,C2,R3,C3与SOC的关系。
根据温度25℃下,电池在不同SOC下的HPPC实验冲放电后静置的电压响应曲线,基于式(6)通过非线性拟合得到不同SOC下的c1~c3和d1~d3值。
所述SOC值为0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8和0.9。再根据下式计算得到不同SOC下的RC单元参数值。所述表达式为:
Figure BDA0001514692300000101
Figure BDA0001514692300000102
根据步骤上述得到的不同SOC下的R1~R3和C1~C3值,对R1-SOC,R2-SOC,R3-SOC,C1-SOC,C2-SOC和C3-SOC的参数表进行三次样条插值,得到加密后的R1-SOC,R2-SOC,R3-SOC,C1-SOC,C2-SOC和C3-SOC的参数表。
参数的结果见图6~11。
S3、估计当前温度T和时间t下的SOC值
该步骤包含如下子步骤:
S31、简化电压特性方程
由于已经得到了式(2)Uocv、R0、R1、R2、R3、C1、C2和C3在不同SOC及温度T下的值,因此,式(2)可改写为:
Figure BDA0001514692300000103
对于当前温度T和时间t,则式(8)中的U(t),U1(0)、U2(0)和U3(0)和I均为已知量,且Uocv、R0、R1、R2、R3、C1、C2和C3只与SOC相关,则式(8)可写作
Figure BDA0001514692300000104
对式(9)进行求解,即可得到当前温度T和电池运行的时间t下的SOC值。
S32、对电压特性方程进行求解
式(9)是一个高度非线性方程,直接采用数学软件的非线性方程求解工具进行求解,无法得到稳定的求解结果,且求解时间较长。考虑到SOC值本身具有上下限,因此采用编写程序的方式求解式(9),具体的流程如图3所示。
i)设定SOC初始值为0.9,根据式(9)计算电池的端电压值U;
ii)当前t下的电池端电压值U*与U的相对偏差
Δ=|U-U*|/U;
iii)若Δ≥0.001。则令SOC值减小0.001,重复i)~ii)。若Δ<0.001,则输出此SOC值,即为当前温度T和时间t下的SOC值。
具体编程示例如下(只列出了求解非线性方程的程序,未列出式中各参数与SOC的关系的程序):
Figure BDA0001514692300000111
本实施例详细描述了本方法从参数获取到SOC估计的全过程。在实际应用中,对于相同的电池,所有参数获取过程即S1和S2以及估计过程的表达式简化过程S31均只需要执行一次,获取相应的参数值。进行SOC估计时只需要具体执行S32步骤。
实施效果:
所得到的SOC估计值与实验值对比见图12,从图中看实验测试(experiment)和预测结果(prediction)基本完全重合,偏差情况见图13。正负的最大偏差均约为0.6%。
实施例2
采用和实施例1***的方法,设定其他值的温度,T在低于10℃时每5℃获取一组UOCV与SOC的关系,T在10℃以上时每10℃获取一组UOCV与SOC的关系。
所得到的SOC估计值与实验值对比,其最大偏差不超过1%。
以上的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通工程技术人员对本发明的技术方案做出的各种变型和改进,均应落入本发明的权利要求书确定的保护范围内。

Claims (10)

1.一种基于等效电路的锂离子电池SOC估计算法,其特征在于,包括步骤:
S1、在不同的温度下,获取开路电压UOCV与SOC及温度T的关系,
S2、建立等效电路模型,获取模型参数与SOC及温度T的关系,该步骤具体为
S21、建立三阶等效电路模型,等效电路内包含串联的欧姆电阻R0和三个RC单元,每个RC单元由并联的电阻和电容组成,确定所述等效电路端电压U与开路电压UOCV的特性关系;
S22、获取所述等效电路模型中的欧姆内阻R0与SOC及温度T的关系:确定脉冲放电结束瞬间的电压特性,获取温度T下欧姆内阻R0与SOC的关系;
S23、获取所述等效电路模型中的RC单元参数R1,C1,R2,C2,R3,C3与SOC及温度T的关系;
S231、测定脉冲放电结束瞬间后的等效电路的电压U(ts);
S232、获取相同温度下RC单元参数R1,C1,R2,C2,R3,C3与SOC的关系;
S3、计算当前温度T和电池运行的时间t下的SOC值,包括简化电压特性方程,对电压特性方程进行求解。
2.根据权利要求1所述的锂离子电池SOC估计算法,其特征在于,步骤S1中,获取一系列温度T下开路电压UOCV与SOC的关系,T的温度范围为-10~50℃,SOC为0.1~0.9范围内的至少9个值。
3.根据权利要求2所述的锂离子电池SOC估计算法,其特征在于,将温度T下开路电压Uocv与SOC的关系以五阶多项式表达:
UOCV=a0+a1SOC+a2SOC2+a3SOC3+a4SOC4+a5SOC5
其中Uocv表示电池开路电压,a0~a5为多项式系数,且为常数,SOC为电池的荷电状态。
4.根据权利要求1所述的锂离子电池SOC估计算法,其特征在于,所述步骤S21为:
针对三阶等效电路模型,建立电池模型的特性方程:
Figure FDA0002251771570000021
其中,U0为所述欧姆内阻R0两端的电压,U1~U3为所述三个RC单元两端的电压,I为电流;
求解式(1),可得等效电路端电压的表达式为:
Figure FDA0002251771570000022
其中,U1(0)、U2(0)和U3(0)分别为脉冲放电计时开始时,三个RC单元两端的电压初值。
5.根据权利要求1所述的锂离子电池SOC估计算法,其特征在于,所述步骤S22为:
根据温度T下,电池在不同SOC下的HPPC实验得到的电压响应曲线,采用式
Figure FDA0002251771570000023
其中,UL为脉冲放电结束的电压突变,I为脉冲放电电流值,
计算得到不同SOC下的欧姆内阻R0和R0-SOC曲线,所述SOC值为0.1~0.9范围内的至少9个数值,对该温度下的R0-SOC曲线进行多项式拟合,所述多项式拟合式为:
R0=b0+b1SOC+b2SOC2+b3SOC3+b4SOC4+b5SOC5
其中R0表示欧姆内阻,b0~b5为多项式系数,且为常数,SOC为电池的荷电状态。
6.根据权利要求1所述的锂离子电池SOC估计算法,其特征在于,步骤S231中将脉冲放电结束瞬间后的电压特性方程确定为
Figure FDA0002251771570000031
其中,ts是脉冲结束放电后的静置时间,c1~c3和d1~d3为与RC单元参数相关的常数。
7.根据权利要求6所述的锂离子电池SOC估计算法,其特征在于,步骤S232为:
根据温度T下,电池在不同SOC下的HPPC实验脉冲放电后静置的电压响应曲线,采用(6)式通过非线性拟合得到不同SOC下的c1~c3和d1~d3值,所述SOC值为0.1~0.9范围内的至少9个数值,再根据下式计算得到不同SOC下的RC单元参数值:
Figure FDA0002251771570000032
根据得到的不同SOC下的Ri和Ci值,对R1-SOC,R2-SOC,R3-SOC,C1-SOC,C2-SOC和C3-SOC的参数表进行三次样条插值,得到加密后的R1-SOC,R2-SOC,R3-SOC,C1-SOC,C2-SOC和C3-SOC的参数表。
8.根据权利要求1所述的锂离子电池SOC估计算法,其特征在于,
所述步骤S23具体为,改变温度T,重复S232,获取其它温度下加密后的R1-SOC,R2-SOC,R3-SOC,C1-SOC,C2-SOC和C3-SOC的参数表,建立R1、R2、R3、C1、C2和C3随SOC和温度的二维参数网络。
9.根据权利要求1所述的锂离子电池SOC估计算法,其特征在于,步骤S32中在计算当前温度T和时间t下的SOC值时采用编写程序的方式求解,包括:
i)设定SOC初始值为0.9,计算电池的端电压值U;
ii)计算当前t下的电池端电压值U*与U的相对偏差
Δ=|U-U*|/U;
iii)若Δ≥0.001,则令SOC值减小0.001,重复i)~ii);若Δ<0.001,则输出此SOC值,即为当前温度T和时间t下的SOC值。
10.根据权利要求4所述的锂离子电池SOC估计算法,其特征在于,步骤S31中,等效电路端电压的表达式写为:
Figure FDA0002251771570000041
对于温度T和时间t,则式(8)中的U(t),U1(0)、U2(0)和U3(0)和I均为已知量,且Uocv、R0、R1、R2、R3、C1、C2和C3只与SOC相关,则式(8)可写作
Figure FDA0002251771570000042
对式(9)进行求解,即可得到当前温度T和时间t下的SOC值。
CN201711376573.4A 2017-12-19 2017-12-19 一种基于等效电路的锂离子电池soc估计算法 Active CN107957560B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711376573.4A CN107957560B (zh) 2017-12-19 2017-12-19 一种基于等效电路的锂离子电池soc估计算法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711376573.4A CN107957560B (zh) 2017-12-19 2017-12-19 一种基于等效电路的锂离子电池soc估计算法

Publications (2)

Publication Number Publication Date
CN107957560A CN107957560A (zh) 2018-04-24
CN107957560B true CN107957560B (zh) 2020-03-06

Family

ID=61959236

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711376573.4A Active CN107957560B (zh) 2017-12-19 2017-12-19 一种基于等效电路的锂离子电池soc估计算法

Country Status (1)

Country Link
CN (1) CN107957560B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108988450B (zh) * 2018-09-04 2021-03-30 石家庄科林电气股份有限公司 具有防火防爆功能的电动自行车智能充电器及充电方法
CN109878378A (zh) * 2019-01-30 2019-06-14 北京长城华冠汽车科技股份有限公司 电池内阻计算方法、装置及电池管理***
CN110208701B (zh) * 2019-04-09 2020-07-10 清华大学 一种直流微网中储能***虚拟电池内阻的计算方法
CN110058159A (zh) * 2019-04-29 2019-07-26 杭州电子科技大学 一种基于灰色神经网络的锂电池健康状态估计方法
CN110348062B (zh) * 2019-06-14 2023-05-26 湖北锂诺新能源科技有限公司 一种锂离子电池等效电路模型的构建方法
CN110208707A (zh) * 2019-06-14 2019-09-06 湖北锂诺新能源科技有限公司 一种基于等效电路模型的锂离子电池参数估算方法
CN110954831B (zh) * 2019-12-06 2021-10-26 重庆大学 一种多时间尺度的方形锂电池soc和sot联合估计方法
CN111025172B (zh) * 2019-12-31 2022-03-01 国联汽车动力电池研究院有限责任公司 一种实现锂离子电池充放电最大允许功率快速测量的方法
CN111413618A (zh) * 2020-03-27 2020-07-14 国联汽车动力电池研究院有限责任公司 一种锂离子电池的等效电路模型参数关系计算方法及***
CN111579992A (zh) * 2020-04-27 2020-08-25 沃太能源南通有限公司 基于三次样条差值的一种二阶rc等效电路参数拟合方法
CN117117346B (zh) * 2023-07-31 2024-03-12 广东嘉尚新能源科技有限公司 一种钠离子电池管理***的设计与控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135075A (ja) * 2008-12-02 2010-06-17 Calsonic Kansei Corp 組電池の温度推定方法及び装置
CN103439668A (zh) * 2013-09-05 2013-12-11 桂林电子科技大学 动力锂离子电池的电荷状态估算方法与***
CN103901351A (zh) * 2014-03-18 2014-07-02 浙江大学城市学院 一种基于滑动窗滤波的单体锂离子电池soc估计方法
CN103926538A (zh) * 2014-05-05 2014-07-16 山东大学 基于aic准则的变阶数rc等效电路模型及实现方法
CN105425154A (zh) * 2015-11-02 2016-03-23 北京理工大学 一种估计电动汽车的动力电池组的荷电状态的方法
CN106026260A (zh) * 2016-06-24 2016-10-12 南京航空航天大学 一种带有均衡电路的串连电池组soc估算方法
CN106918787A (zh) * 2017-03-20 2017-07-04 国网重庆市电力公司电力科学研究院 一种电动汽车锂电池剩余电荷估算方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100494947B1 (ko) * 2003-08-07 2005-06-13 현대자동차주식회사 배터리 정상상태 단자 전압 산출방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135075A (ja) * 2008-12-02 2010-06-17 Calsonic Kansei Corp 組電池の温度推定方法及び装置
CN103439668A (zh) * 2013-09-05 2013-12-11 桂林电子科技大学 动力锂离子电池的电荷状态估算方法与***
CN103901351A (zh) * 2014-03-18 2014-07-02 浙江大学城市学院 一种基于滑动窗滤波的单体锂离子电池soc估计方法
CN103926538A (zh) * 2014-05-05 2014-07-16 山东大学 基于aic准则的变阶数rc等效电路模型及实现方法
CN105425154A (zh) * 2015-11-02 2016-03-23 北京理工大学 一种估计电动汽车的动力电池组的荷电状态的方法
CN106026260A (zh) * 2016-06-24 2016-10-12 南京航空航天大学 一种带有均衡电路的串连电池组soc估算方法
CN106918787A (zh) * 2017-03-20 2017-07-04 国网重庆市电力公司电力科学研究院 一种电动汽车锂电池剩余电荷估算方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
电动汽车动力电池安全管理***研究与设计;项胜;《中国优秀硕士学位论文全文数据库 工程科技II辑》;20161115(第11期);第1-71页 *

Also Published As

Publication number Publication date
CN107957560A (zh) 2018-04-24

Similar Documents

Publication Publication Date Title
CN107957560B (zh) 一种基于等效电路的锂离子电池soc估计算法
CN104122504B (zh) 一种电池的soc估算方法
CN110795851B (zh) 一种考虑环境温度影响的锂离子电池建模方法
Lim et al. Fading Kalman filter-based real-time state of charge estimation in LiFePO4 battery-powered electric vehicles
Meng et al. Low-complexity online estimation for LiFePO4 battery state of charge in electric vehicles
CN104569835B (zh) 一种估计电动汽车的动力电池的荷电状态的方法
Sun et al. Improved parameter identification and state-of-charge estimation for lithium-ion battery with fixed memory recursive least squares and sigma-point Kalman filter
CN106443473B (zh) 一种动力锂离子电池组soc估算方法
Xiong et al. A data-driven based adaptive state of charge estimator of lithium-ion polymer battery used in electric vehicles
Ma et al. Co-estimation of state of charge and state of health for lithium-ion batteries based on fractional-order model with multi-innovations unscented Kalman filter method
CN105425154B (zh) 一种估计电动汽车的动力电池组的荷电状态的方法
CN111060824B (zh) 一种基于模型与算法分步融合的荷电状态估计方法
CN109143097B (zh) 一种计及温度和循环次数的锂离子电池soc估计方法
CN111060820A (zh) 一种基于二阶rc模型的锂电池soc、sop估计方法
CN107505578A (zh) 一种锂电池电荷状态估计的方法
CN111913109B (zh) 一种电池峰值功率的预测方法及装置
CN113567873B (zh) 一种基于电池组内单体充电曲线差异的电池容量和soc估计方法
CN113093017A (zh) 一种锂离子电池等效电路模型在线构建方法
CN114114038A (zh) 一种全寿命全温度下锂电池soc及可用容量联合估计方法
CN113484771A (zh) 一种锂离子电池宽温度全寿命soc及容量估计的方法
CN114295982A (zh) 锂离子电池参数及开路电压辨识方法、***及介质
CN112946481A (zh) 基于联合h∞滤波的滑模观测器锂离子电池soc估计方法及电池管理***
CN114200321B (zh) 一种锂离子电池变阶数等效电路模型建模方法
CN114720881A (zh) 一种基于改进初值带遗忘因子递推最小二乘法的锂电池参数辨识方法
CN112816873B (zh) 一种基于改进电池模型的iekf锂电池soc估算方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant