CN107123670B - 鳍式场效应晶体管及其形成方法 - Google Patents

鳍式场效应晶体管及其形成方法 Download PDF

Info

Publication number
CN107123670B
CN107123670B CN201710100429.1A CN201710100429A CN107123670B CN 107123670 B CN107123670 B CN 107123670B CN 201710100429 A CN201710100429 A CN 201710100429A CN 107123670 B CN107123670 B CN 107123670B
Authority
CN
China
Prior art keywords
barrier material
material layer
drain regions
oxygen
strained source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710100429.1A
Other languages
English (en)
Other versions
CN107123670A (zh
Inventor
吴政达
王永裕
詹咏翔
蔡佳萦
王廷君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN107123670A publication Critical patent/CN107123670A/zh
Application granted granted Critical
Publication of CN107123670B publication Critical patent/CN107123670B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7855Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with at least two independent gates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823431MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823468MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate sidewall spacers, e.g. double spacers, particular spacer material or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823481MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/0886Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

描述一种鳍式场效应晶体管,其包括衬底、至少一个栅极结构、间隔件以及应变源极和漏极区。至少一个栅极结构设置在衬底上方以及隔离结构上。间隔件设置在至少一个栅极结构的侧壁上。第一阻挡材料层设置在间隔件上。应变源极和漏极区设置在至少一个栅极结构的两个相对侧上。第二阻挡材料层设置在应变源极和漏极区上。第一阻挡材料层和第二阻挡材料层包括富氧氧化物材料。本发明实施例还提供一种用于形成鳍式场效应晶体管的方法。

Description

鳍式场效应晶体管及其形成方法
技术领域
本发明实施例涉及半导体领域,并且更具体地,涉及鳍式场效应晶体管及其形成方法。
背景技术
随着传统平面MOSFET的尺寸收缩已经遇到诸如漏致势垒降低(DIBL)、器件的波动特性以及电流泄露的问题,已经开发诸如鳍式场效应晶体管(FinFET)的三维多栅极结构作为替代物。
发明内容
根据本发明的一个方面,提供一种鳍式场效应晶体管,包括:衬底,具有隔离结构和位于隔离结构之间的鳍;至少一个栅极结构,设置在衬底上方并且在隔离结构上;间隔件,设置在至少一个栅极结构的侧壁上;第一阻挡材料层,设置在间隔件上;应变源极和漏极区,设置在至少一个栅极结构的相对侧上;以及第二阻挡材料层,设置在应变源极和漏极区上,其中,第一阻挡材料层和第二阻挡材料层包括富氧氧化物材料。
根据本发明的另一方面,提供一种鳍式场效应晶体管,包括:衬底,具有隔离结构和位于隔离结构之间的鳍;至少一个栅极结构,设置在鳍上方并且在隔离结构上;间隔件,间隔件设置在至少一个栅极结构的侧壁上;第一阻挡材料层,设置在间隔件的表面上,其中,第一阻挡材料层包括带负电荷的层;应变源极和漏极区,设置在至少一个栅极结构的相对侧上;以及第二阻挡材料层,设置在应变源极和漏极区的表面上,其中,第二阻挡材料层包括带负电荷的氧化硅层。
根据本发明的另一方面,提供一种用于形成鳍式场效应晶体管的方法,包括:提供具有隔离结构和位于隔离结构之间的鳍的衬底;在隔离结构上和鳍上方形成至少一个堆叠结构;在至少一个堆叠结构的侧壁上形成间隔件;在衬底中以及在至少一个堆叠结构的两个相对侧上形成应变源极和漏极区;通过实施氧化处理在间隔件上形成第一阻挡材料层以及在应变源极和漏极区上形成第二阻挡材料层;以及在去除至少一个堆叠结构后,在隔离结构上和鳍上方形成至少一个栅极结构。
附图说明
当结合附图实施阅读时,根据下面详细的描述可以最佳地理解本发明的各个方面。应该注意,根据工业中的标准实践,各个部件没有按比例绘制。实际上,为了清楚的讨论,各个部件的尺寸可以任意增加或减少。
图1示出了根据本发明的一些实施例的示例性FinFET的立体图。
图2A至图2G是根据本发明的一些实施例示出的用于形成FinFET的制造方法的各个阶段的FinFET的截面图和立体图。
图3是根据本发明的一些实施例示出的用于形成FinFET的制造方法的工艺步骤的示例性流程图。
具体实施方式
以下公开内容提供了许多不同的实施例或实例以实现本发明的不同特征。下面描述组件和布置的具体实例以简化本发明。当然,这些仅是实例并且不意欲限制本发明。例如,在以下描述中,在第二部件上方或上形成第一部件可以包括第一部件和第二部件直接接触的实施例,也可以包括形成在第一部件和第二部件之间的附加部件,使得第一部件和第二部件不直接接触的实施例。此外,本发明可以在各个实例中重复参考标号和/或字符。这种重复是为了简化和清楚的目的,并且其本身并不表示所讨论的实施例和/或配置之间的关系。
此外,为了便于描述,本文中可以使用诸如“在…下方”、“在…下面”、“下部”、“在…上面”、“上部”等的空间关系术语,以描述如图中所示的一个元件或部件与另一元件或部件的关系。除了图中所示的方位外,空间关系术语旨在包括器件在使用或操作过程中的不同方位。装置可以以其他方式定位(旋转90度或在其他方位),并且在本文中使用的空间关系描述符可以同样地作相应地解释。
本发明的实施例描述了FinFET的示例性制造工艺和由该工艺制造的FinFET。在本发明的特定实施例中,FinFET可以形成在单晶半导体衬底上,单晶半导体衬底诸如块状硅衬底。在一些实施例中,FinFET可以可选地形成在绝缘体上硅(SOI)衬底上或者绝缘体上锗(GOI)衬底上。此外,根据实施例,硅衬底可以包括其它导电层、掺杂区或其它半导体元件,其它半导体元件诸如晶体管、二极管等。该实施例旨在用于说明目的而并非意欲限制本公开的范围。
图1示出了根据本发明的一些实施例的实例FinFET的截面图。图2A至图2G示出了根据本发明的一些实施例的用于形成FinFET的制造方法的各个阶段处的FinFET。在图1中,FinFET 20包括在衬底100上形成的至少一个栅极结构120,在栅极结构120的相对侧上形成的间隔件112和第一阻挡材料层114a,以及位于栅极结构120之下的沟道区102。FinFET 20包括在衬底100内和在隔离结构103之间形成的应变源极和漏极区130,在应变源极区和漏极区130的表面上形成的第二阻挡材料层。在一些实施例中,隔离结构103是沟槽隔离结构。在特定的实施例中,沟槽隔离结构是条形并且沟槽隔离结构110平行布置。应变源极和漏极区130位于栅极结构120的两个相对侧处。在一些实施例中,FinFET 20是p沟道FinFET。在一些实施例中,FinFET 20是n沟道FinFET。
在图2A中,提供了衬底100。例如,衬底100为单晶半导体衬底或SOI衬底。在一些实施例中,衬底100是硅衬底。衬底100包括用于电隔离的隔离结构103(图1)和位于隔离结构103之间的鳍102。在一个实施例中,通过蚀刻衬底100形成鳍102以形成沟槽。在一个实施例中,通过填充在具有介电材料的衬底中的沟槽形成隔离结构103,介电材料诸如氧化硅和旋涂材料。
参考图2A,堆叠结构110形成在衬底100上,并且堆叠结构110形成在隔离结构103上,同时堆叠结构110穿过鳍102同时堆叠结构110位于鳍102上方。在一些实施例中,堆叠结构110是平行布置的条形结构并且堆叠结构110的延伸方向垂直于鳍102的延伸方向。在图2A中,示出了两个堆叠结构110,并且堆叠结构110的数量仅用于说明的目的并不是为了限制本发明的结构。在特定的实施例中,堆叠结构110包括多晶硅条106和位于多晶硅条106上的硬掩模条108。在一些实施例中,通过沉积多晶硅层(未示出)形成堆叠结构110,硬掩模层(未示出)在多晶硅层上方,并且随后图案化硬掩模层和多晶硅层以形成多晶硅条106和硬掩模条108。可选的,在形成多晶硅层之前形成氧化物层104以保护鳍102。在一些实施例中,硬掩模层的材料包括通过低压化学汽相沉积(LPCVD)或者等离子体增强化学汽相沉积(PECVD)形成的氮化硅。
在图2B中,在一些实施例中,在堆叠结构110的侧壁110b上形成间隔件112。即,间隔件112形成在硬掩模带108和多晶硅条106的侧壁上。在一个实施例中,通过沉积共形介电层(未示出)形成间隔件112并且随后回蚀介电层以在堆叠结构110的侧壁110b上形成单独的间隔件112。在一些实施例中,间隔件112可以由诸如氧化硅、氮化硅、碳化硅、硅碳氮氧化物(SiCON)或它们的组合的介电材料形成。间隔件112可以是单层或多层结构。
在图2C中,在一些实施例中,通过在预期用于源极和漏极区的位置去除部分的衬底100并且使用堆叠结构110和间隔件112作为蚀刻掩模,在堆叠结构110和间隔件112旁边在衬底100内形成凹槽105。通过使用一个或多个蚀刻工艺形成凹槽105,蚀刻工艺包括各向异性蚀刻,各向同性蚀刻或它们的组合。如图2C示出的,在一些实施例中,在衬底100内形成凹槽105后,通过在凹槽105内沉积应变材料来形成应变源极和漏极区130以填充凹槽105。在一些实施例中,一些应变源极和漏极区130稍微突出于衬底100和隔离结构103。由于应变源极和漏极区130位于沟道区102的相对侧上,并且应变材料的晶格常数不同于衬底100的材料的晶格常数,因此,施加应变或者应力沟道区102以增加器件的载流子迁移率和提高器件性能。此外,例如,应变源极和漏极区130可选的形成有覆盖层(未示出)并且覆盖层的材料包括轻掺杂或者未掺杂的含硅材料。
在特定的实施例中,应变材料包括锗化硅(SiGe)、磷化硅(SiP)或者碳化硅(SiC)。在凹槽105(源极和漏极区)内沉积的应变材料是应力诱导材料,其引起沟道区的单轴压缩应变。应用诸如SiGe的应变材料以用于P沟道FinFET的空穴迁移率增强。为提高在更高节点(诸如节点-28及以下)发展的P沟道FinFET的载流子迁移率,可以将SiGe中的Ge含量在特定范围内调整。类似地,应用诸如SiP的应变材料以用于n沟道FinFET的电子迁移率增强。在一些实施例中,通过外延生长形成应变源极和漏极区130。在一些实施例中,外延生长技术包括低压CVD(LPCVD)、原子层CVD(ALCVD)、超高真空CVD(UHVCVD)、减压CVD(PRCVD)、分子束外延(MBE)、金属有机汽相外延(MOVPE)或它们的组合。可选地,外延生长技术利用循环沉积蚀刻(CDE)外延工艺或选择性外延生长(SEG)工艺以形成高晶体质量的应变材料。
图2D是在制造方法的多个阶段之一处的FinFET的立体图,并且图2E是沿着图2D的线I-I’截取的FinFET的截面图。如图2D和图2E中示出的,第一阻挡材料层114a形成在间隔件112的表面112b上并且第二阻挡材料层114b形成在应变源极和漏极区130的顶面130a上。例如,第一阻挡材料层114a和第二阻挡材料层114b的厚度在从约1nm至约50nm的范围内。在特定的实施例中,第一阻挡材料层114a的厚度在从2nm至5nm的范围内。在特定的实施例中,第二阻挡材料层114b的厚度在从2nm至5nm的范围内。在一些实施例中,第一阻挡材料层114a和第二阻挡材料层114b在相同的时间形成。在特定的实施例中,通过对间隔件112施加氧化处理形成第一阻挡材料层114a,并且通过对应变源极和漏极区130施加氧化处理形成第二阻挡材料层114b。在一个实施例中,该氧化处理是低温基氧化处理,施加低温基氧化处理的操作温度范围从25℃至600℃。例如,氧化处理工艺包括:使用至少一种含有氧(O)的气体施加等离子处理。在氧化处理工艺中,通过在等离子处理中包括的中性自由基、离子、电子或者其组合物氧化间隔件112和/或应变源极和漏极区130的表面。在一些实施例中,第一阻挡材料层114a和第二阻挡材料层114b包括富氧氧化物材料。在一些实施例中,通过施加氧化处理形成第一阻挡材料层114a和第二阻挡材料层114b,氧化处理包括施加等离子处理,并且用于等离子处理的参数包括:在500瓦特至4000瓦特的功率、25℃至600℃的操作温度和0.5托至200托的操作压力下,具有约0.1slm至约30slm的氧气流量,以及约0.05slm至约10slm的氢气流量。在其它实施例中,通过施加氧化处理形成第一阻挡材料层114a和第二阻挡材料层114b,氧化处理包括施加等离子处理,并且用于等离子处理的制造参数包括:在500瓦特至4000瓦特的功率下、在300℃至400℃的操作温度和1托至20托的操作压力下,供应具有约0.1slm至约30slm的氧气流量的氧气和约0.05slm至约10slm的氢气流量的氢气。
在一些实施例中,第一阻挡材料层114a的材料包括氧化物,并且第二阻挡材料层114b的材料包括氧化物。在一些实施例中,第一阻挡材料层114a的氧含量大于间隔件112的氧含量。在一些实施例中,第二阻挡材料层114b的氧含量大于应变源极和漏极区130的氧含量。在特定的实施例中,例如,第一阻挡材料层114a的材料包括富氧氧化物材料,富氧氧化物材料诸如富氧硅氧化硅、富氧氮化硅、富氧硅碳氮氧化物或者其组合物。在一个实施例中,间隔件112的材料包括硅碳氮氧化物(SiCON),并且第一阻挡材料层114a的材料包括富氧SiCON。在一个实施例中,富氧SiCON的氧含量是8%至40%。在一个实施例中,间隔件112的材料包括氮化硅,并且第一阻挡材料层114a的材料包括富氧氮化硅或者富氧SiON。在一个实施例中,富氧SiCON的氧含量是8%至40%。在其它实施例中,间隔件112的材料包括氧化硅,并且第一阻挡材料层114a的材料包括富氧氧化硅。在特定的实施例中,例如,第二阻挡材料层114b的材料包括富氧氧化物材料,富氧氧化物材料诸如富氧氧化硅、富氧硅锗氧化物或者其组合物。在一些实施例中,富氧半导体材料氧化物通过MOx表示,其中,M是Si或者Ge,并且2.1≤x≤2.5。在一个实施例中,第二阻挡材料层114b的材料是富氧氧化硅,SiOx和2.1≤x≤2.5。
在其它实施例中,第一阻挡材料层114a和第二阻挡材料层114b包括带负电荷的层。在一个实施例中,富氧氧化物材料是带负电荷的。在一个实施例中,第一阻挡材料层114a包括带负电荷的SiCON层或者带负电荷的氧化硅层。在一个实施例中,第二阻挡材料层114b包括带负电荷的氧化硅层。在一些实施例中,带负电荷层的表面电荷含量从约-20*1010/cm2至约-150*1010/cm2。对比通过热氧化形成的正常氧化硅或者中性氧化硅,带负电荷氧化硅观察到较低的结合能。
通过第一阻挡材料层114a形成在间隔件112上和第二阻挡材料层114b覆盖应变源极和漏极区130的表面130a,降低了电子或空穴陷阱,减小了泄漏电流。在一些实施例中,由于在间隔件112的表面112b上形成了第一阻挡材料层114a(富氧SiCON层),在间隔件112的复合结构和在间隔件112上的第一阻挡材料层114a上提供低介电常数(4.5-5.0),导致寄生电容的减少并且提高了器件的操作速度。在一些实施例中,在应变源极和漏极区130的表面130a上的第二阻挡材料层114b(富氧氧化硅)覆盖了杂质和/或错位,同时降低了第二阻挡材料层114b的电子或者空穴陷阱。
图2F是在该制造方法的各个阶段的其中一个处的FinFET 20的立体图,并且图2G是沿着图2F的线I-I’截取的FinFET 20的截面图。如图2F和图2G中示出的,在一些实施例中,在去除堆叠结构110后,形成栅极结构120。在一个实施例中,在去除在间隔件112和第一阻挡材料层114a之间的多晶硅带106和位于多晶硅带106上的硬掩模带108后,随后在间隔件112之间和在第一阻挡材料层114a之间的凹槽内形成栅极介电层122和栅极电极层124。如图2F和图2G中示出的,栅极电极层124和栅极介电层122覆盖部分的鳍102,并且该覆盖部分用作沟道区(也标为102)。在一些实施例中,栅极介电层122的材料包括氧化硅,氮化硅或者它们的组合。在一些实施例中,栅极介电层122材料包括高k介电材料,并且高k介电材料具有大于约7.0的k值并且高k介电材料包括Hf、Al、Zr、La、Mg、Ba、Ti、Pb的金属氧化物或硅酸盐及其组合。在一些实施例中,通过原子层沉积(ALD)、分子束沉积(MBD)、物理汽相沉积(PVD)或者热氧化形成栅极介电层122。在一些实施例中,栅极电极层124包括含金属材料,含金属材料诸如Al、Cu、W、Co、Ti、Ta、Ru、TiN、TiAl、TiAlN、TaN、TaC、NiSi、CoSi或者其组合物。根据FinFET 100是P型FinFET还是n型FinFET,来选择栅极介电层122和/或栅极电极层124的材料。可选的,可以实施化学机械抛光(CMP)工艺以去除栅极介电层122和栅极电极层124的过量部分。间隔件112和第一阻挡材料层114a位于栅极介电层122和栅极电极层124的侧壁上。即,替代堆叠结构110并且形成的替代品栅极结构120在栅极结构120的两侧处具有间隔件112和第一阻挡材料层114a。在此描述的一些实施例中,栅极结构是替代栅极,但是栅极结构或者其制造工艺不通过这些实施例限制。
在图2F和图2G中,在一些实施例中,栅极结构120位于隔离结构103上同时栅极结构120位于衬底100上方,并且间隔件112和第一阻挡材料层114a位于栅极结构120的相对侧上。在特定的实施例中,应变源极和漏极区130位于栅极结构120的两个相对侧上同时应变源极和漏极区130位于隔离结构103之间,并且第二阻挡材料层114b位于应变源极和漏极区130的顶面130a上。
因此,由于通过第二阻挡材料层114b覆盖应变源极和漏极区130,高质量富氧氧化物的第二阻挡材料层114b减少电子或空穴陷阱并且减少电流泄漏。归因于低介电常数的间隔件,第一阻挡材料层114a设置在间隔件112上,因此降低了第一阻挡材料层114a的寄生电容。提升了FinFET器件结构的性能。
图3是根据本发明的一些实施例的示出用于形成FinFET的制造方法的一些工艺步骤的示例性流程图。
虽然该方法的步骤被示出和描述为一系列的动作和事件,但是应当理解,这些动作和事件的所示出的顺序不应解释为限制意义。此外,并非所有示出的工艺或步骤必须实施本发明的一个或多个实施例。
在步骤300中,提供了一种具有隔离结构的衬底和位于隔离结构之间的鳍。在步骤302中,在隔离结构上和在衬底上方形成至少一个堆叠结构。衬底是硅衬底或绝缘体上硅(SOI)衬底。在步骤304中,在堆叠结构的侧壁上形成侧壁间隔件。在步骤306中,在衬底中和在堆叠结构的两个相对侧处形成应变源极和漏极区。在步骤308中,通过实施氧化处理,在侧壁间隔件上形成第一阻挡材料层并且在应变源极和漏极区上形成第二阻挡材料层。在步骤310中,在去除堆叠结构后,在隔离结构上和在衬底上方形成至少一个栅极结构。
在上述的实施例中,通过实施氧化处理,在侧壁间隔件上形成第一阻挡材料层和在应变源极和漏极区上形成第二阻挡材料层包括带负电荷的高品质的富氧氧化物材料。氧化处理后生成的第一阻挡材料层和第二阻挡材料层可以减少电子或空穴陷阱以及泄露,同时提供低介电常数,因此第一阻挡材料层和第二阻挡材料层减少了寄生电容同时加强了器件操作速度。对于具有第一阻挡材料层和第二阻挡材料层的器件,提升了器件的电性能。
在本发明的一些实施例中,描述了一种鳍式场效应晶体管。鳍式场效应晶体管包括具有隔离结构的衬底和在隔离结构之间的鳍、至少一个栅极结构、间隔件、第一阻挡材料层和第二阻挡材料层以及应变源极和漏极区。至少一个栅极结构设置在衬底上方并且至少一个栅极结构在隔离结构上。间隔件设置在至少一个栅极结构的侧壁上。第一阻挡材料层设置在间隔件上。应变源极和漏极区设置在至少一个栅极结构的两个相对侧上。第二阻挡材料层设置在应变源极和漏极区上。第一阻挡材料层和第二阻挡材料层包括富氧氧化物材料。
在本发明的一些实施例中,描述了一种鳍式场效应晶体管。鳍式场效应晶体管包括具有隔离结构的衬底和在隔离结构之间的鳍、至少一个栅极结构、间隔件、第一阻挡材料层和第二阻挡材料层以及应变源极和漏极区。至少一个栅极结构设置在衬底上方并且至少一个栅极结构在隔离结构上。间隔件设置在至少一个栅极结构的侧壁上。第一阻挡材料层设置在间隔件的表面上。第一阻挡材料层包括带负电荷的层。应变源极和漏极区设置在至少一个栅极结构的相对侧上。第二阻挡材料层设置在应变源极和漏极区的表面上。第二阻挡材料层包括带负电荷的氧化硅层。
在本发明的一些实施例中,描述了一种用于形成鳍式场效应晶体管的方法。提供一种具有隔离结构的衬底和位于所述隔离结构之间的鳍。在隔离结构上和在鳍上方以及在衬底上方形成至少一个堆叠结构。在至少一个栅极结构的侧壁上形成侧壁间隔件。在衬底中和位于至少一个栅极结构的两个相对侧上形成应变源极和漏极区。通过实施氧化处理,在侧壁间隔件上形成第一阻挡材料层并且在应变源极和漏极区上形成第二阻挡材料层。在去除堆叠结构后,在隔离结构上和在鳍上方以及在衬底上方形成至少一个栅极结构。
根据本发明的一个方面,提供一种鳍式场效应晶体管,包括:衬底,具有隔离结构和位于隔离结构之间的鳍;至少一个栅极结构,设置在衬底上方并且在隔离结构上;间隔件,设置在至少一个栅极结构的侧壁上;第一阻挡材料层,设置在间隔件上;应变源极和漏极区,设置在至少一个栅极结构的相对侧上;以及第二阻挡材料层,设置在应变源极和漏极区上,其中,第一阻挡材料层和第二阻挡材料层包括富氧氧化物材料。
根据本发明的一个实施例,第一阻挡材料层的氧含量大于间隔件的氧含量。
根据本发明的一个实施例,间隔件的材料包括硅碳氮氧化物,并且第一阻挡材料层的材料包括富氧硅碳氮氧化物。
根据本发明的一个实施例,间隔件的材料包括氧化硅,并且第一阻挡材料层的材料包括富氧氧化硅。
根据本发明的一个实施例,第二阻挡材料层的氧含量大于应变源极和漏极区的氧含量。
根据本发明的一个实施例,应变源极和漏极区的材料包括锗化硅或者磷化硅,并且第二阻挡材料层的材料包括富氧氧化硅。
根据本发明的一个实施例,富氧氧化硅由SiOx表示并且2.1≤x≤2.5。
根据本发明的另一方面,提供一种鳍式场效应晶体管,包括:衬底,具有隔离结构和位于隔离结构之间的鳍;至少一个栅极结构,设置在鳍上方并且在隔离结构上;间隔件,间隔件设置在至少一个栅极结构的侧壁上;第一阻挡材料层,设置在间隔件的表面上,其中,第一阻挡材料层包括带负电荷的层;应变源极和漏极区,设置在至少一个栅极结构的相对侧上;以及第二阻挡材料层,设置在应变源极和漏极区的表面上,其中,第二阻挡材料层包括带负电荷的氧化硅层。
根据本发明的一个实施例,第一阻挡材料层的氧含量大于间隔件的氧含量。
根据本发明的一个实施例,间隔件的材料包括硅碳氮氧化物,并且带负电荷的层包括富氧硅碳氮氧化物。
根据本发明的一个实施例,间隔件的材料包括氧化硅,并且带负电荷的层包括富氧氧化硅。
根据本发明的一个实施例,第二阻挡材料层的氧含量大于应变源极和漏极区的氧含量。
根据本发明的一个实施例,应变源极和漏极区的材料包括锗化硅或者磷化硅,并且带负电荷的氧化硅层的材料由SiOx表示并且2.1≤x≤2.5。
根据本发明的另一方面,提供一种用于形成鳍式场效应晶体管的方法,包括:提供具有隔离结构和位于隔离结构之间的鳍的衬底;在隔离结构上和鳍上方形成至少一个堆叠结构;在至少一个堆叠结构的侧壁上形成间隔件;在衬底中以及在至少一个堆叠结构的两个相对侧上形成应变源极和漏极区;通过实施氧化处理在间隔件上形成第一阻挡材料层以及在应变源极和漏极区上形成第二阻挡材料层;以及在去除至少一个堆叠结构后,在隔离结构上和鳍上方形成至少一个栅极结构。
根据本发明的一个实施例,实施氧化处理包括以从25℃至600℃范围内的操作温度实施低温基氧化处理的。
根据本发明的一个实施例,实施氧化处理包括使用至少一种含氧气体应用等离子处理。
根据本发明的一个实施例,在间隔件上形成第一阻挡材料层以及在应变源极和漏极区上形成第二阻挡材料层包括通过应用等离子处理来处理间隔件和应变源极和漏极区的表面,以形成包括富氧氧化物材料的第一阻挡材料层和第二阻挡材料层。
根据本发明的一个实施例,在间隔件上形成第一阻挡材料层以及在应变源极和漏极区上形成第二阻挡材料层包括通过应用等离子处理来处理间隔件和应变源极和漏极区的处理表面,以形成包括带负电荷的层的第一阻挡材料层和第二阻挡材料层。
根据本发明的一个实施例,其中,在间隔件上形成第一阻挡材料层包括在间隔件上形成富氧硅碳氮氧化物层。
根据本发明的一个实施例,在应变源极和漏极区上形成第二阻挡材料层包括在应变源极和漏极区中形成富氧氧化硅层。
以上论述了若干实施例的部件,使得本领域的技术人员可以更好地理解本发明的各个方面。本领域技术人员应该理解,可以很容易地使用本发明作为基础来设计或更改其他的处理和结构以用于达到与本发明所介绍实施例相同的目的和/或实现相同优点。本领域技术人员也应该意识到,这些等效结构并不背离本发明的精神和范围,并且在不背离本发明的精神和范围的情况下,可以实施多种变化、替换以及改变。

Claims (16)

1.一种鳍式场效应晶体管,包括:
衬底,具有隔离结构和位于所述隔离结构之间的鳍;
至少一个栅极结构,设置在所述衬底上方并且在所述隔离结构上;
间隔件,设置在所述至少一个栅极结构的侧壁上;
第一阻挡材料层,设置在所述间隔件上;
应变源极和漏极区,设置在所述至少一个栅极结构的相对侧上;以及
第二阻挡材料层,设置在所述应变源极和漏极区上,其中,所述第一阻挡材料层和所述第二阻挡材料层包括富氧氧化物材料,以及所述第一阻挡材料层的氧含量大于所述间隔件的氧含量,
其中,所述间隔件的材料包括硅碳氮氧化物,并且所述第一阻挡材料层的材料包括富氧硅碳氮氧化物,或者
其中,其中,所述间隔件的材料包括氧化硅,并且所述第一阻挡材料层的材料包括富氧氧化硅。
2.根据权利要求1所述的晶体管,其中,所述第二阻挡材料层的氧含量大于所述应变源极和漏极区的氧含量。
3.根据权利要求2所述的晶体管,其中,所述应变源极和漏极区的材料包括锗化硅或者磷化硅,并且所述第二阻挡材料层的材料包括富氧氧化硅。
4.根据权利要求3所述的晶体管,其中,所述富氧氧化硅由SiOx表示并且2.1≤x≤2.5。
5.一种鳍式场效应晶体管,包括:
衬底,具有隔离结构和位于所述隔离结构之间的鳍;
至少一个栅极结构,设置在所述鳍上方并且设置在所述隔离结构上;
间隔件,所述间隔件设置在所述至少一个栅极结构的侧壁上;
第一阻挡材料层,设置在所述间隔件的表面上,其中,所述第一阻挡材料层包括带负电荷的层;
应变源极和漏极区,设置在所述至少一个栅极结构的相对侧上;以及
第二阻挡材料层,设置在所述应变源极和漏极区的表面上,其中,所述第二阻挡材料层包括带负电荷的氧化硅层,并且所述第二阻挡材料层的氧含量大于所述应变源极和漏极区的氧含量。
6.根据权利要求5所述的晶体管,其中,所述第一阻挡材料层的氧含量大于所述间隔件的氧含量。
7.根据权利要求6所述的晶体管,其中,所述间隔件的材料包括硅碳氮氧化物,并且所述带负电荷的层包括富氧硅碳氮氧化物。
8.根据权利要求6所述的晶体管,其中,所述间隔件的材料包括氧化硅,并且所述带负电荷的层包括富氧氧化硅。
9.根据权利要求5所述的晶体管,其中,所述应变源极和漏极区的材料包括锗化硅或者磷化硅,并且所述带负电荷的氧化硅层的材料由SiOx表示并且2.1≤x≤2.5。
10.一种用于形成鳍式场效应晶体管的方法,包括:
提供具有隔离结构和位于所述隔离结构之间的鳍的衬底;
在所述隔离结构上和所述鳍上方形成至少一个堆叠结构;
在所述至少一个堆叠结构的侧壁上形成间隔件;
在所述衬底中以及在所述至少一个堆叠结构的两个相对侧上形成应变源极和漏极区;
通过对所述间隔件和所述应变源极和漏极区的表面实施氧化处理在所述间隔件上形成第一阻挡材料层而没有覆盖所述隔离结构以及在所述应变源极和漏极区上形成第二阻挡材料层而没有覆盖所述隔离结构;以及
在去除所述至少一个堆叠结构后,在所述隔离结构上和所述鳍上方形成至少一个栅极结构。
11.根据权利要求10所述的方法,其中,实施所述氧化处理包括以从25℃至600℃范围内的操作温度实施低温基氧化处理的。
12.根据权利要求10所述的方法,其中,实施所述氧化处理包括使用至少一种含氧气体应用等离子处理。
13.根据权利要求12所述的方法,其中,在所述间隔件上形成第一阻挡材料层以及在所述应变源极和漏极区上形成第二阻挡材料层包括通过应用所述等离子处理来处理所述间隔件和所述应变源极和漏极区的表面,以形成包括富氧氧化物材料的所述第一阻挡材料层和所述第二阻挡材料层。
14.根据权利要求12所述的方法,其中,在所述间隔件上形成第一阻挡材料层以及在所述应变源极和漏极区上形成第二阻挡材料层包括通过应用所述等离子处理来处理所述间隔件和所述应变源极和漏极区的处理表面,以形成包括带负电荷的层的所述第一阻挡材料层和所述第二阻挡材料层。
15.根据权利要求10所述的方法,其中,在所述间隔件上形成第一阻挡材料层包括在所述间隔件上形成富氧硅碳氮氧化物层。
16.根据权利要求10所述的方法,其中,在所述应变源极和漏极区上形成第二阻挡材料层包括在所述应变源极和漏极区中形成富氧氧化硅层。
CN201710100429.1A 2016-02-25 2017-02-23 鳍式场效应晶体管及其形成方法 Active CN107123670B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/054,086 2016-02-25
US15/054,086 US10026838B2 (en) 2016-02-25 2016-02-25 Fin-type field effect transistor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
CN107123670A CN107123670A (zh) 2017-09-01
CN107123670B true CN107123670B (zh) 2021-06-22

Family

ID=59680098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710100429.1A Active CN107123670B (zh) 2016-02-25 2017-02-23 鳍式场效应晶体管及其形成方法

Country Status (3)

Country Link
US (1) US10026838B2 (zh)
CN (1) CN107123670B (zh)
TW (1) TWI713642B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10522680B2 (en) 2017-08-31 2019-12-31 Taiwan Semiconductor Manufacturing Co., Ltd. Finfet semiconductor device structure with capped source drain structures
WO2019066788A1 (en) 2017-09-27 2019-04-04 Intel Corporation EPITAXIAL OXIDE PLUG FOR CONSTRAINTS TRANSISTORS
US10991805B2 (en) * 2018-07-31 2021-04-27 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method of manufacture
US10943787B2 (en) 2019-02-27 2021-03-09 International Business Machines Corporation Confined work function material for gate-all around transistor devices

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100634372B1 (ko) * 2004-06-04 2006-10-16 삼성전자주식회사 반도체 소자들 및 그 형성 방법들
US7414315B2 (en) * 2005-10-31 2008-08-19 Taiwan Semiconductor Manufacturing Company, Ltd. Damascene structure with high moisture-resistant oxide and method for making the same
CN101197290A (zh) * 2006-12-05 2008-06-11 中芯国际集成电路制造(上海)有限公司 半导体器件的制造方法
CN100576509C (zh) * 2006-12-05 2009-12-30 中芯国际集成电路制造(上海)有限公司 自对准接触孔的制造方法
US7741171B2 (en) * 2007-05-15 2010-06-22 Taiwan Semiconductor Manufacturing Company, Ltd. Oxygen-rich layers underlying BPSG
US8202773B2 (en) * 2008-08-29 2012-06-19 Texas Instruments Incorporated Engineered oxygen profile in metal gate electrode and nitrided high-k gate dielectrics structure for high performance PMOS devices
US8629426B2 (en) * 2010-12-03 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Source/drain stressor having enhanced carrier mobility manufacturing same
CN102420228B (zh) * 2011-06-17 2015-01-07 上海华力微电子有限公司 抑制gidl效应的后栅极工艺半导体器件及其制备方法
US8637371B2 (en) * 2012-02-16 2014-01-28 International Business Machines Corporation Non-planar MOSFET structures with asymmetric recessed source drains and methods for making the same
US8658486B2 (en) * 2012-05-23 2014-02-25 International Business Machines Corporation Forming facet-less epitaxy with a cut mask
US8809139B2 (en) * 2012-11-29 2014-08-19 Taiwan Semiconductor Manufacturing Company, Ltd. Fin-last FinFET and methods of forming same
CN104299940A (zh) * 2013-07-19 2015-01-21 上海华虹宏力半导体制造有限公司 金属阻挡层的成膜方法
US9473719B2 (en) * 2013-12-30 2016-10-18 Taiwan Semiconductor Manufacturing Company, Ltd. Protection layer in CMOS image sensor array region
US20150372107A1 (en) * 2014-06-18 2015-12-24 Stmicroelectronics, Inc. Semiconductor devices having fins, and methods of forming semiconductor devices having fins
US9449963B2 (en) * 2014-07-03 2016-09-20 Taiwan Semiconductor Manufacturing Co., Ltd. Gate structure with hard mask structure formed thereon and method for forming the same
US20160163829A1 (en) * 2014-12-03 2016-06-09 United Microelectronics Corp. Method of forming recess structure

Also Published As

Publication number Publication date
CN107123670A (zh) 2017-09-01
US20170250280A1 (en) 2017-08-31
TWI713642B (zh) 2020-12-21
TW201731111A (zh) 2017-09-01
US10026838B2 (en) 2018-07-17

Similar Documents

Publication Publication Date Title
US20210159226A1 (en) Enhanced channel strain to reduce contact resistance in nmos fet devices
US11145759B2 (en) Silicon germanium p-channel finFET stressor structure and method of making same
US9859427B2 (en) Semiconductor Fin FET device with epitaxial source/drain
CN106252386B (zh) FinFET结构及其形成方法
US9647118B2 (en) Device having EPI film in substrate trench
US8900956B2 (en) Method of dual EPI process for semiconductor device
US9196613B2 (en) Stress inducing contact metal in FinFET CMOS
US10529863B2 (en) Flat STI surface for gate oxide uniformity in Fin FET devices
CN106505103B (zh) 半导体装置及其制造方法
CN104701377B (zh) 具有应变层的半导体器件
TWI572033B (zh) 具有通道異質結構之場效電晶體及其製造方法
CN107123670B (zh) 鳍式场效应晶体管及其形成方法
KR20230146988A (ko) 반도체 디바이스 및 제조 방법
TW202315837A (zh) 半導體裝置結構及其形成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant