CN107144283A - 一种用于深空探测器的高可观度光学脉冲星混合导航方法 - Google Patents

一种用于深空探测器的高可观度光学脉冲星混合导航方法 Download PDF

Info

Publication number
CN107144283A
CN107144283A CN201710527892.4A CN201710527892A CN107144283A CN 107144283 A CN107144283 A CN 107144283A CN 201710527892 A CN201710527892 A CN 201710527892A CN 107144283 A CN107144283 A CN 107144283A
Authority
CN
China
Prior art keywords
mrow
msub
mfrac
mover
deep space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710527892.4A
Other languages
English (en)
Inventor
刘宇
阳光
王卫华
苏枫
秦长涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Aerospace Control Technology Institute
Original Assignee
Shanghai Aerospace Control Technology Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Aerospace Control Technology Institute filed Critical Shanghai Aerospace Control Technology Institute
Priority to CN201710527892.4A priority Critical patent/CN107144283A/zh
Publication of CN107144283A publication Critical patent/CN107144283A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/24Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for cosmonautical navigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)

Abstract

本发明公开本发明提供了一种用于深空探测器的高可观度光学脉冲星混合导航方法,其包含:步骤1:将脉冲星观测方程与光学观测方程混合,建立混合观测方程;步骤2:使用深空探测器多体引力模型,以探测器的惯性位置及速度为状态量,建立探测器状态方程;步骤3:构造扩展卡尔曼滤波对探测器的状态进行最优估计计算,得到精确的探测器惯性系下位置与速度。本发明的方法克服了惯性导航累积误差大的问题,解决了脉冲星导航可观性弱的问题,大大增强了导航***的可观性,大大减少了导航***的收敛时间,并有效的提高了导航精度,可直接用于深空探测器的自主控制。

Description

一种用于深空探测器的高可观度光学脉冲星混合导航方法
技术领域
本发明涉及深空探测器导航方法,具体涉及一种用于深空探测器的高可观度光学脉冲星混合导航方法,其综合利用该天体的角度观测信息以及脉冲星距离观测信息,以计算深空探测器主精度导航信息。
背景技术
地面无线电导航能力受限于测控站的分布、器地距离等因素的约束,难以为深探测器提供可负担的高精度实时导航信息。传统的惯性导航由于误差累积效应,并不适于作为主要导航手段。单目标的光学自主导航并非完全可观,此外其难以推广到整个飞行阶段。X射线脉冲星导航技术具有自主性强、抗干扰性好、可以支撑深空探测器全飞行阶段等特点。但脉冲星的X射线信号很弱,较为可行的敏感器方案仅能同时跟踪1~2颗导航脉冲星,只能采用动力学定轨法来确定探测器的轨道信息。由于仅有1个矢量,导致***局部不可观。
发明内容
本发明的目的是提供一种导航方法,其具有高可观性,能用于深空探测。
为了达到上述目的,本发明提供了一种用于深空探测器的高可观度光学脉冲星混合导航方法,该方法包括如下步骤:
步骤1:在深空探测器靠近大天体期间,引入对邻近天体的光学观测量作为补充,将脉冲星观测方程与光学观测方程混合,建立混合观测方程;
步骤2:使用深空探测器多体引力模型,以探测器的惯性位置及速度为状态量,建立探测器状态方程;
步骤3:根据步骤1的观测方程和步骤2的状态方程,构造扩展卡尔曼滤波对探测器的状态进行最优估计计算,得到精确的探测器惯性系下位置与速度;其中,扩展卡尔曼滤波的方程为:
K(k)=P(k,k-1)HT(k)[H(k)P(k,k-1)HT(k)+R(k)]-1
P(k,k-1)=Φ(k,k-1)P(k-1)ΦT(k,k-1)+Q(k-1)
其中,初始值为P(0,0)=Var{x(0)}=Px(0),式中,已知状态模型噪声的协方差阵E[w(k)w(k)T]=Q,量测模型噪声的协方差阵E[v(k)v(k)T]=R,w代表***模型误差,v代表测量噪声,k代表当前步数,x代表状态量,μ代表引力常数,X代表离散状态量,T代表离散周期,I代表单位阵,Z代表离散观测量,t代表时间。。
上述的用于深空探测器的高可观度光学脉冲星混合导航方法,其中,所述的脉冲星观测方程为:
式中,ΔΦi脉冲信号的观测相位差,为脉冲视线方向的单位方向矢量,λ为导航脉冲信号一个周期内所传播的距离,ΔNi为脉冲周期整周差值,Δx为航天器与太阳质心之间的距离,i代表脉冲星序号。
上述的用于深空探测器的高可观度光学脉冲星混合导航方法,其中,所述的光学观测方程为:
其中,p,1为目标天体的光心在相机像平面上的坐标,单位是毫米,RcI为相机坐标系相对惯性坐标系的姿态转换矩阵,x,y,z为探测器在火星J2000惯性坐标系下的位置。
上述的用于深空探测器的高可观度光学脉冲星混合导航方法,其中,RcI是利用相机坐标系相对本体坐标系转换矩阵和星敏感器确定的本体坐标系相对惯性坐标系的姿态转换矩阵确定。
上述的用于深空探测器的高可观度光学脉冲星混合导航方法,其中,所述的混合观测方程:
z=h(X)+v;其中,z代表p、l、△φi;v为测量噪声。
上述的用于深空探测器的高可观度光学脉冲星混合导航方法,其中,步骤2中,探测器状态方程为:
其中,状态变量 代表探测器的位置矢量,代表探测器的速度矢量;w为***模型误差,ax ay az为太阳引力摄动在火星惯性系下的投影,x,y,z为探测器在火星J2000惯性坐标系下的位置,其中,GM为中心天体的引力常数;R为飞行器在惯性系中的位置矢量;P为摄动力项。
上述的用于深空探测器的高可观度光学脉冲星混合导航方法,其中,r的计算公式如下:
其中,rp为探测器相对大天体质心的位置矢量;μM、μS、μE、μJ依次为大天体、太阳、地球、木星的引力常数;rMp,rSp,rEp,rJp依次为大天体、太阳、地球、木星对探测器的位置矢量;rMS,rME,rMJ为两天体间位置矢量,由美国喷气实验室(JPL)的DE405星历表得出,下标M代表大天体,下
标S代表太阳,下标E代表地球,下标J代表木星。
上述的用于深空探测器的高可观度光学脉冲星混合导航方法,其中,步骤3中,构造扩展卡尔曼滤波的方法包含:
步骤3.1,先对步骤二的状态方程离散化,并围绕线性化,在附近展开为二阶泰勒级数;
步骤3.2,将步骤一的观测方程离散化,并在附近线性化。
上述的用于深空探测器的高可观度光学脉冲星混合导航方法,其中,步骤3.1处理后的二阶泰勒级数为:
上述的用于深空探测器的高可观度光学脉冲星混合导航方法,其中,步骤3.2处理后的方程为:
本发明提供的方法克服了惯性导航累积误差大的问题,解决了脉冲星导航可观性弱的问题,大大增强了导航***的可观性,大大减少了导航***的收敛时间,并有效的提高了导航精度,可直接用于深空探测器的自主控制。
附图说明
图1为本发明混合测量方案示意图;
图2为本发明的实施效果图。
具体实施方式
以下结合附图和实施例对本发明的技术方案做进一步的说明。
如图1所示,为本发明的光学脉冲星混合测量方案示意图,其中,SSB是指太阳系质心(Solar System Barycenter,其为图中的坐标系原点,深空探测器的r是相对该点计算的),脉冲星1和脉冲星2用于对于近天体(如火星)的脉冲星观测,深空探测器在靠近大天体时,引入对邻近天体的光学观测量作为补充。
本发明所述的光学脉冲星混合高可观深空导航方法,其步骤如下:
步骤一:在探测器靠近大天体期间,引入对邻近天体的光学观测量作为补充,建立混合观测方程;
将脉冲星观测方程与光学观测方程混合。脉冲时间模型一般可以表示为脉冲信号的总相位对时间的函数。脉冲时间模型的总相位可以表示为一个小数部分加上一个整周数,即
Φ(t)=Ψ(T)+N(t)
式中,Φ(t)为总相位,Ψ(T)为小数部分,N(t)为整数部分。整数周加上观测的小数部分相位就直接反映了探测器到参考坐标系的距离。
式中Δρ表示沿脉冲星视线方向航天器(深空探测器)与太阳质心的距离分量,i表示脉冲星序号,λi为第i个脉冲星的导航脉冲信号一个周期内所传播的距离,为观测脉冲到达时间与预报脉冲到达时间之差,△Φi脉冲信号的观测相位差,ΔNi为脉冲周期整周差值,为脉冲视线方向的单位方向矢量,Δx为航天器与太阳质心之间的距离(相当于图1中的r,但这里为了方便与状态量符号X一致,所以用了Δx)。改写成矩阵式:
光学导航相机的直接观测量为火星中心点的像点坐标,在不考虑电磁和光畸变的情况下,考虑利用相机所给出的目标像元坐标作为观测量,可以表示为:
其中p,l为目标天体的光心在相机像平面上的坐标,单位是毫米,RcI为相机坐标系相对惯性坐标系的姿态转换矩阵,RcI可以利用相机坐标系相对本体坐标系转换矩阵Rcb和星敏感器确定的本体坐标系相对惯性坐标系的姿态转换矩阵RbI确定,x,y,z为探测器在火星J2000惯性坐标系下的位置。
结合方程(1)和(2)可以确定***的混合观测方程为:
z=h(X)+v.
其中z为p,l,△φi,v为测量噪声,X表示状态量。
步骤二:使用深空探测器多体引力模型,以探测器的惯性位置及速度为状态量,建立探测器状态方程。
深空探测器的运动是由中心引力(下式等号右边的第一项)与各摄动力联合作用的结果。其受力如下:
式中GM为中心天体的引力常数;R为飞行器在惯性系中的位置矢量,R表示它的模(标量);P为摄动力项对于接近大天体的深空探测器,可以大天体为中心引力体建立探测器的运动方程。本文考虑大天体引力、太阳引力、地球引力、木星引力,由于距离大天体较远,因此可以不考虑大天体引力非球形项等其它摄动影响,建立动力学方程如下:
式中,rp为探测器相对大天体质心的位置矢量;μM、μS、μE、μJ依次为大天体、太阳、地球、木星的引力常数;rMp,rSp,rEp,rJp依次为大天体、太阳、地球、木星对探测器的位置矢量;rMS,rME,rMJ为两天体间位置矢量,由JPL的DE405星历表得出,下标M代表大天体,下标S代表太阳,下标E代表地球,下标J代表木星。
选择探测器的位置与速度矢量作为状态变量根据轨道动力学模型得到***状态方程为
式中w为***模型误差,ax ay az为太阳引力摄动在火星惯性系下的投影,x、y、z的含义是探测器在火星J2000惯性坐标系下的位置。
步骤三:使用扩展卡尔曼滤波(EKF)对探测器的状态进行最优估计,得到精确的探测器惯性系下位置与速度;
根据以上扩维的新状态方程及新观测方程,进行扩展卡尔曼最优估计算法设计:针对上面所描述的连续***,需首先将步骤二建立的状态方程离散化,并围绕线性化,即在附近展开为二阶泰勒级数:
将步骤一建立的混合观测方程离散化,并在附近线性化为:
式中,H表示级数展开的1阶项。
已知状态模型噪声的协方差阵E[w(k)w(k)T]=Q,量测模型噪声的协方差阵E[v(k)v(k)T]=R,那么EKF的递推方程为:
K(k)=P(k,k-1)HT(k)[H(k)P(k,k-1)HT(k)+R(k)]-1
P(k,k-1)=Φ(k,k-1)P(k-1)ΦT(k,k-1)+Q(k-1)
初始值为P(0,0)=Var{x(0)}=Px(0),式中,
选取一个假想的火星探测任务,从探测器接近火星时开始,对深空光学导航(OpN)、单颗脉冲星导航(PN)、以及本发明的光学脉冲星混合导航方法(OPHN)三种导航方法进行实验,结果如图2所示。从图中可以明显看到采用本发明后,导航算法的收敛时间由原来单纯脉冲星导航的数十小时缩减于数小时内,同时导航精度也由原来最好的10余千米提高到数千米。
从可观性分析上来看,采用单目标的观测方案,单目标光学导航方法(OpN)并不可观,光学导航精度最终随时间渐渐发散;单脉冲星导航方法(PN)的可观性是随探测器位置适量与所观测脉冲星矢量的关系而并化的,因此其可观性是不稳定的。
在数学仿真中,单脉冲星导航方法的导航精度时而收敛,时而发散。精度分布在几十到数百千米,其中的收敛过程也在数十小时左右。而将对光学目标的角度测量与脉冲星的时间测量相结合后,混合导航方法的可观性大大提高。采用OPHN方法的导航***在整个接近火星过程,体现了单一的收敛性,数小时后导航精度便快速的收敛到千米量级。容易看到OPHN无论是收敛性还是精度都明显优于OpN与PN。
综上所述,本发明在深空探测器靠近大天体时,把光学导航敏感器对该天体的角度观测量引入导航***,重新构建了与脉冲星距离观测相混合的观测方程,大大提高了导航***的可观性,从而大大缩短了导航***的收敛收间,并提高了导航***的精度。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (10)

1.一种用于深空探测器的高可观度光学脉冲星混合导航方法,其特征在于,该方法包括如下步骤:
步骤1:在深空探测器靠近大天体期间,引入对邻近天体的光学观测量作为补充,将脉冲星观测方程与光学观测方程混合,建立混合观测方程;
步骤2:使用深空探测器多体引力模型,以探测器的惯性位置及速度为状态量,建立探测器状态方程;
步骤3:根据步骤1的观测方程和步骤2的状态方程,构造扩展卡尔曼滤波对探测器的状态进行最优估计计算,得到精确的探测器惯性系下位置与速度;其中,扩展卡尔曼滤波的方程为:
<mrow> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> <mi>T</mi> <mo>+</mo> <mi>A</mi> <mo>&amp;lsqb;</mo> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mi>f</mi> <mo>&amp;lsqb;</mo> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> <mfrac> <msup> <mi>T</mi> <mn>2</mn> </msup> <mn>2</mn> </mfrac> </mrow>
<mrow> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <mi>K</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>{</mo> <mi>Z</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>h</mi> <mo>&amp;lsqb;</mo> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>,</mo> <mi>k</mi> <mo>&amp;rsqb;</mo> <mo>}</mo> </mrow>
K(k)=P(k,k-1)HT(k)[H(k)P(k,k-1)HT(k)+R(k)]-1
P(k,k-1)=Φ(k,k-1)P(k-1)ΦT(k,k-1)+Q(k-1)
其中,初始值为P(0,0)=Var{x(0)}=Px(0),式中,已知状态模型噪声的协方差阵E[w(k)w(k)T]=Q,量测模型噪声的协方差阵E[v(k)v(k)T]=R,w代表***模型误差,v代表测量噪声,k代表当前步数,x代表状态量,μ代表引力常数,X代表离散状态量,T代表离散周期,I代表单位阵,Z代表离散观测量,t代表时间。
2.如权利要求1所述的用于深空探测器的高可观度光学脉冲星混合导航方法,其特征在于,所述的脉冲星观测方程为:
式中,△Φi脉冲信号的观测相位差,为脉冲视线方向的单位方向矢量,λ为导航脉冲信号一个周期内所传播的距离,ΔNi为脉冲周期整周差值,Δx为航天器与太阳质心之间的距离,i代表脉冲星序号。
3.如权利要求2所述的用于深空探测器的高可观度光学脉冲星混合导航方法,其特征在于,所述的光学观测方程为:
<mrow> <mi>p</mi> <mo>=</mo> <mi>f</mi> <mfrac> <mrow> <msub> <mi>R</mi> <mrow> <mi>c</mi> <mi>I</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>x</mi> <mo>+</mo> <msub> <mi>R</mi> <mrow> <mi>c</mi> <mi>I</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> <mi>y</mi> <mo>+</mo> <msub> <mi>R</mi> <mrow> <mi>c</mi> <mi>I</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>3</mn> <mo>)</mo> </mrow> <mi>z</mi> </mrow> <mrow> <msub> <mi>R</mi> <mrow> <mi>c</mi> <mi>I</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>3</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>x</mi> <mo>+</mo> <msub> <mi>R</mi> <mrow> <mi>c</mi> <mi>I</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>3</mn> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> <mi>y</mi> <mo>+</mo> <msub> <mi>R</mi> <mrow> <mi>c</mi> <mi>I</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>3</mn> <mo>,</mo> <mn>3</mn> <mo>)</mo> </mrow> <mi>z</mi> </mrow> </mfrac> </mrow>
<mrow> <mi>l</mi> <mo>=</mo> <mi>f</mi> <mfrac> <mrow> <msub> <mi>R</mi> <mrow> <mi>c</mi> <mi>I</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>x</mi> <mo>+</mo> <msub> <mi>R</mi> <mrow> <mi>c</mi> <mi>I</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> <mi>y</mi> <mo>+</mo> <msub> <mi>R</mi> <mrow> <mi>c</mi> <mi>I</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>)</mo> </mrow> <mi>z</mi> </mrow> <mrow> <msub> <mi>R</mi> <mrow> <mi>c</mi> <mi>I</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>3</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>x</mi> <mo>+</mo> <msub> <mi>R</mi> <mrow> <mi>c</mi> <mi>I</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>3</mn> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> <mi>y</mi> <mo>+</mo> <msub> <mi>R</mi> <mrow> <mi>c</mi> <mi>I</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>3</mn> <mo>,</mo> <mn>3</mn> <mo>)</mo> </mrow> <mi>z</mi> </mrow> </mfrac> </mrow>
其中,p,l为目标天体的光心在相机像平面上的坐标,单位是毫米,RcI为相机坐标系相对惯性坐标系的姿态转换矩阵,x,y,z为探测器在火星J2000惯性坐标系下的位置。
4.如权利要求3所述的用于深空探测器的高可观度光学脉冲星混合导航方法,其特征在于,RcI是利用相机坐标系相对本体坐标系转换矩阵和星敏感器确定的本体坐标系相对惯性坐标系的姿态转换矩阵确定。
5.如权利要求3所述的用于深空探测器的高可观度光学脉冲星混合导航方法,其特征在于,所述的混合观测方程:
z=h(X)+v;其中,z代表p、l、△φi;v为测量噪声。
6.如权利要求1所述的用于深空探测器的高可观度光学脉冲星混合导航方法,其特征在于,步骤2中,探测器状态方程为:
<mrow> <mover> <mi>X</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mo>-</mo> <mfrac> <mi>&amp;mu;</mi> <msup> <mi>r</mi> <mn>3</mn> </msup> </mfrac> <mi>x</mi> <mo>+</mo> <msub> <mi>a</mi> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mfrac> <mi>&amp;mu;</mi> <msup> <mi>r</mi> <mn>3</mn> </msup> </mfrac> <mi>y</mi> <mo>+</mo> <msub> <mi>a</mi> <mi>y</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mfrac> <mi>&amp;mu;</mi> <msup> <mi>r</mi> <mn>3</mn> </msup> </mfrac> <mi>z</mi> <mo>+</mo> <msub> <mi>a</mi> <mi>z</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mi>w</mi> <mo>,</mo> </mrow>
其中,状态变量 代表探测器的位置矢量,代表探测器的速度矢量;w为***模型误差,axayaz为太阳引力摄动在火星惯性系下的投影,x,y,z为探测器在火星J2000惯性坐标系下的位置,其中,GM为中心天体的引力常数;R为飞行器在惯性系中的位置矢量;P为摄动力项。
7.如权利要求6所述的用于深空探测器的高可观度光学脉冲星混合导航方法,其特征在于,r的计算公式如下:
<mrow> <msub> <mover> <mi>r</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>p</mi> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>&amp;mu;</mi> <mi>M</mi> </msub> <mfrac> <msub> <mi>r</mi> <mrow> <mi>M</mi> <mi>p</mi> </mrow> </msub> <msubsup> <mi>r</mi> <mrow> <mi>M</mi> <mi>p</mi> </mrow> <mn>3</mn> </msubsup> </mfrac> <mo>-</mo> <msub> <mi>&amp;mu;</mi> <mi>S</mi> </msub> <mo>&amp;lsqb;</mo> <mfrac> <msub> <mi>r</mi> <mrow> <mi>S</mi> <mi>p</mi> </mrow> </msub> <msubsup> <mi>r</mi> <mrow> <mi>S</mi> <mi>p</mi> </mrow> <mn>3</mn> </msubsup> </mfrac> <mo>+</mo> <mfrac> <msub> <mi>r</mi> <mrow> <mi>M</mi> <mi>S</mi> </mrow> </msub> <msubsup> <mi>r</mi> <mrow> <mi>M</mi> <mi>S</mi> </mrow> <mn>3</mn> </msubsup> </mfrac> <mo>&amp;rsqb;</mo> <mo>-</mo> <msub> <mi>&amp;mu;</mi> <mi>E</mi> </msub> <mo>&amp;lsqb;</mo> <mfrac> <msub> <mi>r</mi> <mrow> <mi>E</mi> <mi>p</mi> </mrow> </msub> <msubsup> <mi>r</mi> <mrow> <mi>E</mi> <mi>p</mi> </mrow> <mn>3</mn> </msubsup> </mfrac> <mo>+</mo> <mfrac> <msub> <mi>r</mi> <mrow> <mi>M</mi> <mi>E</mi> </mrow> </msub> <msubsup> <mi>r</mi> <mrow> <mi>M</mi> <mi>E</mi> </mrow> <mn>3</mn> </msubsup> </mfrac> <mo>&amp;rsqb;</mo> <mo>-</mo> <msub> <mi>&amp;mu;</mi> <mi>J</mi> </msub> <mo>&amp;lsqb;</mo> <mfrac> <msub> <mi>r</mi> <mrow> <mi>J</mi> <mi>p</mi> </mrow> </msub> <msubsup> <mi>r</mi> <mrow> <mi>J</mi> <mi>p</mi> </mrow> <mn>3</mn> </msubsup> </mfrac> <mo>+</mo> <mfrac> <msub> <mi>r</mi> <mrow> <mi>M</mi> <mi>J</mi> </mrow> </msub> <msubsup> <mi>r</mi> <mrow> <mi>M</mi> <mi>J</mi> </mrow> <mn>3</mn> </msubsup> </mfrac> <mo>&amp;rsqb;</mo> <mo>,</mo> </mrow>
其中,rp为探测器相对大天体质心的位置矢量;μM、μS、μE、μJ依次为大天体、太阳、地球、木星的引力常数;rMp,rSp,rEp,rJp依次为大天体、太阳、地球、木星对探测器的位置矢量;rMS,rME,rMJ为两天体间位置矢量,由JPL的DE405星历表得出,下标M代表大天体,下标S代表太阳,下标E代表地球,下标J代表木星。
8.如权利要求1所述的用于深空探测器的高可观度光学脉冲星混合导航方法,其特征在于,步骤3中,构造扩展卡尔曼滤波的方法包含:
步骤3.1,先对步骤二的状态方程离散化,并围绕线性化,在附近展开为二阶泰勒级数;
步骤3.2,将步骤一的观测方程离散化,并在附近线性化。
9.如权利要求8所述的用于深空探测器的高可观度光学脉冲星混合导航方法,其特征在于,步骤3.1处理后的二阶泰勒级数为:
10.如权利要求8所述的用于深空探测器的高可观度光学脉冲星混合导航方法,其特征在于,步骤3.2处理后的方程为:
CN201710527892.4A 2017-06-30 2017-06-30 一种用于深空探测器的高可观度光学脉冲星混合导航方法 Pending CN107144283A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710527892.4A CN107144283A (zh) 2017-06-30 2017-06-30 一种用于深空探测器的高可观度光学脉冲星混合导航方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710527892.4A CN107144283A (zh) 2017-06-30 2017-06-30 一种用于深空探测器的高可观度光学脉冲星混合导航方法

Publications (1)

Publication Number Publication Date
CN107144283A true CN107144283A (zh) 2017-09-08

Family

ID=59784607

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710527892.4A Pending CN107144283A (zh) 2017-06-30 2017-06-30 一种用于深空探测器的高可观度光学脉冲星混合导航方法

Country Status (1)

Country Link
CN (1) CN107144283A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108761386A (zh) * 2018-05-24 2018-11-06 西安石油大学 一种基于x射线的通信导航一体化差分脉冲定位方法
CN110146093A (zh) * 2019-06-19 2019-08-20 北京理工大学 双体小行星探测自主协同光学导航方法
CN110174850A (zh) * 2019-04-30 2019-08-27 上海卫星工程研究所 测角测速组合导航半物理仿真验证***及其方法
CN111947668A (zh) * 2020-08-26 2020-11-17 中南大学 基于在线估计的木星探测器测角/测距组合导航方法
CN112082560A (zh) * 2020-08-07 2020-12-15 上海航天控制技术研究所 一种基于自主导航的火星制动策略在线制定方法
CN113091731A (zh) * 2021-03-03 2021-07-09 北京控制工程研究所 一种基于恒星视线相对论效应的航天器自主导航方法
CN114485678A (zh) * 2021-12-31 2022-05-13 上海航天控制技术研究所 天地一体月面着陆导航方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879014A (zh) * 2012-10-24 2013-01-16 北京控制工程研究所 深空探测接近过程的光学成像自主导航半物理仿真试验***
CN103017772A (zh) * 2012-11-30 2013-04-03 北京控制工程研究所 一种基于可观性分析的光学和脉冲星融合自主导航方法
CN103234538A (zh) * 2013-04-07 2013-08-07 北京理工大学 一种行星最终接近段自主导航方法
CN103954279A (zh) * 2014-05-19 2014-07-30 武汉科技大学 多普勒差分测速模型及与x射线脉冲星组合导航的方法
CN104567880A (zh) * 2014-12-23 2015-04-29 北京理工大学 一种基于多源信息融合的火星最终接近段自主导航方法
CN105509750A (zh) * 2015-11-27 2016-04-20 上海卫星工程研究所 一种天文测速与地面无线电组合的火星捕获段导航方法
CN106017480A (zh) * 2016-05-20 2016-10-12 武汉科技大学 面向深空探测捕获段的深度组合导航方法
CN107421533A (zh) * 2017-06-22 2017-12-01 北京航空航天大学 一种深空探测器x射线脉冲星toa/dtoa组合导航方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879014A (zh) * 2012-10-24 2013-01-16 北京控制工程研究所 深空探测接近过程的光学成像自主导航半物理仿真试验***
CN103017772A (zh) * 2012-11-30 2013-04-03 北京控制工程研究所 一种基于可观性分析的光学和脉冲星融合自主导航方法
CN103234538A (zh) * 2013-04-07 2013-08-07 北京理工大学 一种行星最终接近段自主导航方法
CN103954279A (zh) * 2014-05-19 2014-07-30 武汉科技大学 多普勒差分测速模型及与x射线脉冲星组合导航的方法
CN104567880A (zh) * 2014-12-23 2015-04-29 北京理工大学 一种基于多源信息融合的火星最终接近段自主导航方法
CN105509750A (zh) * 2015-11-27 2016-04-20 上海卫星工程研究所 一种天文测速与地面无线电组合的火星捕获段导航方法
CN106017480A (zh) * 2016-05-20 2016-10-12 武汉科技大学 面向深空探测捕获段的深度组合导航方法
CN107421533A (zh) * 2017-06-22 2017-12-01 北京航空航天大学 一种深空探测器x射线脉冲星toa/dtoa组合导航方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王卫华: "非线性滤波技术及其在深空探测自主导航中的应用", 《中国优秀硕士学位论文全文数据库工程科技II辑》 *
王超: "一种基于X射线脉冲星的自主导航算法研究", 《中国优秀硕士学位论文全文数据库工程科技II辑》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108761386A (zh) * 2018-05-24 2018-11-06 西安石油大学 一种基于x射线的通信导航一体化差分脉冲定位方法
CN110174850A (zh) * 2019-04-30 2019-08-27 上海卫星工程研究所 测角测速组合导航半物理仿真验证***及其方法
CN110146093A (zh) * 2019-06-19 2019-08-20 北京理工大学 双体小行星探测自主协同光学导航方法
CN112082560A (zh) * 2020-08-07 2020-12-15 上海航天控制技术研究所 一种基于自主导航的火星制动策略在线制定方法
CN112082560B (zh) * 2020-08-07 2022-09-27 上海航天控制技术研究所 一种基于自主导航的火星制动策略在线制定方法
CN111947668A (zh) * 2020-08-26 2020-11-17 中南大学 基于在线估计的木星探测器测角/测距组合导航方法
CN111947668B (zh) * 2020-08-26 2022-03-18 中南大学 基于在线估计的木星探测器测角/测距组合导航方法
CN113091731A (zh) * 2021-03-03 2021-07-09 北京控制工程研究所 一种基于恒星视线相对论效应的航天器自主导航方法
CN114485678A (zh) * 2021-12-31 2022-05-13 上海航天控制技术研究所 天地一体月面着陆导航方法
CN114485678B (zh) * 2021-12-31 2023-09-12 上海航天控制技术研究所 天地一体月面着陆导航方法

Similar Documents

Publication Publication Date Title
CN107144283A (zh) 一种用于深空探测器的高可观度光学脉冲星混合导航方法
CN102175241B (zh) 一种火星探测器巡航段自主天文导航方法
CN103063217B (zh) 一种基于星历修正的深空探测器天文/无线电组合导航方法
CN103674032B (zh) 融合脉冲星辐射矢量和计时观测的卫星自主导航***及方法
Deng et al. Interplanetary spacecraft navigation using pulsars
CN102879014B (zh) 深空探测接近过程的光学成像自主导航半物理仿真试验***
CN102538819B (zh) 基于双圆锥红外和星敏感器的自主导航半物理仿真试验***
CN105509750B (zh) 一种天文测速与地面无线电组合的火星捕获段导航方法
CN104457705B (zh) 基于天基自主光学观测的深空目标天体初定轨方法
CN104848862B (zh) 一种环火探测器精密同步定位守时方法及***
CN104165640A (zh) 基于星敏感器的近空间弹载捷联惯导***传递对准方法
CN105203101A (zh) 一种基于目标天体星历修正的深空探测器捕获段天文导航方法
CN105160125B (zh) 一种星敏感器四元数的仿真分析方法
CN101354251B (zh) 一种深空探测器等效转移轨道确定方法
Burton et al. Online attitude determination of a passively magnetically stabilized spacecraft
CN107655485A (zh) 一种巡航段自主导航位置偏差修正方法
CN108548542A (zh) 一种基于大气阻力加速度测量的近地轨道确定方法
CN103591956B (zh) 一种基于可观测性分析的深空探测器自主导航方法
CN110304279A (zh) 一种电推进卫星的质心在轨标定补偿方法
Kai et al. Performance enhancement of X-ray pulsar navigation using autonomous optical sensor
Wang et al. Absolute navigation for Mars final approach using relative measurements of X-ray pulsars and Mars orbiter
CN103047986B (zh) 一种大尺度时空及在轨动态效应模拟方法
CN103512574A (zh) 一种基于小行星序列图像的深空探测器光学导航方法
CN107727102A (zh) 天文测速与地面无线电组合的火星捕获段导航方法
CN103017773B (zh) 一种基于天体表面特征和天然卫星路标的环绕段导航方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170908