CN107346826B - 一种单原子铁分散的氧还原电催化剂的制备方法 - Google Patents

一种单原子铁分散的氧还原电催化剂的制备方法 Download PDF

Info

Publication number
CN107346826B
CN107346826B CN201710544117.XA CN201710544117A CN107346826B CN 107346826 B CN107346826 B CN 107346826B CN 201710544117 A CN201710544117 A CN 201710544117A CN 107346826 B CN107346826 B CN 107346826B
Authority
CN
China
Prior art keywords
iron
temperature
hours
carbonization
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710544117.XA
Other languages
English (en)
Other versions
CN107346826A (zh
Inventor
曹达鹏
杨柳
吕延龙
王迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201710544117.XA priority Critical patent/CN107346826B/zh
Publication of CN107346826A publication Critical patent/CN107346826A/zh
Application granted granted Critical
Publication of CN107346826B publication Critical patent/CN107346826B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

一种单原子铁分散的氧还原电催化剂的制备方法,属于电催化技术领域。利用廉价的且富氮的g‑C3N4为原料,加入表面活性剂,铁源,经过高温热解得到了单原子铁分散的电催化剂。该催化剂具有合成方法简单、无污染,反应物廉价易得等特点,制备出的催化剂在酸性表现出与铂碳相当的电化学性能,具有广泛的应用前景。

Description

一种单原子铁分散的氧还原电催化剂的制备方法
技术领域
本发明是关于一种单原子铁分散的氧还原电催化剂的新的制备方法,属于电催化技术领域。
背景技术
随着化石燃料的大量燃烧与排放,人类面临着环境恶化和能源短缺的重大问题。因此,寻找和开发一种绿色、环保和可持续发展的清洁能源是当前研究工作者的主要任务。燃料电池作为一种新型的能源,是一种将化学能通过电化学反应直接转化为电能的发电装置,在电池的阳极发生氢气的氧化反应,阴极发生氧气的还原反应,燃料电池的整个反应过程中唯一的产物是水,不带来任何复杂的副反应以及副产物,它具有转换效率高、无污染、噪音低及可靠性高等优点,最近几年受到了人们的广泛关注,尤其是现在最具有潜力商业化的质子交换膜燃料电池。质子交换膜燃料电池将在不久的将来发挥着重要的作用,它被称为是电动汽车的终极电源。
但是燃料电池至今为止还没有商业化的原因是,无论是在阳极还是在阴极发生的化学反应都需要贵金属铂作为催化剂,否则反应进行的慢,使得电池的性能大大衰减。据统计,一台100kW的燃料电池汽车约需100g的Pt,而地壳中Pt的储量仅为39000t。铂稀缺性导致燃料电池汽车的成本过高。并且阴极氧还原(ORR)的反应速率比阳极氢氧化反应(HOR)的速率小几个数量级,所以阴极上的氧还原反应是研发燃料电池的关键。目前,研制非贵金属催化剂来代替贵金属铂是燃料电池的研究重点方向。当前研究大致分为两个方向:第一,研制出铂含量较低的催化剂,如铂金属合金结构、核壳结构;第二,使用非贵金属来完全代替贵金属铂,如在碳材料中掺杂一些非金属或者是非贵金属。异原子掺杂碳材料具有成本低、性能好、抗甲醇、抗一氧化碳等优异特性,为燃料电池的商业化发展提供了有力的技术支持。自从1964年Jasinski发现钴酞菁在碱性电解液中能够催化氧的还原以来,异原子掺杂碳材料在电化学上迅速发展起来。随着研究的不断进行与深入,异原子掺杂碳材料在碱性条件下的氧还原电催化性能可以达到与铂碳相当的水平,并且在稳定性以及抗甲醇性上超过了商业铂。
燃料电池按照电解液的不同大致上分为两种:一种是碱性燃料电池,一种是酸性燃料电池,在酸性燃料电池中质子交换膜燃料电池是人们认为最有发展前景的一类电池,这是因为质子交换膜燃料电池它提供的能量密度是碱性燃料电池、锂电池、甲醇燃料电池的3-10倍左右,这类电池最终有希望成为以后便携式设备的首选。虽然酸性条件下非贵金属氧还原催化剂的发展也是很迅速,但是从电催化氧还原反应的性能发来看还是与商业的铂碳有一定的差距,尤其是对于无金属掺杂的碳基催化剂,这类催化剂在碱性条件下会达到与铂碳相当的电催化能力,但是在酸性条件下的性能很弱并且极其的不稳定,所以发展一种催化剂无论是在酸性条件还是在碱性条件下均可以表现出优异的电催化性能是我们所要研究的重点。
发明内容
本发明所要解决的第一个技术问题是针对燃料电池的发展现状以及电化学关键技术问题上提出一种全新的单原子铁分散的电催化剂的制备方法,这种催化剂无论是在酸性条件下还是在碱性条件下均可以达到与铂碳相近的氧还原性能。
本发明所要解决的第二个技术问题是在氮源碳源的前驱体(g-C3N4)中加入铁盐,经过高温碳化得到石墨化程度比较高的纳米多孔碳。
本发明所要解决的第三个技术问题是在(g-C3N4)和铁盐的复合材料中加入阴离子表面活性剂F127,来使得金属铁盐在高温热解下不至于团聚,起到很好的分散剂的作用,进而制备出单原子铁分散的电催化剂。
本发明为解决上述技术问题,所采用的技术方案是在碳源氮源(g-C3N4)中加入表面活性剂F127以及少量的铁盐,在程序升温管式炉中碳化,通过探究金属铁盐加入量的不同、是否加入表面活性剂、碳化温度的不同为控制变量,进一步制备出性能优异的电催化剂。
本发明的具体合成步骤如下:
(1)将一定量的含C、N的前驱体放入管式炉中进行碳化,得到前驱体g-C3N4
(2)将一定的g-C3N4超声分散、磁力搅拌溶解在水中;
(3)向步骤(2)溶液中加入表面活性剂,磁力搅拌;
(4)向步骤(3)所得的混合物中加入水溶性铁盐,搅拌,干燥,记作产物1;
(5)产物1放入程序性升温的管式炉中高温碳化,酸洗,水洗,干燥,得到单原子铁分散的氧还原电催化剂。
通过扫描电镜、透射电镜、球差电镜、同步辐射、拉曼光谱、X射线光电子能谱、X射线衍射光谱、电感耦合等离子体质谱、有机元素分析、全分析等一系列表征验证了所制备的材料为高分散的单原子铁分散的金属、氮共掺杂多孔碳材料。
进一步,在步骤(1)中含C、N的前驱体选自尿素、氰胺、双氰胺、三聚氰胺、硫脲、三臻环化合物等。在管式炉中碳化的升温速率为2-10℃/min,碳化温度500-600℃,碳化保持时间为1-10小时。步骤(1)中以上的前驱体一次碳化的质量为0.01-20g。
进一步,步骤(2)中g-C3N4与水的用量关系为每0.01-5g的g-C3N4对应的水为10-100ml,超声搅拌的时间为0.5-10小时。
进一步,步骤(3)中加入表面活性剂,表面活性剂为阴离子表面活性剂或非离子型表面活性剂,例如羧酸盐、硫酸酯盐、磺酸盐和磷酸酯盐、F127等。g-C3N4与表面活性剂的质量比例为0.01-100:1。
进一步,步骤(4)中加入铁盐可以是硫酸铁、硫酸亚铁、硝酸铁、硝酸亚铁、氯化铁、氯化亚铁等等。加入的铁盐与g-C3N4的摩尔比例为0.01-10:1。
进一步,步骤(5)中对管式炉进行升温以前,先通入保护气体作为保护气,保持时间1-3小时,保护气体可选自氮气、氩气、氦气、氖气、氪气、氙气或氡气等。碳化过程的升温速度为0.5-30℃/min。碳化的温度为500-1200℃(优选800-1000℃),在该温度下保温0.5-8h,自然冷却至室温。
步骤(5)中酸洗用的酸可选自硝酸、硫酸、盐酸、氢氟酸等等。
优选步骤(1)中选用尿素作为制备g-C3N4的前驱体,在氮气保护气下以每分钟3℃升温,在550℃保持2个小时,步骤(2)中优选每0.3g g-C3N4,加入30ml水超声搅拌2个小时,步骤(3)阴离子表面活性剂优选地使用聚醚F127,与g-C3N4的质量比例优选地使用1:1,步骤(4)中优选地使用FeCl3作为铁盐,与g-C3N4的摩尔比例优选地使用0.1:1。步骤(5)中优选地氮气作为保护气,保持时间2小时,以每分钟2℃的速度上升,在800℃保持2小时。酸洗优先地选用盐酸。
本发明的有益效果如下:
1)以廉价的g-C3N4作为前驱体,在其中加入表面活性剂以及少量的金属铁盐,经过一步热解得到了高度分散的单原子铁掺杂的多孔碳催化剂,该催化剂在价格上大大的低于贵金属铂碳,这种催化剂的氧还原电催化性能无论是在酸性条件下还是碱性条件下均可以达到与商业铂碳相比较的程度,并且稳定性与抗甲醇性都要比商业铂性能好,这种催化剂将有希望代替商业的铂碳,进而使得酸性的质子交换膜电池商业化成为可能,为电催化的发展提供一些基础性的研究,在电催化氧还原方面有广泛的应用前景。
2)与现有技术相比,本方法制备过程简单,操作方便。本发明的碳化之后g-C3N4变成了类似于石墨烯薄片的结构,铁以单原子的形式均匀的分散在多孔碳材料中;多孔碳材料具有优异的导电性、高比表面积并具有微孔、介孔和大孔共存的等级孔结构,更有利于传质和电荷的传输。过渡金属铁掺杂的多孔碳提供了大量的活性位点,促进了催化剂的电催化性能。
3)本发明制备过程避免了使用有毒试剂和复杂的合成工艺,制备过程简单,操作方便,容易实现大规模生产。
4)本发明采用尿素、铁盐为前驱体,方便易得、使得催化剂的成本大大降低。
附图说明
图1为实施例1中用g-C3N4为原料制备单原子铁分散的电催化剂的方法示意图。
图2为实施例1中单原子铁分散的催化剂的扫描电子显微镜照片。
图3为实施例1中单原子铁分散的催化剂的透射电子显微镜照片。
图4为实施例1中单原子铁分散的催化剂的元素分布图。
图5为实施例1中单原子铁分散的催化剂的X射线衍射光谱。
图6为实施例1中单原子铁分散的催化剂和商业Pt/C的氧还原催化LSV对比图(在碱性0.1M氢氧化钾)。
图7为实施例1中的单原子铁分散的催化剂和商业Pt/C的氧还原催化LSV对比图(在酸性0.5M硫酸)。
图8为对比例2中铁纳米颗粒掺杂多孔碳催化剂的透射电子显微镜照片。
图9为实施例3中铁纳米颗粒掺杂多孔碳催化剂的透射电子显微镜照片。
图10为对比例2中铁纳米颗粒掺杂多孔碳和商业Pt/C的氧还原催化LSV对比图(在碱性0.1M氢氧化钾)。
图11为实施例3中铁纳米颗粒掺杂多孔碳和商业Pt/C的氧还原催化LSV对比图(在碱性0.1M氢氧化钾)。
具体实施方式
以下结合实施实例和附图对本发明作进一步详细描述,但本发明并不限于以下实施例。
实验药品来源于商业正规销售(安耐吉,国药集团,北京化工厂、杜邦、J&K,Alfar),除特别说明外没有进一步提纯。
实施例1:以g-C3N4为原料制备单原子铁分散的电催化剂的方法
1)称取3g尿素,放入管式炉中以每分钟3℃的升温速度升温,550℃保持2个小时,自动降温。
2)称取0.3g步骤(1)中合成出的产物g-C3N4,加入30ml的去离子水,超声半个小时,搅拌1.5个小时。
3)将步骤(2)的产物中加入0.3g聚醚F127,搅拌2个小时。
4)将步骤(3)的溶液中加入1ml,0.298M的FeCl3溶液,搅拌8个小时,在加热的搅拌器中升温到100℃自然搅拌风干。
5)上述的干燥后的粉末放入管式炉中碳化,温度升到800℃(以每分钟2℃的速度上升,800℃保持2个小时),将碳化后的产物取出,用1MHCl 5ml浸泡12小时,过滤,用大量的水冲洗,直到PH=7为止,记作SA-Fe/NG。
对比例2:以g-C3N4为原料制备纳米颗粒铁、氮共掺杂碳电催化剂的方法
1)称取3g尿素,放入管式炉中以每分钟3℃的升温速度升温,550℃保持2个小时,自动降温。
2)称取0.3g步骤(1)中合成出的产物g-C3N4,加入30ml的去离子水,超声半个小时,搅拌1.5个小时。
3)将步骤(2)的溶液中加入1ml,0.298M的FeCl3溶液,搅拌8个小时,在加热的搅拌器中升温到100℃自然搅拌风干。
4)上述的干燥后的粉末放入管式炉中碳化,温度升到800℃(以每分钟2℃的速度上升,800℃保持2个小时),将碳化后的产物取出,用1MHCl 5ml浸泡12小时,过滤,用大量的水冲洗,直到PH=7为止,记作Fe/NG。
实施例3:以g-C3N4为原料制备纳米颗粒铁、氮共掺杂碳电催化剂的方法
1)称取3g尿素,放入管式炉中以每分钟3℃的升温速度升温,550℃保持2个小时,自动降温。
2)称取0.3g步骤(1)中合成出的产物g-C3N4,加入30ml的去离子水,超声半个小时,搅拌1.5个小时。
3)将步骤(2)的产物中加入0.3g聚醚F127,搅拌2个小时。
4)将步骤(3)的溶液中加入5ml,0.298M的FeCl3溶液,搅拌8个小时,在加热的搅拌器中升温到100℃自然搅拌风干。
5)上述的干燥后的粉末放入管式炉中碳化,温度升到800℃(以每分钟2℃的速度上升,800℃保持2个小时),将碳化后的产物取出,用1MHCl 5ml浸泡12小时,过滤,用大量的水冲洗,直到PH=7为止,记作Fe/NG-1。
上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。
图2是实施例1碳化后单原子铁分散的催化剂的扫描电镜照片,从图中可以看出在碳化之后g-C3N4变成了类似于石墨烯薄片的结构,并且没有发现铁颗粒的聚集,这个与图3的透射电镜的照片相符。
图4是实施例1碳化后单原子铁分散的催化剂的球差电镜图,由整体图可以看出不存在大的铁的颗粒,但是在10nm高倍下发现大量小点,通过元素分析证明这些小点是铁,这说明铁以单原子的形式均匀的分散在多孔碳材料中,使得该催化剂的活性位大量的暴露,催化性能因此提高。

Claims (7)

1.一种单原子铁分散的氧还原电催化剂的制备方法,其特征在于,包括以下步骤:
(1) 将一定量的含C、N的前驱体放入管式炉中进行碳化,得到前驱体g-C3N4
(2) 将一定的g-C3N4超声分散、磁力搅拌溶解在水中;
(3) 向步骤(2)溶液中加入表面活性剂,磁力搅拌;
(4) 向步骤(3)所得的混合物中加入水溶性铁盐,搅拌,干燥,记作产物1;
(5) 产物1放入程序性升温的管式炉中高温碳化,酸洗,水洗,干燥,得到单原子铁分散的氧还原电催化剂;步骤(2)中表面活性剂选自F127;
在步骤(1)中含C、N的前驱体选自尿素、氰胺、双氰胺、三聚氰胺、硫脲、三嗪环化合物;在步骤(1)在管式炉中碳化的升温速率为2-10℃/min,碳化温度500-600℃,碳化保持时间为1-10小时;g-C3N4与表面活性剂的质量比例为0.01-100:1;步骤(5)中对管式炉进行升温以前,先通入保护气体,保持时间1-3小时;碳化过程的升温速度为0.5-30℃/min,碳化的温度为500-1200℃,在该温度下保温0.5-8h,自然冷却至室温。
2. 按照权利要求1所述的一种单原子铁分散的氧还原电催化剂的制备方法,其特征在于,步骤(2)中g-C3N4与水的用量关系为每0.01-5g 的g-C3N4对应的水为10-100ml;步骤(2)中超声搅拌的时间为0.5-10小时。
3.按照权利要求1所述的一种单原子铁分散的氧还原电催化剂的制备方法,其特征在于,加入的铁盐与g-C3N4的摩尔比例为0.01-10:1。
4.按照权利要求1所述的一种单原子铁分散的氧还原电催化剂的制备方法,其特征在于,步骤(4)中加入铁盐选自硫酸铁、硫酸亚铁、硝酸铁、硝酸亚铁、氯化铁、氯化亚铁。
5.按照权利要求1所述的一种单原子铁分散的氧还原电催化剂的制备方法,其特征在于,步骤(5)的碳化温度为800-1000℃。
6.按照权利要求1所述的一种单原子铁分散的氧还原电催化剂的制备方法,其特征在于,步骤(1)中选用尿素作为制备g-C3N4的前驱体,在氮气保护气下以每分钟3℃升温,在550℃保持2个小时,步骤(2)中每0.3g g-C3N4, 加入30ml水超声搅拌2个小时,步骤(3)表面活性剂与g-C3N4的质量比例使用1:1,步骤(4)中使用FeCl3作为铁盐,FeCl3与g-C3N4的摩尔比例为0.1:1;步骤(5)中氮气作为保护气,保持时间2小时,以每分钟2℃的速度上升,在800℃保持2小时;酸洗选用盐酸。
7.按照权利要求1-6任一项制备方法制备得到的单原子铁分散的氧还原电催化剂。
CN201710544117.XA 2017-07-05 2017-07-05 一种单原子铁分散的氧还原电催化剂的制备方法 Active CN107346826B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710544117.XA CN107346826B (zh) 2017-07-05 2017-07-05 一种单原子铁分散的氧还原电催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710544117.XA CN107346826B (zh) 2017-07-05 2017-07-05 一种单原子铁分散的氧还原电催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN107346826A CN107346826A (zh) 2017-11-14
CN107346826B true CN107346826B (zh) 2020-07-24

Family

ID=60257628

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710544117.XA Active CN107346826B (zh) 2017-07-05 2017-07-05 一种单原子铁分散的氧还原电催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN107346826B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109921040A (zh) * 2017-12-12 2019-06-21 中国科学院大连化学物理研究所 一种Ni、Fe掺杂的碳基电催化剂及其制备和应用
CN108539218B (zh) * 2018-01-03 2022-02-01 南京工业大学 一种电催化材料、制备方法以及质子交换膜燃料电池
CN108246330B (zh) * 2018-01-12 2019-12-24 北京化工大学 一种基于木质素/金属超分子组装构筑单原子催化剂的方法
CN108620072A (zh) * 2018-05-11 2018-10-09 大连理工大学 一种基于碳量子点的单原子铁催化剂的制备及其应用
CN109569608B (zh) * 2018-12-17 2021-03-12 济南大学 一种CoFe2O4纳米片析氧催化剂的制备方法及用途
CN111326750B (zh) * 2018-12-17 2021-03-23 南京大学 一种微波热解密胺树脂制备燃料电池催化剂的方法
CN110142058B (zh) * 2019-05-21 2022-01-04 大连理工大学 一种F127诱导的三维多孔FeNi-NC双功能电催化剂及其制备方法
CN110649276A (zh) * 2019-09-26 2020-01-03 江苏师范大学 一种基于n2等离子刻蚀的立体式多孔氮掺杂碳纳米管电催化剂及其制备方法
CN110639490A (zh) * 2019-10-18 2020-01-03 深圳大学 一种多孔碳基氮还原催化剂的制备方法及应用
CN112774709A (zh) * 2019-11-11 2021-05-11 中国科学院大连化学物理研究所 负载型催化剂及其制法和应用
CN110773156B (zh) * 2019-11-20 2021-07-06 苏州阿德旺斯新材料有限公司 一种过渡金属单原子催化剂、其制备方法及应用
CN111584891B (zh) * 2020-05-21 2022-02-01 南通大学 一种原子级铁活性位点催化剂及其制备方法与应用
CN113231094B (zh) * 2021-05-08 2023-04-04 山西铭睿恒信环保工程有限公司 一种用于难降解有机污染物去除的单原子催化材料及其制备方法
CN113937309B (zh) * 2021-10-26 2023-07-04 武汉理工大学 一种单原子催化剂及其制备方法
CN114272946B (zh) * 2021-12-27 2023-03-31 北京化工大学 一种石墨相氮化碳负载低自旋单原子Fe的多相催化剂、制备方法及催化方法
CN114275777A (zh) * 2021-12-28 2022-04-05 盐城工学院 一种用于锂电负极的高石墨化度炭基材料的制备方法
CN115954491B (zh) * 2022-12-01 2023-10-27 中南大学 一种氮掺杂功能化碳载铂过渡金属二元有序合金催化剂的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102451727A (zh) * 2010-10-27 2012-05-16 中国科学院大连化学物理研究所 一种m/n-c催化剂及其制备和应用
CN102513109A (zh) * 2011-12-16 2012-06-27 武汉大学 一种碳基非贵金属氧电极双功能催化剂及其制备方法
CN103682379A (zh) * 2012-09-07 2014-03-26 中国科学院大连化学物理研究所 一种燃料电池用金属掺杂的含氮炭基催化剂及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102451727A (zh) * 2010-10-27 2012-05-16 中国科学院大连化学物理研究所 一种m/n-c催化剂及其制备和应用
CN102513109A (zh) * 2011-12-16 2012-06-27 武汉大学 一种碳基非贵金属氧电极双功能催化剂及其制备方法
CN103682379A (zh) * 2012-09-07 2014-03-26 中国科学院大连化学物理研究所 一种燃料电池用金属掺杂的含氮炭基催化剂及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Highly active and stable non noble metal catalyst for oxygen reduction reaction";Bodong Zhang等;《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》;20170406;第42卷;第10423-10434页 *

Also Published As

Publication number Publication date
CN107346826A (zh) 2017-11-14

Similar Documents

Publication Publication Date Title
CN107346826B (zh) 一种单原子铁分散的氧还原电催化剂的制备方法
Yang et al. Iron-doped nickel disulfide nanoarray: A highly efficient and stable electrocatalyst for water splitting
CN107267124B (zh) 一种含Ni/Fe双金属的MOFs含氮石墨化碳材料
CN109811360B (zh) 一种NiFeMo三元电解水电极及其制备方法
CN109248703B (zh) 一种负载Ni3Fe的氮掺杂碳纳米复合材料的制备方法及其所得材料和应用
Ma et al. Three-dimensional crystalline-Ni5P4@ amorphous-NiOx core–shell nanosheets as bifunctional electrode for urea electro-oxidation and hydrogen evolution
CN113644283B (zh) 一种非金属掺杂碳/硫化亚铁复合物的制备方法
CN112103520A (zh) 一种醇类燃料电池的阳极催化剂
Li et al. Single‐atom catalyst application in distributed renewable energy conversion and storage
CN111659439A (zh) 一种负载NiS/NiO异质结的氮掺杂碳纳米复合材料及其制备方法和用途
Wang et al. Amorphous high-valence Mo-doped NiFeP nanospheres as efficient electrocatalysts for overall water-splitting under large-current density
CN111229267B (zh) 负载型磷掺杂金属羟基氧化物纳米片材料及其制备方法和应用
Wang et al. Investigating the active sites in molybdenum anchored nitrogen-doped carbon for alkaline oxygen evolution reaction
CN108671929A (zh) 一种用于电催化水分解析氧反应的超小纳米合金催化剂的制备方法
Sun et al. In-situ phosphating Co@ Nitrogen-doping graphene boosts overall water splitting under alkaline condition
Liang et al. In-situ growth of NCNT and encapsulation of Co9S8/Co as a sustainable multifunctional electrocatalyst
Saeed et al. Phosphorus-doped CoFe2O4 nanoparticles decorated nitrogen-doped graphene for efficient and stable electrocatalytic water splitting
CN112490451A (zh) 一种由叶酸衍生的Cu-CoNCNs催化剂及制备和应用
Wu et al. Synergistic engineering of P, N-codoped carbon-confined bimetallic cobalt/nickel phosphides with tailored electronic structures for boosting urea electro-oxidation
CN114892197B (zh) 一种电催化合成h2o2用催化剂及其制备方法和应用
Zhou et al. A biomass derived porous carbon materials with adjustable interfacial electron transmission dynamics as highly-efficient air cathode for Zn-Air battery
Wang et al. Electrocatalytic reduction of nitrogenous pollutants to ammonia
Huang et al. Cerium oxide boosted CoFe-N codoped carbon nanotubes with abundant oxygen-vacancies toward efficient oxygen reduction and methanol oxidation reaction
Li et al. S-doped Ni (Fe) OOH bifunctional electrocatalysts for overall water splitting
Liu et al. Compositional engineering of tungsten-based carbides toward electrocatalytic hydrogen evolution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant