CN107513723B - 一种降低Ni/n-Si光阳极光电化学分解水开启电位的方法 - Google Patents

一种降低Ni/n-Si光阳极光电化学分解水开启电位的方法 Download PDF

Info

Publication number
CN107513723B
CN107513723B CN201710949886.8A CN201710949886A CN107513723B CN 107513723 B CN107513723 B CN 107513723B CN 201710949886 A CN201710949886 A CN 201710949886A CN 107513723 B CN107513723 B CN 107513723B
Authority
CN
China
Prior art keywords
light anode
chemistry
current potential
optical electro
rapid thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710949886.8A
Other languages
English (en)
Other versions
CN107513723A (zh
Inventor
佘广为
李生阳
师文生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technical Institute of Physics and Chemistry of CAS
Original Assignee
Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technical Institute of Physics and Chemistry of CAS filed Critical Technical Institute of Physics and Chemistry of CAS
Priority to CN201710949886.8A priority Critical patent/CN107513723B/zh
Publication of CN107513723A publication Critical patent/CN107513723A/zh
Application granted granted Critical
Publication of CN107513723B publication Critical patent/CN107513723B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/059Silicon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明公开了一种降低Ni/n‑Si光阳极光电化学分解水开启电位的方法,通过对制备的Ni/n‑Si光阳极进行一个简单的快速热处理过程,减少了存在于Ni/n‑Si界面之间的界面态,解除了这些界面态引起的费米能级钉扎效应,提高了Ni/n‑Si所形成的肖特基势垒高度,从而在光照时Ni/n‑Si光阳极产生更高的光生电压,最终降低了Ni/n‑Si光阳极光电化学分解水开启电位。该降低Ni/n‑Si光阳极光电化学分解水开启电位的方法操作简单,成本低廉,适合大规模应用到金属/n‑Si光阳极***中,对于促进光电化学分解水技术的发展和应用具有积极意义。

Description

一种降低Ni/n-Si光阳极光电化学分解水开启电位的方法
技术领域
本发明涉及光电化学技术领域,具体涉及一种降低Ni/n-Si光阳极光电化学分解水开启电位的方法。
背景技术
光电化学分解水可实现太阳能到氢能的绿色转化,被认为是解决目前日益严峻的能源危机和环境污染问题的一种有效手段。光电化学分解水完整的电化学反应包括产氢和产氧两个半反应,产氢反应在光阴极发生,产氧反应在光阳极发生。其中,产氧反应由于同时需要4个电子参与反应而更难实现。因此,开发高性能的光阳极材料是实现太阳能高效光电化学分解水的关键。
Si是地球上储量第二丰富的元素,具有合适的能级位置以及高的载流子迁移率,因而被认为是一种理想的光阳极材料。然而,硅作为光阳极在与电解液接触时很容易发生阳极腐蚀,并且在Si表面产氧反应的动力学过程非常缓慢。在Si上面沉积一层具有产氧催化活性的金属(例如Ni),不仅能很好保护Si不受腐蚀,而且还能大幅提高产氧反应速率。但是,当Ni沉积在Si表面时在Ni/Si界面处存在有大量的缺陷,这些缺陷导致Ni/Si界面处的界面态密度较高。这些高密度的界面态会造成很强的费米能级钉扎,导致Ni/n-Si之间形成低的肖特基势垒。而Ni/n-Si光阳极在光照时产生的光生电压强烈依赖于肖特基势垒高度。低的肖特基势垒导致Ni/n-Si光阳极产生低的光生电压,因而光电化学分解水开启电位较高,需要外界再提供较高的能量实现分解水。这对利用太阳能实现光电化学分解水是非常不利的。
想提高Ni/n-Si光阳极的光生电压从而降低其光电化学分解水开启电位,减少这些界面态以消除费米能级钉扎就显得尤为重要。
正是基于这种重要性,本发明提出了通过对Ni/n-Si光阳极在N2气氛下快速热处理减少Ni/Si界面的界面态,从而降低光电化学分解水开启电位的新方法。
发明内容
基于以上技术问题,本发明提供一种降低Ni/n-Si光阳极光电化学分解水开启电位的方法,通过对Ni/n-Si光阳极在N2气氛下快速热处理减少Ni/n-Si界面的界面态,从而降低光电化学分解水开启电位。
为实现上述目的,本发明采用以下技术方案:
一种降低Ni/n-Si光阳极光电化学分解水开启电位的方法,其特征在于,将Ni/n-Si光阳极进行快速热处理。
本发明提供的优选方案中,具体包括以下步骤:
将Ni/n-Si光阳极放入快速热处理炉,在惰性保护气气氛下,升温进行快速热处理。
优选地,所述惰性保护气为氮气。
优选地,所述快速热处理的温度为450-550℃。更优选地,所述快速热处理的温度为450℃。
优选地,所述升温的升温速率为20-60℃/s。更优选地,所述升温的升温速率为30℃/s。
优选地,所述快速热处理的时间30-60秒;其中快速热处理时间不包含升温所用时间。
本发明的有益效果
本发明提供的降低Ni/n-Si光阳极光电化学分解水开启电位的方法,通过对制备的Ni/n-Si光阳极进行一个简单的快速热处理过程,减少了存在于Ni/n-Si界面之间的界面态,解除了这些界面态引起的费米能级钉扎效应,提高了Ni/n-Si所形成的肖特基势垒高度,从而在光照时Ni/n-Si光阳极产生更高的光生电压,最终降低了Ni/n-Si光阳极光电化学分解水开启电位。该降低Ni/n-Si光阳极光电化学分解水开启电位的方法操作简单,成本低廉,适合大规模应用到金属/n-Si光阳极***中,对于促进光电化学分解水技术的发展和应用具有积极意义。
附图说明
图1.本发明实施例2中经过热处理的Ni/n-Si光阳极与实施例1中未热处理Ni/n-Si光阳极的XRD对比谱图;
图2.本发明实施例2中经过热处理的Ni/n-Si光阳极与实施例1中未热处理Ni/n-Si光阳极的横截面TEM对比图;
图3.本发明实施例2中经过热处理的Ni/n-Si光阳极与实施例1中未热处理Ni/n-Si光阳极的C-V曲线对比图;
图4.本发明实施例3中经过热处理的Ni/n-Si光阳极与实施例1中未热处理Ni/n-Si光阳极的C-V曲线对比图;
图5.本发明实施例4中经过热处理的Ni/n-Si光阳极与实施例1中未热处理Ni/n-Si光阳极的C-V曲线对比图;
图6.本发明对比例1中经过热处理的Ni/n-Si光阳极与实施例1中未热处理Ni/n-Si光阳极的C-V曲线对比图。
具体实施方式
下面通过实施例对本发明进行具体描述,有必要在此指出的是本实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,该领域的技术熟练人员可以根据以上发明的内容做出一些非本质的改进和调整。在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
实施例1
将P掺杂的n型电阻率为0.8-1Ω·cm单晶Si片首先浸泡在H2SO4:H2O2体积比为3:1的溶液中10分钟进行清洗,然后在H2O:HCl:H2O2体积比为5:1:1的溶液中在75℃下浸泡10分钟进行清洗。将清洗后的样品在4%稀HF溶液中浸泡10秒去除表面氧化层。将去除表面氧化层的硅片立即放入电子束蒸发腔室,保持腔室温度为50℃真空度为2×10-4Pa。以的沉积速率在硅片上电子束蒸发沉积约20nm Ni薄膜,得到Ni/n-Si光阳极。
实施例2
将实施例1所制备的Ni/n-Si光阳极放入快速热处理炉,在高纯N2气氛下,在450℃下快速热处理30秒,其中升温速率为30℃/s。热处理30秒时间不包括升温过程所用时间。得到快速热处理后的Ni/n-Si光阳极。
通过对比热处理前后Ni/n-Si光阳极XRD图以及横截面TEM图我们可以观察到热处理前后Ni/n-Si光阳极物相以及结构的变化。图1为Ni/n-Si热处理前后XRD图,通过对比我们可以发现热处理后Ni的衍射峰变得尖锐,半峰宽变窄,说明热处理后Ni的结晶性提高。
图2(a)和(b)分别为热处理前和热处理后Ni/n-Si光阳极横截面TEM图。通过对比我们可以发现热处理前Ni薄膜是有许多各个晶向的的小晶粒组成,热处理后这些小的晶粒变成单一晶向的大晶粒。
Ni/n-Si光阳极热处理前后C-V曲线如图3所示,我们可以发现热处理后Ni/n-Si光阳极开启电位有一个明显的负移,负移程度约为150mV。这就说明我们通过对Ni/n-Si实施一个快速热处理过程能显著降低其光电化学分解水开启电位。
实施例3
将实施例1制备的Ni/n-Si光阳极放入快速热处理炉,在高纯N2气氛下,在550℃下快速热处理30秒,其中升温速率为30℃/s。热处理30秒时间不包括升温过程所用时间。得到快速热处理后的Ni/n-Si光阳极。
Ni/n-Si光阳极热处理前后C-V曲线如图4所示,我们可以发现热处理后Ni/n-Si光阳极开启电位负移了100mV。
实施例4
将实施例1制备的Ni/n-Si光阳极放入快速热处理炉,在高纯N2气氛下,在550℃下快速热处理60秒,其中升温速率为30℃/s。热处理60秒时间不包括升温过程所用时间。得到快速热处理后的Ni/n-Si光阳极。
Ni/n-Si光阳极热处理前后C-V曲线如图5所示,我们可以发现热处理后Ni/n-Si光阳极开启电位负移了80mV。
实施例5
将实施例1制备的Ni/n-Si光阳极放入快速热处理炉,在高纯N2气氛下,在550℃下快速热处理60秒,其中升温速率为20℃/s。热处理60秒时间不包括升温过程所用时间。得到快速热处理后的Ni/n-Si光阳极。
实施例6
将实施例1制备的Ni/n-Si光阳极放入快速热处理炉,在高纯N2气氛下,在550℃下快速热处理30秒,其中升温速率为60℃/s。热处理30秒时间不包括升温过程所用时间。得到快速热处理后的Ni/n-Si光阳极。
对比例1
将实施例1制备的Ni/n-Si光阳极放入快速热处理炉,快速热处理方法步骤同实施例2,区别在于:快速热处理温度为800℃。
Ni/n-Si光阳极热处理前后C-V曲线如图6所示,我们可以发现当热处理温度为800℃时,开启电位变得比较正,光电流变小,Ni/n-Si光阳极性能变差。这说明当快速热处理温度过高时,不仅不能降低Ni/n-Si光阳极开启电位,而且整个性能也变差了。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (4)

1.一种降低Ni/n-Si光阳极光电化学分解水开启电位的方法,其特征在于,将Ni/n-Si光阳极进行快速热处理;将Ni/n-Si光阳极进行快速热处理包括以下步骤:将Ni/n-Si光阳极放入快速热处理炉,在惰性保护气气氛下,升温进行快速热处理;
所述升温的升温速率为20-60℃/s;所述快速热处理的时间30-60秒;所述快速热处理的温度为450-550℃;其中快速热处理时间不包含升温所用时间。
2.根据权利要求1所述的方法,其特征在于,所述惰性保护气为氮气。
3.根据权利要求1所述的方法,其特征在于,所述快速热处理的温度为450℃。
4.根据权利要求1所述的方法,其特征在于,所述升温的升温速率为30℃/s。
CN201710949886.8A 2017-10-13 2017-10-13 一种降低Ni/n-Si光阳极光电化学分解水开启电位的方法 Active CN107513723B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710949886.8A CN107513723B (zh) 2017-10-13 2017-10-13 一种降低Ni/n-Si光阳极光电化学分解水开启电位的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710949886.8A CN107513723B (zh) 2017-10-13 2017-10-13 一种降低Ni/n-Si光阳极光电化学分解水开启电位的方法

Publications (2)

Publication Number Publication Date
CN107513723A CN107513723A (zh) 2017-12-26
CN107513723B true CN107513723B (zh) 2019-06-25

Family

ID=60725932

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710949886.8A Active CN107513723B (zh) 2017-10-13 2017-10-13 一种降低Ni/n-Si光阳极光电化学分解水开启电位的方法

Country Status (1)

Country Link
CN (1) CN107513723B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109904251B (zh) * 2019-03-12 2021-03-30 中国科学院理化技术研究所 一种B掺杂的NiSi/n-Si光电阳极及其制备方法和应用
CN110257868B (zh) * 2019-06-13 2020-10-27 西安交通大学 一种硅/镍铁钒光阳极制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501804A (en) * 1983-08-08 1985-02-26 Texas A&M University Photo-assisted electrolysis cell with p-silicon and n-silicon electrodes
CN101906642A (zh) * 2010-08-30 2010-12-08 新奥科技发展有限公司 一种制备光电制氢电极的方法以及光电制氢电极
KR101218063B1 (ko) * 2012-03-06 2013-01-21 한국에너지기술연구원 금속 담지 포토어노드 및 그 제조방법

Also Published As

Publication number Publication date
CN107513723A (zh) 2017-12-26

Similar Documents

Publication Publication Date Title
Young et al. Photo-assisted water oxidation with cobalt-based catalyst formed from thin-film cobalt metal on silicon photoanodes
Wang et al. Solar water splitting: preserving the beneficial small feature size in porous α-Fe 2 O 3 photoelectrodes during annealing
Jun et al. Photoelectrochemical water splitting over ordered honeycomb hematite electrodes stabilized by alumina shielding
Yang et al. An iron oxide photoanode with hierarchical nanostructure for efficient water oxidation
Qin et al. Sn-doped hematite films as photoanodes for efficient photoelectrochemical water oxidation
Park et al. Photoelectrochemical oxygen evolution improved by a thin Al2O3 interlayer in a NiOx/n-Si photoanode
JP2016538709A (ja) 酸化チタンベースのスーパーキャパシタ電極材料及びその製造方法
Pavlenko et al. Silicon/TiO2 core-shell nanopillar photoanodes for enhanced photoelectrochemical water oxidation
Sun et al. Metal on metal oxide nanowire Co-catalyzed Si photocathode for solar water splitting
Wu et al. Enhancing photoelectrochemical activity with three-dimensional p-CuO/n-ZnO junction photocathodes
Li et al. Efficient photoelectrochemical water oxidation enabled by an amorphous metal oxide-catalyzed graphene/silicon heterojunction photoanode
CN109943857B (zh) 一种硅基光电极、及其制备方法和用途
Wang et al. Fabrication of novel AgTiO2 nanobelts as a photoanode for enhanced photovoltage performance in dye sensitized solar cells
Wang et al. Enhanced electrocatalytic activity of vacuum thermal evaporated CuxS counter electrode for quantum dot-sensitized solar cells
CN107513723B (zh) 一种降低Ni/n-Si光阳极光电化学分解水开启电位的方法
Mandal et al. Study of the properties of SiOx layers prepared by different techniques for rear side passivation in TOPCon solar cells
Costa et al. Improvement of electrodeposited Sb 2 Se 3 thin film photoelectroactivity by cobalt grain boundary modification
Yang et al. Work function engineering to enhance open-circuit voltage in planar perovskite solar cells by gC 3 N 4 nanosheets
Halima et al. Metal-free black silicon for solar-powered hydrogen generation
CN111962083B (zh) 一种石墨烯卷包覆的石墨相氮化碳纳米管光电极的制备方法及应用
CN107464881A (zh) 一种面向光解水制氢的集成器件及其制作方法
CN107268020A (zh) 一种Ta3N5薄膜的制备方法及Ta3N5薄膜的应用
CN107988615B (zh) 一种氮化碳修饰ZnO/CdS光阳极材料的制备及应用
CN102544375A (zh) 一种宽光谱响应的太阳能电池柔性光阳极及其制备方法
CN110690351A (zh) 一种制造钙钛矿太阳能电池的方法

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant