CN107265453B - 用于制造活性炭的方法 - Google Patents

用于制造活性炭的方法 Download PDF

Info

Publication number
CN107265453B
CN107265453B CN201610825622.7A CN201610825622A CN107265453B CN 107265453 B CN107265453 B CN 107265453B CN 201610825622 A CN201610825622 A CN 201610825622A CN 107265453 B CN107265453 B CN 107265453B
Authority
CN
China
Prior art keywords
activated carbon
nitrogen
manufacturing
range
activation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610825622.7A
Other languages
English (en)
Other versions
CN107265453A (zh
Inventor
裵臣泰
许宁廷
朴秀进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Motor Co
Inha Industry Partnership Institute
Original Assignee
Hyundai Motor Co
Inha Industry Partnership Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Motor Co, Inha Industry Partnership Institute filed Critical Hyundai Motor Co
Publication of CN107265453A publication Critical patent/CN107265453A/zh
Application granted granted Critical
Publication of CN107265453B publication Critical patent/CN107265453B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • C01B32/36Reactivation or regeneration
    • C01B32/366Reactivation or regeneration by physical processes, e.g. by irradiation, by using electric current passing through carbonaceous feedstock or by using recyclable inert heating bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/305Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
    • B01J20/3064Addition of pore forming agents, e.g. pore inducing or porogenic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/06Filtering
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/342Preparation characterised by non-gaseous activating agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • B01J2220/485Plants or land vegetals, e.g. cereals, wheat, corn, rice, sphagnum, peat moss
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

本发明涉及一种用于制造活性炭的方法。一种活性炭制造方法可以包括:制备活性炭前体,通过对活性炭前体进行热处理来碳化活性炭前体,通过研磨活性炭前体来均衡在碳化过程中经碳化的活性炭前体,通过将氧化剂和蒸馏水加入经均衡的活性炭前体中并对活性炭前体进行热处理来活化活性炭前体,并通过混合活性炭前体、含氮材料和溶剂以在活性炭前体上进行反应来将氮基官能团引入活性炭前体的表面中。

Description

用于制造活性炭的方法
相关申请的交叉引用
本申请要求2016年4月5日提交的韩国专利申请第10-2016-0041810号的优先权,该申请的全部内容结合于此用于通过该引用的所有目的。
技术领域
本发明涉及一种活性炭制造方法。
背景技术
目前,由于例如矿物燃料消耗和引起温室效应的温室气体的排放等问题,人们对环境友好汽车的兴趣迅速增加。特别是对于生态友好汽车,电动车辆的行驶距离已经成为了重要问题。
对于加热和冷却,不同于内燃机,电动车辆不包括用于加热的废热源(发动机冷却剂)和用于压缩冷却剂的废电力。因此,额外需要用于正温度系数(PTC)加热器和用于压缩冷却剂的电力,并以此消耗额外的电力。因此,行驶距离减少30%至50%。
因此,需要最小化外部空气的引入以保持冷和热。在此情况下,车辆中二氧化碳的浓度因乘客排放的二氧化碳而增加,并由此产生安全问题(2000ppm或以上导致困倦,而5000ppm引起陷入呼吸困难的问题)。
因此,减少包括在车辆中的二氧化碳的研究不断发展。目前,空气过滤器(包括活性炭)被应用于某些高端汽车。尽管,这样的空气过滤器可以用作去除有害气体,例如挥发性有机化合物(VOC)或细尘,但其难以去除二氧化碳。
常规活性炭制造方法通过如下进行:在非活化环境下通过高温热处理碳化作为前体的各种植物材料(如椰子壳),并额外地对其进行高温化学或物理活化以使其具有大量的孔。然而,根据这种常规方法,所制造的活性炭的表面孔径在微孔至大孔的宽广的分布范围内变化。因此,孔隙均匀度降低。难以形成1nm或更小的超微孔从而具有均匀分布。
因此,正在进行改进二氧化碳的吸附能力的研究。
公开于该发明背景技术部分的信息仅仅旨在加深对本发明的一般背景技术的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。
发明内容
本发明的各个方面旨在提供一种活性炭的制造方法,其具有如下优点:能够通过形成大量微孔并引入氮基官能团来改进二氧化碳的选择性吸附能力。
根据本发明的各个方面,一种活性炭制造方法可以包括:制备活性炭前体,通过对活性炭前体进行热处理来碳化活性炭前体,通过研磨活性炭前体来均衡在碳化过程中经碳化的活性炭前体,通过将氧化剂和蒸馏水加入经均衡的活性炭前体中并对活性炭前体进行热处理来活化活性炭前体,并通过混合活性炭前体、含氮材料和溶剂以在活性炭前体上进行反应来将氮基官能团引入活性炭前体的表面中。
在活化中,氧化剂可以选自H2O2、HNO3、O3、N2O、H2SO4、F2、Cl2和它们的组合。
在活化中,氧化剂的体积可以在氧化剂和蒸馏水的总的100体积%的10体积%至50体积%的范围内。
活化可以在700℃至1000℃的范围内的温度下进行。
可以在将氧化剂和蒸馏水的混合物以1ml/hr至100ml/hr的范围内的速度投入活性炭前体时进行活化。
活化可以在0巴至5巴的范围内的压力下进行。
活化可以进行1hr至5hr的范围内的时间。
在引入氮基官能团中,含氮材料可以选自胺基化合物、聚吡咯、聚(偏氟乙烯)、聚(偏氟乙烯-共-六氟丙烯)、聚(偏氯乙烯-共-丙烯腈)、聚(偏氯乙烯-共-丙烯腈-共-甲基丙烯酸甲酯)、聚(偏氯乙烯-共-氯乙烯)、聚(偏氯乙烯-共-丙烯酸甲酯)及其它们的组合。
氮基官能团的引入可以在60℃至120℃的范围内的温度下进行。
在引入氮基官能团中,含氮材料的混合比例可以在活性炭前体的100重量%的混合比例的0.1重量%至20重量%的范围内。
在引入氮基官能团中,溶剂可以包含羟基(-OH)。
溶剂可以选自乙醇、乙二醇、二甘醇、聚乙二醇、1,2-丙二醇、十二烷二醇和它们的组合。
在通过混合活性炭前体、含氮材料和溶剂以在活性炭前体上进行反应来将氮基官能团引入活性炭前体表面的过程中可以进一步混合酸。
酸可以选自盐酸、硫酸及其混合物。
活性炭制造方法还可以包括在均衡后通过使用尺寸范围在100μm至250μm的筛来选择经均衡的活性炭前体。
均衡可以使用球磨机进行,用于球磨机的球的颗粒尺寸可以在1mm至20mm的范围内。
在均衡中,活性炭前体的体积可以在活性炭前体和球磨机的总的100体积%的0.1体积%至40%体积的范围内。
在均衡中,球磨机的处理速度可以在100rpm至500rpm的范围内。
在均衡中,球磨机的处理时间可以在30min至5hr的范围内。
碳化可以在700℃至1000℃的范围内的温度下进行。
在制备活性炭前体中,活性炭前体可以选自淀粉、椰子壳、橘皮、咖啡渣、竹竿和它们的组合。根据本发明的各个实施方案,其可以提供一种活性炭的制造方法,所述制造方法能够通过形成大量微孔并引入氮基官能团来改进二氧化碳的选择性吸附能力。
应当理解,本文所使用的术语“车辆”或“车辆的”或其它类似术语一般包括机动车辆,例如包括运动型多用途车辆(SUV)、大客车、卡车、各种商用车辆的乘用汽车,包括各种舟艇、船舶的船只,航空器等等,并且包括混合动力车辆、电动车辆、可插式混合动力电动车辆、氢动力车辆以及其它替代性燃料车辆(例如源于非石油来源的燃料)。正如此处所提到的,混合动力车辆是具有两种或更多动力源的车辆,例如,汽油动力和电力动力两者的车辆。
本发明的方法和装置具有其它特征和优点,这些特征和优点将在纳入本文的附图以及随后与附图一起用于解释本发明的某些原理的具体实施方式中显现或更详细地阐明。
附图说明
图1为显示根据本发明各个实施方案的活性炭制造方法的示意图。
图2显示用于检查将氮基官能团引入活性炭表面的数据。
图3显示测量二氧化碳吸附能力的数据。
应了解,附图并不必须按比例绘制,其示出了某种程度上经过简化了的本发明的基本原理的各个特征。在此所公开的本发明的特定的设计特征,包括例如特定的尺寸、定向、位置和形状,将部分地由特定目的的应用和使用环境加以确定。
具体实施方式
现在将详细提及本发明的各个实施方案,这些实施方案的示例显示在附图中并描述如下。尽管本发明将与示例性实施方案结合加以描述,但是应当理解,本说明书并非旨在将本发明限制为那些示例性实施方案。相反,本发明旨在不但覆盖这些示例性实施方案,而且覆盖可以被包括在由所附权利要求所限定的本发明的精神和范围之内的各种选择形式、修改形式、等价形式及其它实施方案。
在本发明的各个实施方案中,词语“超微孔”表示直径为1nm或更小的孔。进一步地,词语“微孔”表示直径为2nm或更小的孔。此外,词语“中孔”表示直径在大于2nm但小于或等于50nm的范围内的孔。
如上所述,常规活性炭的表面孔径在微孔至大孔的宽广的分布范围内变化。因此,孔隙均匀度降低。形成1nm或更小的超微孔,这造成了困难。
因此,本发明的各个实施方案旨在提供一种活性炭的制造方法,所述方法能够通过形成大量超微孔并将碱性活性位点引入活性炭表面来改进二氧化碳的选择性吸附能力。
图1为显示根据本发明各个实施方案的活性炭制造方法的示意图。在下文中,活性炭制造方法将通过参照图1进行描述。
根据本发明的各个实施方案,活性炭制造方法包括制备活性炭前体(S10),通过使用热处理来碳化活性炭前体(S20),通过研磨在碳化中经碳化的活性炭前体来均衡在碳化中经碳化的活性炭前体(S30),通过将氧化剂和蒸馏水加入经均衡的活性炭前体并对其进行热处理来活化活性炭前体(S40),以及通过混合活性炭前体、含氮材料和溶剂以在活性炭前体上进行反应来将氮基官能团引入活性炭前体的表面中(S50)。
活性炭前体的研磨可以通过使用球磨机进行。通过使用球磨机研磨活性炭前体促进活性炭前体颗粒尺寸的均衡化,由此制造去除杂质的高品质活性炭。然而,本发明并不限于此,例如研磨操作可以通过使用能够执行均匀研磨的任何方法来进行,如除了使用球磨机方法之外的碾磨方法。
此外,为了增加蒸汽分子的活性而通过同时使用氧化剂和蒸馏水(氧化剂-蒸汽活化)来活化活性炭前体。因此,可以选择性地增加碳表面上直径为1nm或更小的超微孔的形成率。因此,可以增加活性炭的比表面积和孔隙均匀度。
下文中将描述制造方法的每个步骤和制得的活性炭。
在制备活性炭前体(S10)中,活性炭前体可以包括淀粉、椰子壳、橘皮、咖啡渣、竹竿和前述材料的任意组合。然而,本发明并不限于此,基于各种植物物质的任何材料都可以用作活性炭前体。这些基于廉价植物物质的材料可以减少活性炭的制造成本。
通过使用热处理来碳化活性炭前体(S20)可以在惰性气体氛围中进行。惰性气体可以包括氮气或氩气,但本发明并不限于此。
用于碳化的热处理温度可以在700℃至1000℃的范围内。如果碳化在低于700℃的温度下进行,则碳化可能不完全。由于碳化在700℃至1000℃的温度范围内充分进行,所以不需要进行温度超过1000℃的热处理。在温度超过1000℃的情况下,可能产生不需要的成本,并且可能减少碳化产量。
通过研磨在碳化中经碳化的活性炭前体来均衡在碳化中经碳化的活性炭前体(S30)可以通过使用球磨机进行,而用于球磨机的球的材料和球磨机的容器可以包括不锈钢(SUS)或氧化锆(ZrO2),但本发明并不限于此。
用于球磨机的球的颗粒尺寸可以在1mm至20mm的范围内。在球的尺寸过小的情况下,产量可能迅速减小,在颗粒中的杂质的相对含量可能增加。相反地,在球的尺寸过大的情况下,可能主要形成大尺寸的颗粒,由此减小球磨机的效果。
活性炭前体的体积可以在用于活性炭前体和球磨机的球的总的100体积%的0.1体积%至40%体积的范围内。更详细地,活性炭前体的体积可以在0.1体积%至30体积%的范围内。在前体的体积相对于球的体积过大的情况下,球磨机的效果可能变差。相反地,在前体的体积过小的情况下,在球磨机内产生的热量可能增加,由此减少产量。
球磨机的处理速度可以在100rpm至500rpm的范围内。在球磨机的处理速度过快的情况下,反应容器可能被过度加热。相反地,在球磨机的处理速度过慢的情况下,球磨机的效果可能降低,由此造成问题。
球磨机的处理时间可以在30min至5hr的范围内。在球磨机的处理时间过长的情况下,可能降低整体产量,且整体颗粒尺寸可能减小。相反地,在球磨机的处理时间过短的情况下,球磨机的效果可能降低,由此造成问题。
活性炭制造方法可以进一步包括在通过球磨机处理进行均衡之后通过使用酸清洗前体从而去除杂质。此处,所用的酸可以包括盐酸、硝酸或硫酸,但本发明并不限于此。
此外,活性炭制造方法可以进一步包括在均衡和酸清洗之后通过使用尺寸范围在100μm至250μm的筛来选择经均衡的活性炭前体。这样,可以制造能够均衡颗粒尺寸、增加比表面积且去除杂质的活性炭。当制造活性炭以将其应用于实际产品中时,活性炭的颗粒尺寸均匀度是重要的因素。例如,当用于水净化过滤器、车辆空调过滤器、超级电容器电极等时,活性炭通过将其与粘合剂混合而改良成丸状或颗粒状。在此情况下,如果颗粒尺寸不均匀,则性能可能变差。如上所述,在通过使用尺寸范围在100μm至250μm的筛选择前体的情况下,可以在车辆空调过滤器中使用这种前体。
在通过将氧化剂和蒸馏水加入经均衡的活性炭前体并对其进行热处理来活化活性炭前体(S40)中采用的氧化剂可以包括H2O2、HNO3、O3、N2O、H2SO4、F2、Cl2、另一卤族氧化剂,或它们的组合。可以优选H2O2,但本发明并不限于此。如上所述,为了增加蒸汽分子的活性而通过同时使用氧化剂和蒸馏水(氧化剂-蒸汽活化)来活化活性炭前体。因此,可以选择性地增加碳表面上直径为1nm或更小的超微孔的形成率。因此,可以增加活性炭的比表面积和孔隙均匀度。
具体地,常规形成的活性炭具有50%至70%的直径为2nm的微孔和大量(30%-50%)的直径为2至50nm的中孔。因此,难以形成1nm或更小的超微孔。然而,如上所述,可以通过氧化剂-蒸汽活化来形成大量的1nm或更小的超微孔。
更具体地,如在下文实施例中得到支持的,直径为1.0nm或更小的超微孔可以通过这种活化而在活性炭的表面上形成。例如,活性炭的尺寸可以在大于0直至1.0nm,大于0.3nm直至1.0nm,大于0.3nm直至0.6nm,0.6nm或更小,大于0nm直至0.6nm,0.75nm或更小,大于0.3nm直至0.75nm,或大于0nm直至0.75nm的范围内。在此情况下,活性炭表面的总的孔体积可以在0.5cm3/g至0.7cm3/g的范围内,其超微孔的孔体积可以在0.4cm3/g至0.5cm3/g的范围内。此外,超微孔的体积可以在活性炭表面孔的总的100体积%的67体积%至83体积%的范围内。通过使用高孔体积比的具有高孔体积比的超微孔可以显著改进比表面积。具体地,活性炭的Brunauer–Emmett–Teller(BET)比表面积可以超过672.7m2/g。更具体地,比表面积可以在大于672.7m2/g至1185.1m2/g的范围内。
在活化中,氧化剂的体积可以在氧化剂和蒸馏水的总的100体积%的10体积%至50体积%的范围内。例如,氧化剂的体积可以在5体积%至50体积%,5体积%至40体积%,5体积%至35体积%,5体积%至25体积%,或5体积%至15体积%的范围内。随着氧化剂的比例增加,由于将氧官能团引入前体表面的比例和微孔的变化使得比表面积增加。然而,如果氧化剂的比例过高,则可能减少微孔的比例,由此减少比表面积和产量。
活化可以在700℃至1000℃的范围内的温度下进行。如果活化在低于700℃的温度下进行,则活化效果可能降低。如果活化在高于1000℃的温度下进行,则产量可能剧烈变差。
在将活性炭前体加入炉中之后,可以在将氧化剂和蒸馏水的混合物加入炉中的同时进行活化。在此情况下,氧化剂和蒸馏水的混合物可以以范围在1ml/hr至100ml/hr的速度加入已经加入活性炭前体的炉中,炉的内部压力可以在大于0巴直至5巴的范围内调节。炉的内部压力可以在2巴至5巴的范围内调节。如果炉的内部压力过低,则活化效果可能降低。相反地,如果炉的内部压力过高,则微孔的破裂和大于中孔的孔的发展可能显著增加,由此减小比表面积。此外,随着压力增加,碳化产量可能减小。
活化可以进行1hr至5hr的范围内的时间。如果活化时间过长,则产量可能减小,且材料的孔的整体结构可能被破坏。相反地,如果活化时间过短,则活化效果可能降低。
根据本发明的各个实施方案,活性炭制造方法可以进一步包括通过在活化之后对活性炭前体在包含氢气(H2)的气氛下进行热处理而还原活性炭前体的表面。在上述氧化剂-蒸汽活化中,由于引入由氧化剂造成的酸性位点δ+而使二氧化碳吸附能力可能降低。然而,在使用额外的表面官能团的还原步骤的情况下,由于引入有利于二氧化碳吸附至其表面中的氮基官能团而可以增加碱度,由此改进二氧化碳吸附能力。
在引入氮基官能团中,含氮材料可以为包含氮基官能团的有机化合物。具体地,其可以包含胺基化合物。由于使用包含氮基官能团的有机化合物,氮基官能团可以引入活性炭表面,而氮基官能团可以用作亲二氧化碳吸附位点用于引导二氧化碳气体的吸附,从而改进活性炭的二氧化碳选择性吸附能力。胺基化合物的非限定性实例可以包括单乙醇胺(MEA)、二乙醇胺(DEA)、三乙醇胺和聚乙二胺。优选地,可以使用聚乙二胺。然而,本发明并不限于此,并可以使用能够引入有机基官能团的任何材料。胺基化合物的实例可以包括聚吡咯、聚(偏氟乙烯)、聚(偏氟乙烯-共-六氟丙烯)、聚(偏氯乙烯-共-丙烯腈)、聚(偏氯乙烯-共-丙烯腈-共-甲基丙烯酸甲酯)、聚(偏氯乙烯-共-氯乙烯)、聚(偏氯乙烯-共-丙烯酸甲酯)或它们的组合。
氮基官能团的引入可以在范围60℃至120℃的温度下进行。氮基官能团的引入效果可以在此范围中最大化。更详细地,氮基官能团的引入可以在范围80℃至100℃的温度下进行。
在引入氮基官能团中,含氮材料的混合比例可以在活性炭前体的100重量%的混合比例的0.1重量%至200重量%的范围内。随着含氮材料的量的增加,二氧化碳吸附位点增加。相反地,微孔的形成可能变差。因此,含氮材料的含量可以优选地在所述范围内。更详细地,含氮材料的含量可以优选地在0.1重量%至150重量%,0.1重量%至100重量%,20重量%至200重量%,20重量%至150重量%,或50重量%至150重量%的范围内。
在引入氮基官能团中,含有羟基(-OH)化合物可以用作溶剂。例如,可以采用乙醇溶剂或多元醇溶剂。然而,本发明并不限于此。更详细地,含有羟基(-OH)的pH为7或更高的溶剂。因此,可以通过改进金属颗粒的尺寸而容易地控制溶质间的分散性。含有羟基(-OH)的pH为7或更高的溶剂的非限定性实例可以包括乙醇、乙二醇、二甘醇、聚乙二醇、1,2-丙二醇、十二烷二醇,以及它们两种或更多种的混合物。
此外,可以额外地将酸混合至溶剂中。酸的实例可以包括盐酸、硫酸或它们的组合。酸用作引入酸性位点,所述酸性位点用于引入氮基官能团。
如下的实施例更具体地显示了本发明。
实施例
对比实施例1
通过将植物基的活性炭前体(淀粉)加入管式炉,将它们以2℃/min的升温速度加热至800℃,并维持90min以碳化它们,从而获得样品。随后将其冷却至室温。然后,通过使用1M盐酸溶液和蒸馏水清洗样品一次或两次,然后在120℃下完全干燥12hr。
随后研磨经碳化的活性炭前体,接着通过使用1M盐酸溶液清洗,并在真空烘箱中干燥,从而获得活性炭。在球磨机中研磨,混合直径为5mm和10mm的氧化锆球(5mm:10mm=30体积%:70体积%)以待用,并以360rpm进行研磨1hr。此外,活性炭前体的体积设定为用于活性炭前体和球磨机的球的总的100体积%的30体积%。
对比实施例2
通过将植物基的活性炭前体(淀粉)加入管式炉,将它们以2℃/min的升温速度加热至800℃,并维持90min以碳化它们,从而获得样品。随后将其冷却至室温。然后,通过使用1M盐酸溶液和蒸馏水清洗样品一次或两次,然后在120℃下完全干燥12hr。
随后研磨经碳化的活性炭前体,接着通过使用1M盐酸溶液清洗,并在真空烘箱中干燥。在球磨机中研磨,混合直径为5mm和10mm的氧化锆球(5mm:10mm=30体积%:70体积%)以待用,并以360rpm进行研磨1hr。此外,活性炭前体的体积设定为用于活性炭前体和球磨机的球的总的100体积%的30体积%。
然后,将经碳化的淀粉均匀地撒在铝舟皿中然后放置在管式炉中。
然后,在将样品在氮气(N2)气氛下以2℃/min的升温速度加热至800℃后,停止氮气(N2)的供应,以6ml/hr的速度注入蒸馏水以待活化,同时维持炉的内部压力1小时。
然后,通过使用1M盐酸溶液和蒸馏水清洗样品一次或两次,然后在120℃下完全干燥12hr,从而获得活性炭。
实施例1
通过将植物基的活性炭前体(淀粉)加入管式炉,将它们在氮气(N2)气氛下以2℃/min的升温速度加热至800℃,并维持90min以碳化它们,从而获得样品。随后将其冷却至室温。然后,通过使用1M盐酸溶液和蒸馏水清洗样品一次或两次,然后在120℃下完全干燥12hr。
随后研磨经碳化的活性炭前体,接着通过使用1M盐酸溶液清洗,并在真空烘箱中干燥。在球磨机中研磨,混合直径为5mm和10mm的氧化锆球(5mm:10mm=30体积%:70体积%)以待用,并以360rpm进行研磨1hr。此外,活性炭前体的体积设定为用于活性炭前体和球磨机的球的总的100体积%的30体积%。
然后,通过使用150μm筛选择经研磨的前体。然后,将经碳化的淀粉均匀地撒在铝舟皿中然后放置在管式炉中。
然后,在将样品在氮气(N2)气氛下以2℃/min的升温速度加热至800℃后,停止氮气(N2)的供应,以体积比例(10:90,氧化剂:蒸馏水)混合过氧化氢(氧化剂)和蒸馏水以获得一种材料,以6ml/hr的速度将该材料加入以待活化,同时维持炉的内部压力1小时。
然后,通过使用1M盐酸溶液和蒸馏水清洗经干燥的活性炭一次或两次,然后在120℃下完全干燥12hr,从而获得活性炭。
将10g的经干燥的活性炭加入溶解有1.5g聚乙二胺的硝酸/硫酸/乙醇混合溶液,在120℃下搅拌该溶液6hr。然后将其冷却至室温,并通过使用乙醇进行5次清洗/干燥。
实验实施例
实验实施例1
通过使用由BELSORP公司在日本制造的BELSORP MAX设备进行77K/氮吸附实验。该结果示于表1中。
表1中数据的来源操作如下。通过使用Brunauer-Emmett-Teller(BET)公式得到比表面积。通过使用直至0.990的相对压力的吸附曲线计算总孔体积,通过使用Dubinin-Radushkevich(D-R)公式得到微孔体积,通过从总孔体积中减去微孔的体积计算中孔的体积。
如表1中所示,相比于使用蒸馏水的对比实施例2,在使用氧化剂和蒸馏水进行氧化剂-蒸汽活化的实施例1的活性炭中微孔的形成得到进一步改进。
(表1)
Figure BDA0001114363150000111
实验实施例2
活性炭的表面官能团通过采用由Thermo Fisher Scientific公司制造的XPS设备进行分析。该结果示于图2中。如图2中所示,从在对比实施例1和2中没有显示N峰的形成可以看出材料表面的氮官能团通过引入氮官能团而被引入。
实验实施例3
通过使用由BELSORP公司在日本制造的BELSORP MAX设备进行298K/二氧化碳吸附实验。该结果示于图3中。将通过乙二醇和水以3:7的比例混合得到的溶液加入恒温烘箱中以维持在298K,从而维持室温状态。
如图3中所示,在对比实施例1中,几乎没有获得二氧化碳吸附效果。此外,相对于使用蒸汽活化的对比实施例2,在使用氧化剂-蒸汽活化并将氮基官能团引入表面的实施例1中改进了活性炭的二氧化碳吸附效果。
前面对本发明具体示例性实施方案所呈现的描述是出于说明和描述的目的。它们并不会毫无遗漏,也不会将本发明限制为所公开的精确形式,显然,根据上述教导很多修改和变化都是可能的。选择示例性实施方案并进行描述是为了解释本发明的特定原理及其它们的实际应用,从而使得本领域的其它技术人员能够实现并利用本发明的各种示例性实施方案及其不同的选择形式和修改形式。本发明的范围旨在由所附权利要求书及其等同方案加以限定。

Claims (20)

1.一种活性炭制造方法,其包括:
制备活性炭前体;
通过对活性炭前体进行热处理来碳化活性炭前体,以获得碳化材料;
通过研磨碳化材料来均衡碳化材料,以获得均衡材料;
通过将氧化剂和蒸馏水加入均衡材料中并对均衡材料进行热处理来活化均衡材料,以获得活化材料;以及
通过混合活化材料、含氮材料和溶剂以在活化材料上进行反应来将氮基官能团引入活化材料的表面中,
其中在通过混合活化材料、含氮材料和溶剂以在活化材料上进行反应来将氮基官能团引入活化材料表面的过程中进一步混合酸。
2.根据权利要求1中所述的活性炭制造方法,其中在活化中,氧化剂选自H2O2、HNO3、O3、N2O、H2SO4、F2、Cl2或它们的组合。
3.根据权利要求1中所述的活性炭制造方法,其中在活化中,氧化剂的体积在氧化剂和蒸馏水的总的100体积%的10体积%至50体积%的范围内。
4.根据权利要求1中所述的活性炭制造方法,其中活化在700°C至1000°C的范围内的温度下进行。
5. 根据权利要求1中所述的活性炭制造方法,其中在将氧化剂和蒸馏水的混合物以1ml/hr至100 ml/hr的范围内的速度加入均衡材料时进行活化。
6.根据权利要求5中所述的活性炭制造方法,其中活化在0巴至5巴的范围内的压力下进行。
7. 根据权利要求1中所述的活性炭制造方法,其中活化在范围为1hr 至5 hr的时间内进行。
8.根据权利要求1中所述的活性炭制造方法,其中在引入氮基官能团中,含氮材料选自胺基化合物、聚吡咯、聚偏氟乙烯、聚(偏氟乙烯-共-六氟丙烯)、聚(偏氯乙烯-共-丙烯腈)、聚(偏氯乙烯-共-丙烯腈-共-甲基丙烯酸甲酯)、聚(偏氯乙烯-共-氯乙烯)、聚(偏氯乙烯-共-丙烯酸甲酯)或它们的组合。
9.根据权利要求1中所述的活性炭制造方法,其中氮基官能团的引入在60°C至120°C的范围内的温度下进行。
10.根据权利要求1中所述的活性炭制造方法,其中在引入氮基官能团中,含氮材料的混合比例在活化材料的100重量%的混合比例的0.1重量%至20重量%的范围内。
11.根据权利要求1中所述的活性炭制造方法,其中在引入氮基官能团中,溶剂包含羟基。
12.根据权利要求11中所述的活性炭制造方法,其中溶剂选自乙醇、乙二醇、二甘醇、聚乙二醇、1,2-丙二醇、十二烷二醇或它们的组合。
13.根据权利要求12中所述的活性炭制造方法,其中所述酸包括盐酸、硫酸或其混合物。
14. 根据权利要求1中所述的活性炭制造方法,其进一步包括在均衡之后使用尺寸范围在100 µm至250 µm的筛来选择均衡材料。
15. 根据权利要求1中所述的活性炭制造方法,其中均衡使用球磨机进行,用于球磨机的球的颗粒尺寸在1 mm至20 mm的范围内。
16.根据权利要求15中所述的活性炭制造方法,其中在均衡中,碳化材料的体积在碳化材料和用于球磨机的球的总的100体积%的0.1体积%至40%体积的范围内。
17. 根据权利要求15中所述的活性炭制造方法,其中在均衡中,球磨机的处理速度在100 rpm至500 rpm的范围内。
18. 根据权利要求15中所述的活性炭制造方法,其中在均衡中,球磨机的处理时间在30 min至5 hr的范围内。
19. 根据权利要求1中所述的活性炭制造方法,其中碳化在700 °C至1000 °C的范围内的温度下进行。
20.根据权利要求1中所述的活性炭制造方法,其中在制备活性炭前体中,活性炭前体选自淀粉、椰子壳、橘皮、咖啡渣、竹竿或它们的组合。
CN201610825622.7A 2016-04-05 2016-09-14 用于制造活性炭的方法 Active CN107265453B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160041810A KR101836273B1 (ko) 2016-04-05 2016-04-05 활성탄소 제조방법
KR10-2016-0041810 2016-04-05

Publications (2)

Publication Number Publication Date
CN107265453A CN107265453A (zh) 2017-10-20
CN107265453B true CN107265453B (zh) 2021-12-17

Family

ID=59885664

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610825622.7A Active CN107265453B (zh) 2016-04-05 2016-09-14 用于制造活性炭的方法

Country Status (4)

Country Link
US (1) US10086357B2 (zh)
KR (1) KR101836273B1 (zh)
CN (1) CN107265453B (zh)
DE (1) DE102016119288B4 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110002444A (zh) * 2019-04-10 2019-07-12 浙江清风源环保科技有限公司 活性炭及活性炭的制备方法
KR102242682B1 (ko) * 2019-04-25 2021-04-21 서울대학교산학협력단 활성탄의 제조방법, 이에 따라 제조된 활성탄, 이를 포함하는 전극 및 전극을 포함하는 수퍼캐패시터
CN110975810B (zh) * 2019-12-12 2020-06-30 徐州工程学院 一种能控制臭氧压力的球磨生物炭制备装置及方法
KR20220072145A (ko) * 2020-11-25 2022-06-02 주식회사 엘지에너지솔루션 활성탄소 및 이의 제조방법
CN113368816B (zh) * 2021-05-10 2023-07-25 广东工业大学 一种用于去除水中氨氮和锰离子的改性活性炭浆及其制备方法和应用
CN114394593B (zh) * 2022-03-29 2022-06-07 山东恒昌圣诚化工股份有限公司 一种氨气活化制备含氮活性炭的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101543762A (zh) * 2008-03-24 2009-09-30 黄梓旻 二氧化碳吸附剂及其制造方法
CN104499097A (zh) * 2014-12-23 2015-04-08 清华大学 一种利用过氧化氢强化水蒸气活化制备活性炭纤维的方法
US9040452B2 (en) * 2009-11-05 2015-05-26 National University Corporation Gunma University Carbon catalyst, method of producing same, and electrode and battery each utilizing same
KR101588768B1 (ko) * 2014-10-27 2016-01-26 현대자동차 주식회사 활성탄소 및 그 제조방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9313871D0 (en) 1993-07-05 1993-08-18 Secr Defence Substituted activated carbons
JP3725196B2 (ja) 1995-03-01 2005-12-07 日本エンバイロケミカルズ株式会社 窒素含有分子篩活性炭、その製造方法及び用途
JP3110697B2 (ja) 1997-01-13 2000-11-20 信久 川野 コーヒー抽出粕の再生粉末並びにその加工食品用副食材及び活性炭原料としての使用
KR101123586B1 (ko) 2010-07-08 2012-03-21 한서대학교 산학협력단 고 기공 탄소 소재 제조방법 및 그 제조방법에 의해 제조된 고 기공 탄소 소재
KR101418868B1 (ko) 2012-11-29 2014-07-17 인하대학교 산학협력단 이산화탄소 포집용 미세다공성 흡착제의 제조방법
JP2016074467A (ja) 2014-10-08 2016-05-12 旭硝子株式会社 ガラス板梱包体、及びガラス板の梱包方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101543762A (zh) * 2008-03-24 2009-09-30 黄梓旻 二氧化碳吸附剂及其制造方法
US9040452B2 (en) * 2009-11-05 2015-05-26 National University Corporation Gunma University Carbon catalyst, method of producing same, and electrode and battery each utilizing same
KR101588768B1 (ko) * 2014-10-27 2016-01-26 현대자동차 주식회사 활성탄소 및 그 제조방법
CN104499097A (zh) * 2014-12-23 2015-04-08 清华大学 一种利用过氧化氢强化水蒸气活化制备活性炭纤维的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
玉米芯活性炭的制备、改性及CO2气体吸附性能研究;张胜东;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20150515;第7页第1.4.2节活性炭的制备原料、第8页第1.4.3节、第1.4.4节、图1.3、图1.4第21页第3.1节玉米芯活性炭的制备 *

Also Published As

Publication number Publication date
KR101836273B1 (ko) 2018-03-08
US10086357B2 (en) 2018-10-02
DE102016119288A1 (de) 2017-10-05
US20170282152A1 (en) 2017-10-05
DE102016119288B4 (de) 2024-01-18
KR20170114591A (ko) 2017-10-16
CN107265453A (zh) 2017-10-20

Similar Documents

Publication Publication Date Title
CN107265453B (zh) 用于制造活性炭的方法
US10328381B2 (en) Activated carbon and method for manufacturing the same
CN107262027B (zh) 用于制造活性炭的方法
CN107572518B (zh) 用于制备活性炭的方法
US10815127B2 (en) Method for manufacturing activated carbon
CN104583119B (zh) 赋予有碱性官能团的活性炭及其制备方法
DE102011013314A1 (de) Mikroporöses Kohlenstoffmaterial und Verfahren zum Bilden desselben
KR101927177B1 (ko) 활성탄소의 제조방법
JP2014014813A5 (zh)
CN113526504A (zh) 一种中孔发达的活性炭及其制备方法
CA3105710A1 (en) Method of producing porous carbon, and electrode and catalyst carrier containing porous carbon produced by the method
KR101038253B1 (ko) 메조기공 활성탄소섬유의 제조방법
JP2006056750A (ja) 多孔質炭素材料およびその製造方法
贾冯睿 et al. Preparation and SO2 adsorption behavior of coconut shell-based activated carbon via microwave-assisted oxidant activation
Ucar et al. Improvement of SO2 adsorption capacity of fiber web surface produced from continous graphene oxide fiber
Min et al. Effect of oxyfluorination of activated carbon on the adsorption of tetracycline from aqueous solutions
JP6616597B2 (ja) 1,4−ジオキサン処理方法
KR101145131B1 (ko) 구형 활성탄소
KR102579785B1 (ko) 카본블랙의 표면 개질 방법 및 이를 포함하는 카본블랙의 제조방법
KR20160047040A (ko) 아민관능기가 도입된 이산화탄소 포집용 탄소나노튜브의 제조방법
RU2373026C2 (ru) Способ получения пористого материала на основе платины (варианты)
CN117772131A (zh) 一种基于黏土矿物的碳-硅氧化物纳米复合材料及其制备方法与应用
KR20180069559A (ko) 활성탄소 및 그의 제조방법
CN102755873A (zh) 用于去除废水中的磷的沸石及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant