CN107159887B - 一种基于微波吸收发热材料的成型方法 - Google Patents

一种基于微波吸收发热材料的成型方法 Download PDF

Info

Publication number
CN107159887B
CN107159887B CN201710383828.3A CN201710383828A CN107159887B CN 107159887 B CN107159887 B CN 107159887B CN 201710383828 A CN201710383828 A CN 201710383828A CN 107159887 B CN107159887 B CN 107159887B
Authority
CN
China
Prior art keywords
microwave
heating
mixture
main material
microwave absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710383828.3A
Other languages
English (en)
Other versions
CN107159887A (zh
Inventor
严祥军
张麟德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Highland Graphene Technology Co ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201710383828.3A priority Critical patent/CN107159887B/zh
Publication of CN107159887A publication Critical patent/CN107159887A/zh
Application granted granted Critical
Publication of CN107159887B publication Critical patent/CN107159887B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1035Liquid phase sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/02Moulding by agglomerating
    • B29C67/04Sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/023Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by microwave heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1052Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding assisted by energy absorption enhanced by the coating or powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1054Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by microwave
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/04Particles; Flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/30Methods of making the composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • C04B2235/3274Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Abstract

本发明公开了一种基于微波吸收发热材料的成型方法,将微波吸收发热材料粉体化,与需要成型的主料混合后,采用不同功率的微波对混合料进行加热,借助微波吸收发热材料对整体混合料进行快速加热,实现对混合料的烧结或熔铸。该成型方法,采用微波进行加热,混合料内部的吸波粒子在微波电磁能作用下动能增大、扩散***提高,可实现吸波材料在低温条件下的快速升温,然后即可对混合料进行加热,同时,通过控制升降温、时间、气氛、压力等条件,可使混合料实现均匀或非均匀可控成型。该成型方法利用微波进行加热,缩短了加热时间,提高了加热效果,能够消除传统的成型方法的缺陷。

Description

一种基于微波吸收发热材料的成型方法
技术领域
本发明涉及烧结和铸造技术领域,具体地,涉及一种基于微波吸收发热材料的成型方法。
背景技术
铸造是在型砂中生产铸件的铸造方法。钢、铁和大多数有色合金铸件都可用砂型铸造方法获得。
砂型铸造所用的造型材料价廉易得,铸型制造简便,对铸件的单件生产、成批生产和大量生产均能适应,长期以来,一直是铸造生产中的基本工艺。砂型铸造的工艺过程包括:制作木模-翻砂造型-熔化-浇注-落砂-浇、冒口清理-检验入库。砂型铸造所用铸型一般由外砂型和型芯组合而成。制造砂型的基本原材料是铸造砂和型砂粘结剂。
金属液在充填铸型和凝固过程中,与铸型发生热的、物理的、化学的和机械的作用。由于这些作用,铸件可能产生粘砂等铸造缺陷。
发明内容
本发明的目的是提供了一种基于微波吸收发热材料的成型方法,该成型方法利用微波进行加热,缩短了加热时间,提高了加热效果,消除了传统的成型方法的缺陷。
为了实现上述技术目的,本发明提供了一种基于微波吸收发热材料的成型方法,包括以下步骤:
S1,将微波吸收发热材料粉体化;
S2,将粉体化的微波吸收发热材料与主料混合;
S3,采用多种频率的微波对混合料加热,借助微波吸收发热材料实现对混合料的加热,并通过对环境因素的组合控制,实现混合料均匀或非均匀可控成型。
可选的,步骤S2中:将主料堆埋在微波吸收发热材料中,或者,将主料与微波吸收发热材料均匀共混,或者,将主料与微波吸收发热材料分层混合或造粒混合。
可选的,所述环境因素包括升降温曲线、时间、气氛、混合比例、压力。
可选的,主料和微波发热材料混合的比例为0.1-1%,利用主料的热效应对混合料进行加热。
可选的,主料和微波发热材料混合的比例为1-10%,利用混合料的热效应对混合料进行加热。
可选的,主料和微波发热材料混合的比例为10-99.9%,利用微波发热材料的热效应对混合料进行加热。
可选的,步骤S3中包括以下步骤:
S311,将粉末状的混合料制成成型的样品;
S312,采用微波加热实现对成型的样品的烧结。
可选的,步骤S312中,将所述样品放入保温层中,所述保温层设置在微波腔体内,所述微波腔体设有微波入口,微波通过所述微波入口对所述样品进行烧结。
可选的,步骤S3中包括以下步骤:
S321,采用微波加热混合料,使混合料融化或部分融化;
S322,采用融化或部分融化的混合料进行浇注。
可选的,步骤S322中,将融化的混合料注入铸型中;然后经冷却结晶形成制品。
可选的,对所述制品可受控实现对微波吸收发热材料在主料整体中分散、弥散或偏析。
可选的,所述微波吸收发热材料为高介质损耗效应的材料,包括石墨烯、氧化铜、氧化锌、铁氧体、碳化硅。
可选的,所述主料包括金属、合金、高分子材料、陶瓷、玻璃。
本发明提供的基于微波吸收发热材料的成型方法,将微波吸收发热材料粉体化,与需要成型的主料混合后,采用多种频率的微波对混合料加热,借助微波吸收发热材料实现对混合料的加热,并通过对环境因素的组合控制,实现混合料均匀或非均匀可控成型。
该成型方法,采用微波进行加热,利用了微波吸收发热材料对微波的反应,混合料内部的吸波粒子在微波电磁能作用下动能增大、扩散***提高,可实现吸波材料在低温条件下的快速升温,然后即可对混合料进行加热,同时,通过控制升降温、时间、气氛、压力等条件,可使混合料实现均匀或非均匀可控成型。微波加热的过程是依靠材料自身吸收微波能并转化为内部粒子的动能和势能,因此被整体均匀加热,内部不存在温度梯度。该成型方法利用微波进行加热,缩短了加热时间,提高了加热效果,能够消除传统的成型方法的缺陷。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。
图1为本发明所提供的基于微波吸收发热材料的成型方法一种具体实施方式的流程图;
图2为本发明所提供的基于微波吸收发热材料的成型方法的一种具体实施方式的结构示意图。
其中,图2中的附图标记和部件名称之间的对应关系如下:
样品1;保温层2;微波腔体3。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
请参考图1,图1为本发明所提供的基于微波吸收发热材料的成型方法一种具体实施方式的流程图。
在一种具体的实施方式中,本发明提供了一种基于微波吸收发热材料的成型方法,包括以下步骤:
步骤S1,将微波吸收发热材料粉体化;
步骤S2,将粉体化的微波吸收发热材料与主料混合;
步骤S3,采用多种频率的微波对混合料加热,借助微波吸收发热材料实现对混合料的加热,并通过对环境因素的组合控制,实现混合料均匀或非均匀可控成型。
该成型方法,先将微波吸收发热材料粉体化,然后与需要成型的主料混合均匀,采用不同功率的微波对混合料进行加热,借助微波吸收发热材料对整体混合料进行快速加热,并通过对环境因素的组合控制,实现混合料均匀或非均匀可控成型,可以进行烧结操作,也可以进行熔铸操作。
采用微波进行加热,利用了微波吸收发热材料对微波的反应,混合料内部的吸波粒子在微波电磁能作用下动能增大、扩散***提高,可实现材料在低温条件下的快速升温,然后即可对混合料进行加热,同时,通过控制升降温、时间、气氛、压力等条件,可使混合料实现均匀或非均匀可控成型。
微波加热的过程是依靠材料自身吸收微波能并转化为内部粒子的动能和势能,因此被整体均匀加热,内部不存在温度梯度。该成型方法利用微波进行加热,缩短了加热时间,提高了加热效果,同时还能够消除传统的成型方法的缺陷。
在具体的实施方式中,步骤S2中,主料与微波吸收发热材料的混合方式可以有多种形式,可以将主料堆埋在微波吸收发热材料中,也可以将主料与微波吸收发热材料均匀共混,还可以将主料与微波吸收发热材料采用其他非均匀的方式共混,例如分层混合或造粒混合。在具体的操作过程中,可以根据成型要求,采用相应的混合方式。
进一步具体的实施方式中,环境因素包括升降温曲线、时间、气氛、混合比例、压力。
通过控制微波吸收发热材料的比例、微波功率、时间、炉内气氛、压力等要素,可以实现均匀熔铸或不同程度的偏析熔铸,获得不同的熔铸产品宏观性能的组合。
微波加热过程中,还可以改变炉内气氛,通入不同的气体,并使其保持一定的压力,都能够对成型过程产生一定的影响。
主料和微波发热材料混合比例的不同,混合料的性能就不同,相应的混合料的加热方式和加热过程也不相同,不同的混合比例可以获得不同宏观性能的产品。
具体的,主料和微波发热材料混合的比例为0.1-1%,利用主料的热效应对混合料进行加热;主料和微波发热材料混合的比例为1-10%,利用混合料的热效应对混合料进行加热;主料和微波发热材料混合的比例为10-99.9%,利用微波发热材料的热效应对混合料进行加热。
微波吸收发热材料所占的比例越大,微波加热的效果越好;通过选用不同功率的微波,调整微波的加热时间,也可以调整微波的加热效果,进而获得不同的混合料的加热效果,能够控制混合料的加热速度、加热时间,以获得不同的加热效果。加热过程中,还可以分别控制升温过程、恒温过程和降温过程的时间,得到不同晶体结构,获得不同宏观性能的产品。
一种优选的具体实施方式中,步骤S3中包括以下步骤:
步骤S311,将粉末状的混合料制成成型的样品;
步骤S312,采用微波加热实现对成型的样品的烧结。
传统的烧结过程是将粉状物料转变为致密体,比如陶瓷、耐火材料等,成型后通过烧结得到的是一种多晶材料,烧结过程影响晶粒的尺寸及晶界形状和分布,进而影响材料的性能。
采用微波进行烧结的过程中,材料内部的粒子在微波电磁能作用下动能增大,扩散系数提高,可以实现材料在低温条件下快速烧结并保证微观结构的均匀性。微波烧结依靠材料自身吸收微波能并转化为内部粒子的动能和势能,因此样品被整体均匀加热,内部不存在温度梯度,可以承受更快的加热速率,缩短烧结时间。
微波辐射可提高粒子动能、有效加速粒子扩散。烧结过程包括致密化阶段和晶粒生长阶段,致密化速率主要与坯体颗粒间粒子扩散速率有关,晶粒生长速率则主要依赖与晶界扩散速率。所以微波烧结有助于提高材料致密度,增加晶粒均匀性。微波烧结可以实现对材料的低温快速烧结,烧结过程无需热传导,没有热惯性,热源可即时发热或瞬时停止,这些都体现了高效节能的特点。同时,微波热源不会污染烧结体,能够方便实现真空及各种气氛下的烧结。
请参考图2,图2为本发明所提供的基于微波吸收发热材料的成型方法的一种具体实施方式的结构示意图。
进一步具体的实施方式中,步骤S312中,将所述样品1放入保温层2中,所述保温层2设置在微波腔体3内,所述微波腔体3设有微波入口,微波通过所述微波入口对所述样品1进行烧结。
如图2所示,烧结过程中,可以实现样品1内外整体同时升温,加热过程是能量的转换过程,能量主要集中在被加热的样品1上,微波效应同时具有热效应和非热效应,可以实现低温加热,该烧结装置结构简单,工艺过程简单,易于控制。
另一种优选的具体实施方式中,步骤S3中包括以下步骤:
步骤S321,采用微波加热混合料,使混合料融化或部分融化;
步骤S322,采用融化或部分融化的混合料进行浇注。
传统的浇注过程,融化浇注材料时需要达到很高的温度,冷却过程中由于析晶温度不一致,容易产生晶粒偏析使制品存在缩孔等缺陷。
利用微波进行加热,融化混合料,混合料内部的粒子在微波电磁能作用下动能增大、扩散***提高,可实现材料在低温条件下的快速升温,微波加热的过程是依靠材料自身吸收微波能并转化为内部粒子的动能和势能,因此被整体均匀加热,能够实现混合料的低温快速融化,然后进行浇注,能够增加结晶过程中晶粒的均匀性。
进一步的具体实施方式中,步骤S322中,将融化的混合料注入铸型中;然后经冷却结晶形成制品。
浇注过程中主要通过微波控制熔化的气氛、熔融温度和冷却条件,这样能够保证高的生产效率、析晶符合要求,获得高品质的制品。
进一步的,对所述制品可受控实现对微波吸收发热材料在主料中分散、弥散或偏析。
对进行热处理的过程中,不但可以消除偏析,还可以实现对微波吸收发热材料的去除,保证主料的纯度。
上述各具体的实施方式中,利用微波加热的原理可以制作微波器件,实现对混合料的加热,可根据加工对象对微波器件进行智能化调整,控制混合料的烧结顺序和过程,或融化与凝固顺序及过程。该微波器件可实现间歇式、脉冲式和连续化生产。
具体的,所述微波吸收发热材料为高介质损耗效应的材料,包括石墨烯、氧化铜、氧化锌、铁氧体、碳化硅。所述主料可以为金属、合金、高分子材料、陶瓷、玻璃。
微波吸收发热材料包括但不限于石墨烯、氧化锌、铁氧体等,可根据主料的需要进行选择性设计。同时,主料可以是各种金属和合金材料及非金属材料,包括但不限于高岭土。高岭土洁白细腻、松软土状,具有良好的可塑性和耐火性等理化性质。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (6)

1.一种基于微波吸收发热材料的成型方法,其特征在于,包括以下步骤:
S1,将微波吸收发热材料粉体化;
S2,将粉体化的微波吸收发热材料与主料混合:将主料堆埋在微波吸收发热材料中,或者,将主料与微波吸收发热材料均匀共混,或者,将主料与微波吸收发热材料分层混合或造粒混合;
S3,将粉末状的混合料制成成型的样品,将所述样品放入保温层中,所述保温层设置在微波腔体内,采用多种频率的微波对混合料加热,借助微波吸收发热材料实现对混合料的加热,所述微波腔体设有微波入口,微波通过所述微波入口对所述样品进行烧结并通过对环境因素的组合控制,实现混合料均匀或非均匀可控成型,以实现对成型的样品的烧结;
或者,
S3,采用多种频率的微波对混合料加热,借助微波吸收发热材料实现对混合料的加热,使混合料融化或部分融化,并通过对环境因素的组合控制,采用融化或部分融化的混合料注入铸型中进行浇注,实现混合料均匀或非均匀可控成型,然后经冷却结晶形成制品;所述微波吸收发热材料为石墨烯;
所述主料为高分子材料和/或玻璃;
所述主料和所述微波吸收发热材料的混合的比例为0.1-99.9%。
2.如权利要求1所述的基于微波吸收发热材料的成型方法,其特征在于,所述环境因素包括升降温曲线、微波加热时间、气氛或压力。
3.如权利要求2所述的基于微波吸收发热材料的成型方法,其特征在于,主料和微波吸收发热材料混合的比例为0.1-1%,利用主料的热效应对混合料进行加热。
4.如权利要求2所述的基于微波吸收发热材料的成型方法,其特征在于,主料和微波吸收发热材料混合的比例为1-10%,利用混合料的热效应对混合料进行加热。
5.如权利要求2所述的基于微波吸收发热材料的成型方法,其特征在于,主料和微波吸收发热材料混合的比例为10-99.9%,利用微波吸收发热材料的热效应对混合料进行加热。
6.如权利要求2所述的基于微波吸收发热材料的成型方法,其特征在于,对所述制品可受控实现对所述微波吸收发热材料在所述主料整体中的分散、弥散或偏析。
CN201710383828.3A 2017-05-26 2017-05-26 一种基于微波吸收发热材料的成型方法 Active CN107159887B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710383828.3A CN107159887B (zh) 2017-05-26 2017-05-26 一种基于微波吸收发热材料的成型方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710383828.3A CN107159887B (zh) 2017-05-26 2017-05-26 一种基于微波吸收发热材料的成型方法

Publications (2)

Publication Number Publication Date
CN107159887A CN107159887A (zh) 2017-09-15
CN107159887B true CN107159887B (zh) 2020-05-12

Family

ID=59820811

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710383828.3A Active CN107159887B (zh) 2017-05-26 2017-05-26 一种基于微波吸收发热材料的成型方法

Country Status (1)

Country Link
CN (1) CN107159887B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108555240A (zh) * 2017-11-30 2018-09-21 深圳粤网节能技术服务有限公司 一种微波铸造方法
CN108218240B (zh) * 2018-01-29 2020-11-27 湖南航天磁电有限责任公司 一种无机玻璃基复合铁氧体吸波材料及其制备方法
TWI657859B (zh) * 2018-04-30 2019-05-01 國立成功大學 二氧化碳吸收材的再生方法
CN109351968A (zh) * 2018-09-03 2019-02-19 江苏钛谷科技有限公司 一种采用微波方式处理金属粉末的工艺
CN110315671A (zh) * 2019-07-17 2019-10-11 广州大学 一种聚乙烯粉末的烧结成型方法
CN114262238A (zh) * 2021-12-27 2022-04-01 万卓(江苏)新材料有限公司 一种高效软瓷柔性饰面砖的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103936417A (zh) * 2014-03-31 2014-07-23 南昌航空大学 一种微波烧结低温制备TiB2和CuO共掺3Y-TZP纳米复合陶瓷的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005001927A (ja) * 2003-06-11 2005-01-06 Nec Tokin Corp 酸化物誘電体及びその製造方法
CN1940005A (zh) * 2005-09-30 2007-04-04 丁彦凯 利用微波发热的复合材料及其制法
FR2965489B1 (fr) * 2010-09-30 2013-03-29 Saint Gobain Ct Recherches Structure en nid d'abeille microfissuree.
CN103695685B (zh) * 2013-12-26 2016-02-24 昆明理工大学 一种用微波反应烧结制备WC-Co硬质合金的方法
CN106542819A (zh) * 2015-09-21 2017-03-29 中国科学院上海硅酸盐研究所 一种中介微波介质陶瓷及其制备方法
CN106082228B (zh) * 2016-06-12 2018-03-23 郑州航空工业管理学院 一种b4c纳米片的制备方法及b4c纳米片

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103936417A (zh) * 2014-03-31 2014-07-23 南昌航空大学 一种微波烧结低温制备TiB2和CuO共掺3Y-TZP纳米复合陶瓷的方法

Also Published As

Publication number Publication date
CN107159887A (zh) 2017-09-15

Similar Documents

Publication Publication Date Title
CN107159887B (zh) 一种基于微波吸收发热材料的成型方法
US6512216B2 (en) Microwave processing using highly microwave absorbing powdered material layers
CN108480615B (zh) 一种高熵合金粉末及其制备方法和在3d打印中的应用
CN101775518A (zh) 利用超声波制备颗粒增强梯度复合材料的装置及方法
CN103343266B (zh) 高导热石墨高硅铝基复合材料及其制备工艺
CN101786161B (zh) 一种微波辐照加压烧结设备及其使用方法
CN102423802B (zh) 高纯钴靶材的制备方法
KR20160038004A (ko) 금속 부품의 성형 방법 및 장치
CN105648259A (zh) 一种铜基-石墨正梯度复合材料及其制备方法
CN103192063A (zh) 一种用于高温合金单晶叶片制造的铸型及其定向凝固装置
KR20120019943A (ko) 진공금형장치를 이용한 액상 및 반응고 재료의 박막 및 부품 제조장치
CN105583366A (zh) 一种薄壁高温合金浮动壁瓦片的精密铸造方法
CN102211346A (zh) 运动磁场中功能梯度材料的压滤成型制备方法
CN109796222A (zh) 氮化硅纳米线强化氮化硅泡沫陶瓷的制备方法
CN107641727A (zh) 一种通过高速压制制备高体积分数SiC颗粒增强Al基复合材料的方法
CN109095899B (zh) 一种氧化铝基陶瓷颗粒预制体的制备方法
CN102363844B (zh) 一种微波烧结制备孔隙梯度金属或合金材料的方法
JP2005271058A (ja) 離型層を有するシリコン溶融用容器の製造方法及びシリコン溶融用容器
CN106001426B (zh) 一种联板铸造工艺
CN204509441U (zh) 一种陶瓷颗粒增强镁基复合材料制备装置
CN1743479B (zh) 一种采用主辅合金粉末冶金技术制造稀土超磁致伸缩材料的方法
CN108555240A (zh) 一种微波铸造方法
JP2008133516A (ja) アモルファス金属成形体、その製造方法及び製造装置
CN102873291B (zh) 一种电磁流振镁合金半固态半连续铸造装置及方法
CN100430497C (zh) 一种铝7石墨半固态浆料的电磁机械复合制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220421

Address after: 430000 Hanguang Industrial Park, Xiaohan Avenue, Xiaogan City, Hubei Province

Patentee after: Hubei highland graphene Technology Co.,Ltd.

Address before: 518107 A3, Guangming science and Technology Park, No. 3009, sightseeing Road, Guangming New Area, Shenzhen, Guangdong Room c-501

Patentee before: Shenzhen Yuewang Energy Saving Technology Service Co.,Ltd.

TR01 Transfer of patent right